首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the protective effects of probiotic on heat stress‐induced intestinal injury and inflammatory response in broilers. A total of 180 male broilers were randomly allocated to three treatments with four replicates each from 22 to 42 days of age. The broilers were either raised under thermoneutral (TN) conditions (23 ± 1°C) or subjected to cyclic heat stress (28–35–28°C for 12 hr daily). The broilers kept at TN conditions were fed a basal diet, and those exposed to heat stress were fed basal diets supplemented with or without probiotic at a dose of 1.5 × 108 cfu/kg. Compared with the TN group, heat stress decreased (p < .05) the growth performance, reduced (p < .05) villus height and villus height: crypt depth ratio in intestinal mucosa, increased (p < .05) serum levels of D‐lactic acid on day 28 and endotoxin, TNF‐α and IL‐6 on day 42, and decreased (p < .05) serum IL‐10 content on day 42. Dietary supplementation of probiotic reversed (p < .05) all these changes except for the growth performance in heat‐stressed broilers. In conclusion, dietary inclusion of probiotic could improve intestinal morphology and barrier function, alleviate inflammatory response, but exert no ameliorative effect on growth performance of broilers under cyclic heat stress.  相似文献   

2.
The present study investigated the influence of Bacillus subtilis GCB‐13‐001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs. A total of 120 weaning pigs [(Landrace × Yorkshire) × Duroc; 7.73 ± 0.75 kg (28 days of age)] were randomly allotted into three treatments according to their initial body weight (BW) and gender in a 6‐week experiment. There were 8 replication pens in each treatment, with five pigs/pen. Dietary treatment groups were as follows: (a) basal diet (CON), (b) CON + 0.1% Bacillus subtilis GCB‐13‐001 1 × 108 CFU/kg (T1) and (c) CON + 0.1% Bacillus subtilis GCB‐13‐001 1 × 109 CFU/kg (T2). Days 1 to 7, the BW and ADG with T2 treatment were higher (p < .05) than CON treatment, as well as F:G showed trends in linear reduction (p < .1). Days 8 to 21, the BW and ADG were improved (p < .05) in pigs offered T1 and T2 diets compared with CON diet. Days 22 to 42, BW and ADG were higher (p < .05) in pigs fed T2 diet than CON and T1 diets, and the pigs fed T1 diet had higher BW than CON treatment. Overall, the ADG with the T2 treatment was higher (p < .05) than that with the T1 and CON treatments, and pigs offered T1 treatment had higher (p < .05) ADG than CON treatment. Moreover, F:G ratio were significantly decreased (p < .05) by T2 treatment compared with CON treatment. The faecal Lactobacillus counts were improved, and E. coli counts were reduced (p < .05) in pigs fed T2 diet compared with CON at the end of the experiment. In conclusion, supplementation of 0.1% Bacillus subtilis GCB‐13‐001 1 × 109 CFU/kg has shown a beneficial effect in improving BW, increase ADG, decrease F:G ratio.  相似文献   

3.
Heat stress (HS) disrupts redox balance and insulin‐related metabolism. Supplementation with supranutritional amounts of selenium (Se) may enhance glutathione peroxidase (GPX) activity and reduce oxidative stress, but may trigger insulin resistance. Therefore, the aim of this experiment was to investigate the effects of a short‐term high Se supplementation on physiology, oxidative stress and insulin‐related metabolism in heat‐stressed pigs. Twenty‐four gilts were fed either a control (0.20 ppm Se) or a high Se (1.0 ppm Se yeast, HiSe) diet for 2 weeks. Pigs were then housed in thermoneutral (20°C) or HS (35°C) conditions for 8 days. Blood samples were collected to study blood Se and oxidative stress markers. An oral glucose tolerance test (OGTT) was conducted on day 8 of thermal exposure. The HS conditions increased rectal temperature and respiration rate (both p < .001). The HiSe diet increased blood Se by 12% (p < .05) and ameliorated the increase in rectal temperature (p < .05). Heat stress increased oxidative stress as evidenced by a 48% increase in plasma advanced oxidized protein products (AOPPs; p < .05), which may be associated with the reductions in plasma biological antioxidant potential (BAP) and erythrocyte GPX activity (both p < .05). The HiSe diet did not alleviate the reduction in plasma BAP or increase in AOPPs observed during HS, although it tended to increase erythrocyte GPX activity by 13% (p = .068). Without affecting insulin, HS attenuated lipid mobilization, as evidenced by a lower fasting NEFA concentration (p < .05), which was not mitigated by the HiSe diet. The HiSe diet increased insulin AUC, suggesting it potentiated insulin resistance, although this only occurred under TN conditions (p = .066). In summary, HS induced oxidative stress and attenuated lipid mobilization in pigs. The short‐term supranutritional Se supplementation alleviated hyperthermia, but did not protect against oxidative stress in heat‐stressed pigs.  相似文献   

4.
A 2 × 3 factorial study (protease: 0 or 1,5000 PROT/kg and raw full‐fat soya bean meal [RSBM] replacing the commercial SBM at 0, 45 and 75 g/kg of diet) was conducted to examine the performance of broilers. Phytase (2000 FYT/kg) was uniformly added to each diet, each also replicated six times, with eight birds per replicate. Birds were raised in climate‐controlled rooms using sawdust as the bedding material and offered starter, grower and finisher diets. Feed intake (FI) and body weight gain (BWG) were reduced (p < .05) due to increasing levels of RSBM, but feed conversion ratio (FCR; 0–35 days) was unaffected. Over the first 24 days, neither RSBM nor protease supplementation affected (p > .05) mortality, footpad dermatitis or intestinal lesions in birds. At day 24, the weight, length, width and strength of tibia bone were reduced in chickens that received an elevated level of RSBM (75 g/kg of diet), but this was not significant at day 35. At day 24 (p < .05) and 35 (p < .01), Ca concentration in the litter was reduced when the RSBM level was increased in the diet, but P content was not affected. On days 24 (p < .05) and 35 (p < .01), the N content in litter was also increased with increase in dietary RSBM. Protease supplementation increased (p < .05) the uric acid concentration in the litter (at day 35), but the reverse was the case for ammonia concentration. Overall, the results of this study indicate that there are no major health‐related risks, associated with the replacement of commercial SBM with RSBM (≤25%) in broiler diets.  相似文献   

5.
The objective of this study was to evaluate the effects of zearalenone (ZEA) and estradiol benzoate (EB) on stress injury and uterine development in post‐weaning gilts. Thirty healthy post‐weaning female gilts (Duroc × Landrace × Large White) aged 28–32 days were randomly allocated to three treatments as follows: (a) basal diet (Control), (b) basal diet plus 1.0 mg/kg purified ZEA (ZEA) and (c) basal diet plus 0.75 ml (1.5 mg) EB per pig at 3‐days intervals by intramuscular injection (EB). The serum estradiol (E2), the final and the increased vulvar area, uterine index, thickness of the myometrium and endometrium, and protein expression of heat shock protein 70 (HSP70) in ZEA group were higher than those in the control group (p < .05), but lower than those in the EB group (p < .05). The serum luteinizing hormone in ZEA group was lower than that of the control group (p < .05), but higher than that in the EB group (p < .05). Higher serum follicle‐stimulating hormone and progesterone were observed in the ZEA and control groups than those in the EB group (p < .05). The serum glutathione peroxidase activity in the ZEA group was lower than that in the control and EB groups (p < .001), and the malondialdehyde in the ZEA group was higher than that in the control and EB groups (p < .001). Moreover, the relative mRNA and protein expression of growth hormone receptor (GHR) and relative mRNA expression of HSP70 in the ZEA and EB groups were higher than those in the control group (p < .05). In conclusion, both ZEA (1.0 mg/kg) and EB (1.5 mg at 3 days intervals by intramuscular injection) stimulated vulvar swelling and uterine hypertrophy by disordering serum hormones and up‐regulating GHR expression, and induced stress by different mechanisms in this study. Furthermore, the observed up‐regulating HSP70 expression challenged by ZEA or EB may be part of the mechanism to resist stress injury.  相似文献   

6.
This study investigated the effect of L ‐theanine on carcass traits, meat quality, muscle antioxidant capacity, and amino acid (AA) profiles of broilers. Three hundred 1‐day‐old Ross 308 male broilers were randomly allotted to five groups with six replicates. Birds were fed the basal diet or basal diet with 300, 600, 900, or 1,500 mg/kg L ‐theanine for 42 consecutive days. The results showed that L ‐theanine quadratically increased dressing percentage, eviscerated percentage, and leg muscle yield (p < .05). Meanwhile, drip loss, cooking loss, shear force, L*24h, and muscle lactate content decreased quadratically in response to dietary L ‐theanine supplementation (p < .05), while pH24h and muscle glycogen content were quadratically improved by L ‐theanine (p < .05). Notably, the contents of muscle malondialdehyde and protein carbonyl, and the activities of muscle total antioxidant capacity, catalase, and glutathione peroxidase decreased quadratically in response to dietary L ‐theanine supplementation (p < .05), suggesting that the oxidative stress level of muscle was decreased quadratically. Moreover, L ‐theanine quadratically increased the concentrations of most of muscle essential AA, nonessential AA, and flavor AA (p < .05). In conclusion, L ‐theanine can be used as a valuable feed additive to modulate carcass traits, meat quality, muscle antioxidant status, and AA profiles of boilers, and its optimum addition level is 600 mg/kg based on the present study.  相似文献   

7.
This study investigated the effect of dietary resveratrol supplementation on growth performance, rectal temperature, and serum parameters of yellow‐feather broilers under heat stress. A total of 480 yellow‐feather broilers (28‐day‐old) were randomly allotted to five groups with six replicates. A thermoneutral group (TN) (24 ± 2°C) received a basal diet and another four heat‐stressed groups (37 ± 2°C for 8 hr/day and 24 ± 2°C for the remaining time) were fed the basal diet or basal diet with 200, 350, and 500 mg/kg resveratrol for 14 consecutive days. The results revealed that resveratrol supplementation improved average daily gain (= 0.001), and decreased (p < 0.05) rectal temperature from d 3 when compared with heat‐stressed group without resveratrol. In addition, supplementation with resveratrol at 350 or 500 mg/kg lowered (p < 0.05) the contents of corticosterone, adrenocorticotropic hormone, cholesterol, triglycerides, uric acid, malonaldehyde, and activities of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, increased (p < 0.05) the levels of triiodothyronine, the ratio of triiodothyronine to thyroxine, total protein, glutathione, and activities of alkaline phosphatase, total superoxide dismutase, catalase, and glutathione peroxidase, though with few fluctuation. In conclusion, supplementation with resveratrol can improve the growth performance by positively regulating serum metabolic parameters and alleviating tissue oxidant damage of broilers under heat stress.  相似文献   

8.
We examined the effects of oral administration of L-citrulline (L-Cit) on plasma metabolic hormones and biochemical profile in broilers. Food intake, water intake, and body temperature were also analyzed. After dual oral administration (20 mmol/head/administration) of L-Cit, broilers were exposed to a high ambient temperature (HT; 30 ± 1°C) chamber for 120 min. Oral administration of L-Cit reduced (p < .001) rectal temperature in broilers. Food intake was increased (p < .05) by heat stress, but it was reduced (p < .05) by L-Cit. Plasma levels of 3,5,3′-triiodothyronine, which initially increased (p < .0001) due to heat stress, were reduced (p < .01) by oral administration of L-Cit. Plasma insulin levels were increased by heat exposure (p < .01) and oral L-Cit (p < .05). Heat stress caused a decline (p < .05) in plasma thyroxine. Plasma lactic acid (p < .05) and non-esterified fatty acids (p < .01) were increased in L-Cit-treated heat-exposed broilers. In conclusion, our results suggest that oral L-Cit can modulate plasma concentrations of major metabolic hormones and reduces food intake in broilers.  相似文献   

9.
The GMM sheep is a carrier of Booroola fecundity (FecB) gene, which produces the twins and triplets in one lambing. The homozygous carrier GMM (FecBBB), non‐carrier GMM and Malpura (FecB++) ewes were synchronized by progesterone sponges, and the plasma progesterone concentration was measured by RIA. The results showed that the progesterone concentration did not differ significantly (p > .05) in homozygous carrier GMM (5.74 ± 1.2 ng/ml), non‐carrier GMM (5.42 ± 1.4 ng/ml) and non‐carrier Malpura ewes (5.67 ± 1.5 ng/ml). Further, quantitative expression of BMP factors/receptors and SMAD signalling genes were analysed in the ovaries of sheep by qRT‐PCR. The study showed that the expression of BMP2 was slightly higher (p > .05) in carrier GMM than that of non‐carrier GMM, but it was almost similar to Malpura ewes. Expression of BMP4 and BMP7 was significantly higher (p < .001; p < .05) in carrier GMM than that of non‐carrier GMM and Malpura ewes. Although BMP6 expression was higher (p > .05) in carrier GMM than that of non‐carrier GMM, but lower (p > .05) than the Malpura ewes. Expression of BMP15 (p < .05), GDF5 (p < .01) and GDF9 (p < .05) was significantly higher in carrier GMM than non‐carrier GMM ewes. Surprisingly, BMPR1B expression was significantly higher (p < .001) in non‐carrier GMM and Malpura than the carrier GMM ewes, while TGFβRI did not differ significantly (p > .05) among both GMM genotypes. On the other hand, expression of BMPR1A (p > .05) and BMPRII (p < .05) was higher in carrier GMM than the non‐carrier GMM, but significantly lower (p < .001) than the Malpura ewes. It was interesting to note that the expression of SMAD1 (p > .05), SMAD2 (p < .001), SMAD3 (p < .05), SMAD4 (p < .001), SMAD5 (p < .001) and SMAD8 (p < .001) was lower in the carrier GMM than that of non‐carrier GMM ewes. It is concluded that the FecB mutation alters the expression of BMPR1B and SMAD signalling genes in the ovaries of homozygous carrier GMM ewes.  相似文献   

10.
This study investigated the effects of amino acids (AA) supplementation in low‐crude protein (CP) diets on the growth performance and carcass characteristics in late‐finishing gilts. Ninety gilts (93.8 ± 5.5 kg) were randomly allotted to one of the five diets which consisted of a normal‐CP (137 g/kg) or four low‐CP (105 g/kg) diets for 28 days. The low‐CP diets were supplemented with lysine + threonine + methionine (LCM), LCM + tryptophan (LCT), LCT + valine (LCV) or LCV + isoleucine (LCI), respectively. Non‐significant difference in average daily gain (ADG) was obtained in gilts receiving the control and LCV diet, which was higher than that of gilts fed the LCM diet (p < .05). The additions of crystalline AA in the low‐CP diet resulted in the improvements in ADG (linear and quadratic effect, p < .05) and fat‐free lean gain (quadratic effect, p < .05) and influenced the valine concentration (linear and quadratic effect, p < .05) and proportion of saturated fatty acid (linear effect, p < .05) in longissimus muscle. The results indicated that the valine supplementation could further improve the performance in 94 to 118 kg gilts fed the 105 g/kg CP diet.  相似文献   

11.
This study was to investigate the effect of oxidized wheat gluten (OG) on growth performance, gut morphology and its oxidative states of broilers. One hundred and eighty‐day‐old male broilers (10 chicks/pen) were randomly allocated into three dietary treatments: control diet (CON), diet with 8% wheat gluten (WG) and diet with 8% OG with six pens/treatment. Body weight (BW) (21 and 35 days) and average daily gain (ADG) (1–21 days and 22–35 days) decreased (p < .05) and feed conversion ratio (FCR) (1–21 days and 22–35 days) increased (p < .05) in OG treatment. Feed intake (FI) decreased (p < .05) in WG and OG treatments during 22–35 days. However, FI was not influenced by dietary treatments during 1–21 days (p > .05). The OG‐fed broilers had a lower faecal pH value (p < .05) and higher faecal moisture content (p < 05) at 14, 21, 28 and 35 days. Villus height, crypt depth and V/C value were not different (p > .05) among treatments at 21 and 35 days. Lipid peroxidation (LPO) (21 and 35 days) and malondialdehyde (MDA) (35 days) content in crop of OG treatment increased (p < .05). Oxidized glutathione (GSSG) (21 days), LPO (21 and 35 days) and MDA (21 and 35 days) content in ileum of OG treatment increased (p < .05). The reduced glutathione/oxidized glutathione (GSH/GSSG) (21 days) and (GSH) (35 days) in ileum of OG treatment decreased (p < .05). The present findings indicate that OG might be a stressor for broiler gut, which could induce oxidative stress both in crop and in ileum, and the diarrhoea as well. The growth performance of broiler was consequently depressed.  相似文献   

12.
13.
This study investigated the influence of heat shock during in vitro maturation on embryo development following in vitro fertilization (IVF) or parthenogenesis (Part). Immature bovine cumulus–oocyte complexes were exposed to heat shock (41.0°C) during the first 12 hr of in vitro maturation (IVM), followed by 12 hr at 38.5°C. Control group consisted of in vitro maturation for 24 hr at 38.5°C. Oocytes were in vitro‐fertilized or activated with ionomycin and cultured in vitro for 192 hr post‐in vitro insemination or parthenogenetic activation (hpia). There was an interaction (p < .01) between temperature of IVM and method of oocyte activation (IVF or Part) for cleavage at 48 hpia. Heat shock had a negative impact (p < .01) on cleavage of IVF embryos, whereas no (p > .05) effect was found in the Part embryos. Embryo development towards blastocyst stage at 168 and 192 hpia decreased in both IVF and Part embryos derived from heat‐shocked oocytes. Heat shock increased (p < .05) the apoptotic index in Part blastocysts, but no effect (p > .05) was found in IVF counterparts. Heat shock also down‐regulated the expression of AQP3 (p < .01) and up‐regulated the expression of HSP70.1 (p < .01) in Part blastocysts, whereas it down‐regulated the expression of ATP1A1 (p < .05) in IVF blastocysts. In conclusion, the effects of heat shock during IVM on early embryo cleavage and blastocyst apoptosis are influenced by the method of oocyte activation and expression of some genes can be disturbed in embryos derived from heat‐shocked oocytes.  相似文献   

14.
This study aimed to investigate the effect of lactic acid bacteria (LAB) and smectite on the growth performance, nutrient digestibility and blood parameters of broilers that were fed diets contaminated with aflatoxin B1 (AFB1). A total of 480 newly hatched male Arbor Acres broilers were randomly allocated into four groups with six replicates of 20 chicks each. The broilers were fed diets with the AFB1 (40 μg/kg) challenge or without (control) it and supplemented with smectite (3.0 g/kg) or LAB (4.0 × 1010 CFU/kg) based on the AFB1 diet. The trial lasted for 42 days. The results showed that during days 1–42 of AFB1 challenge, the feed intake (FI) and body weight gain (BWG) were depressed (p < .05). The inclusion of LAB and smectite increased (p < .05) the BWG by 71.58 and 41.89 g/bird, respectively, which reached the level of the control diet (p ≥ .05), but there were no differences (p ≥ .05) in performance between LAB and smectite. LAB and smectite also increased (p < .05) the apparent total tract digestibility of the crude protein. Regarding the blood parameters, AFB1 decreased (p < .05) the levels of red blood cell count, haematocrit, mean corpuscular volume, haemoglobin, albumin and total protein. In the meantime, the AFB1 increased (p < .05) leucocyte counts, urea nitrogen, cholesterol, total bilirubin, creatinine, glutamic‐pyruvic transaminase, glutamic oxaloacetic transaminase and alkaline phosphatase. By contrast, LAB and smectite affected (p < .05) these parameters in the opposite direction. It can be concluded that after the AFB1 challenge, LAB and smectite have similar effects on the growth and health of the broilers, suggesting that LAB could be an alternative against AFB1 in commercial animal feeds.  相似文献   

15.
A total of 480 one‐day‐old Arbor Acres broiler chicks were randomly assigned to four dietary groups, each including six replicates (n = 20/replicate). Broilers in the first group (G1) were fed a basal diet without any additives (control). Broilers in groups 2, 3 and 4 (G2, G3 and G4) were fed a basal diet supplemented with 0.1%, 0.2% and 0.4% coriander (Coriandrum sativum L.) seed powder (CSP) respectively. Feeding trials lasted for 42 days, and after that growth, carcass traits, haematological parameters, gut microbiota and economic efficiency (EE) were evaluated. Final body weight (FBW), total weight gain (TWG), total feed intake (TFI) and red blood cell (RBC) counts of broilers in the G4 and G3 treatment groups were significantly higher (p < .05) compared with broilers in the G1 treatment group. The feed conversion ratio (FCR) was better (p < .05) in the G4 treatment group (1.72) than in the G1 treatment group (1.84). Broilers in CSP treatment groups had significantly higher haemoglobin (Hb) concentrations, packed cell volume (PCV) and platelet counts, and had lower (p < .05) Escherichia coli and Clostridium perfringens counts compared with broilers in the G1 treatment group. Dressing, liver, pancreas, bursa and thymus percentages were higher (p < .05) in broilers in the G4 (70.30, 3.18, 0.31, 0.10 and 0.32% respectively) treatment group, compared with broilers in the control (G1) group (66.57, 2.37, 0.23, 0.04 and 0.21% respectively). Broilers in treatment groups G4 and G3 had lower percentages of abdominal fat and lower total bacterial counts (p < .05) than broilers in treatment groups G2 and G1. The highest economic efficiency (EE) was found in treatment group G4, and EE in this group was 13.06% greater than in the control (G1) group.  相似文献   

16.
In this study, we examined the effect of dietary supplementation with grape seed (GS) on the performance, carcass traits, plasma biochemistry, antioxidant status and ileal microflora in broilers. Experiment diets included a control diet (without additive) and three levels of GS powder (10, 20 and 40 g/kg of diet). Each diet was fed to a total of 300 one‐day‐old Cobb‐500 chicks for 42 days. The addition of 20 g/kg of GS to the basal diet increased final body weight and body weight gain, improved the feed conversion ratio and did not affect feed intake. Dietary 20 g GS significantly increased (p < .05) the percentage of carcass yield %, dressing % and gizzard. However, the addition of 40 g/kg of GS significantly reduced the percentage of abdominal fat in the birds. Diets supplemented with GS showed the lowest content of ether extract compared with the control group (p < .05). The physical characteristics of meat and the chemical composition of DM, CP and ash were not significantly influenced by treatments. In the GS groups, plasma protein, albumin, globulin, aspartate aminotransferase and alanine aminotransferase concentrations showed no significant change compared with the control group. Broilers fed a diet supplemented with GS had lower levels of plasma glucose, total lipids, triglycerides and cholesterol compared with the control birds (p < .05). The addition of 40 g of GS significantly (p < .05) enhanced the activity of reduced glutathione, catalase, superoxide dismutase, glutathione peroxidase and GST, and correlated with significantly decreased thiobarbituric acid‐reactive substances levels compared with the control group. The value of ileal pH was not significantly affected by the GS levels. Broilers fed diets supplemented with GS had lower ileal Streptococcus spp. and Escherichia coli populations but higher Lactobacillus spp. populations (p < .05). No adverse effects on birds’ health were detected due to the use of GS. Thus, GS could be recommended as an herbal supplement in the diet of broiler chickens to improve performance, reduce blood lipids, enhance antioxidant capacity and decrease detrimental bacteria in the ileum.  相似文献   

17.
The objective of the present study was to evaluate the potential effect of dietary calcium butyrate on growth performance, carcass traits and gut health in Japanese quails. In total, 320 one‐day‐old Japanese quails were randomly assigned to 4 equal treatments, with 8 replicates of 10 Japanese quails, for 4 weeks. The Japanese quails in control treatment were fed control diet whereas in the other treatments the Japanese quails were fed diet supplemented with calcium butyrate at 0.3, 0.5 and 0.7 g/kg diet. Data concerning performance measurements were recorded weekly. In addition, eight Japanese quails (one/replicate) from each treatment were selected randomly for serum collection to measure pro‐ and anti‐inflammatory cytokines. Pooled faecal samples from each replicate of each treatment were also collected at three time points (0, 2 and 4 weeks) for count E. coli and C. perfringens. The results showed that after 7 days of the experimental period, Japanese quails fed calcium butyrate supplemented diet at 0.7 g/kg showed a greater (p < .05) body weight and a favourable (p < .05) feed conversion ratio than the other treatments. Moreover, serum superoxide dismutase and catalase activities were increased (p < .05) in Japanese quails fed calcium butyrate supplemented diet at 0.7 g/kg. Calcium butyrate supplementation at 0.7 g/kg was associated with reduction (p < .05) in TNF‐α, IL‐6 and IL1‐β, while IL‐10 was increased (p < .05). In addition, after 2 weeks of calcium butyrate supplementation, a reduction (p < .05) in E. coli and C. perfringens counts was observed in excreta of Japanese quails fed 0.5 and 0.7 g calcium butyrate/kg diets. It is concluded that calcium butyrate supplementation improves body weight gain, reduces E. coli and C. perfringens counts and has anti‐inflammatory/anti‐oxidant effect in Japanese quails.  相似文献   

18.
Carryover effect of prior fibre consumption on metabolic markers was investigated. Treatments were arranged in 2 × 2 factorial with 2 fibre sources, 4% inulin or cellulose (Solka‐Floc®) and fat levels (5 or 15%) for the low‐fat diet (LFD) and high‐fat diet (HFD) respectively. Pigs were fed the two fibre diets for the first 56d (nursery phase), and thereafter fed either the LFD or HFD containing no added fibre source from d56 to 140 (growing phase). Pigs on the HFD were heavier (p = .05) than those on LF (64.61 vs. 68.38 kg), regardless of prior fibre type consumed. Pigs that were fed cellulose during the nursery and later fed the HFD had the highest ADG (p < .05). Feeding the HFD resulted in higher back fat (BF) (13.41 and 18.18 ± 0.12 mm for LFD and HFD, respectively; p < .01). The HFD resulted in higher (p < .01) insulin (0.014 and 0.016 ± 0.001 mg/L for LF and HF respectively) and glucose (100.89 and 125.03 ± 4.39 mg/dl for LF and HF respectively) concentrations in the serum. Inulin increased ( .02) jejunal expression of SREBP‐1c and CL‐4, but reduced (p < .05) TNFɑ and IL‐6 expression in the ileum. Alpha‐diversity was significantly different (p < .05) between the inulin and cellulose fed pigs at the end of the nursery and finishing phases. Therefore, inulin feeding before a HFD may lead to reduction in ADG and inflammatory markers in the small intestine of pigs, and thus prevent future metabolic disorders.  相似文献   

19.
This study was to investigate the effects of Epigallocatechin‐3‐gallate (EGCG) on intestinal morphology, antioxidant capacity and anti‐inflammatory response in heat‐stressed broiler. A total of 192 2‐week‐old Arbour Acres broilers chickens were divided into four groups with six replicates per group and eight chickens per replicate: one thermoneutral control group (28°C, group TN), which was fed the basal diet; and three cyclic high‐temperature groups (35°C from 7:00 to 19:00 hr; 28°C from 19:00 hr to 7:00 hr, heat stress group), which were fed the basal diet supplementation with EGCG 0 mg/kg (group HS0), 300 mg/kg (group HS300) and 600 mg/kg (group HS600). The gut morphology and intestinal mucosal oxidative stress indicators, as well as intestinal barrier‐related gene expression, were analysed. The results showed that compared with group TN, heat stress reduced the villus height (VH), activities of glutathione peroxidase (GSH‐Px), superoxide dismutase (SOD)and catalase (CAT), increased the crypt depth (CD) and malondialdehyde (MDA)content at 21, 28 and 35 days (p < 0.05). After the heat‐stressed broilers were supplemented with EGCG, VH, VH/CD (V/C), and the activities of GSH‐Px, SOD and CAT were increased, and CD and MDA content were reduced compared with those in group HS0 without EGCG supplementation at 21, 28 and 35 days (p < 0.05). The EGCG supplementation promoted the gene expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2), Claudin‐1, Mucin 2 (Muc2) and alleviated the nuclear factor‐kappa B (NF‐κB) and lipopolysaccharide‐induced tumour necrosis factor (LITAF) gene expression compared with group HS0 (p < 0.05). Moreover, intestinal morphology was strongly correlated with antioxidant ability and inflammatory response. In conclusion, EGCG alleviated the gut oxidative injury of heat‐stressed broilers by enhancing antioxidant capacity and inhibiting inflammatory response.  相似文献   

20.
To investigate the effects of different levels of enzymatic hydrolysate of dietary locust bean gum on nutrient digestibility, intestinal morphology and microflora of broilers, a total of 768 one-day-old Arbor Acres (AA) broiler chicks were randomly divided into 6 treatments with 8 replicates per treatment and 16 birds per replicate. The treatments were as follows: (1) CON, basal diet; (2) ANT, basal diet +62.5 mg/kg flavomycin; (3) LBG, basal diet +0.1% locust bean gum; (4) ELBG-0.1, basal diet +0.1% enzymatic hydrolysate of LBG; (5) ELBG-0.2, basal diet +0.2% enzymatic hydrolysate of LBG; and (6) ELBG-0.3, basal diet +0.3% enzymatic hydrolysate of LBG. The digestibilities of ether extract, crude protein and dry matter were increased (p < .01) in broilers fed the ELBG-0.3 diet compared with the CON and LBG diets on day 21. Duodenal villus height and the ratio of the villus height to crypt depth were greater (p < .01) in broilers fed the ELBG-0.3 diet than the CON, ANT and LBG diets. Jejunum villus height was higher (p < .05) in broilers fed the ELBG-0.2 and ELBG-0.3 diets than the CON diet. The number of caecal Escherichia coli was reduced (p = .01) in broilers fed the ELBG-0.2 and ELBG-0.3 diets compared with the CON diet. The number of caecal Lactobacilli was greater (p < .05) in broilers fed the ELBG-0.3 diet than the CON and ANT diets. In summary, the addition of 0.3% locust bean enzymatic hydrolysate can increase the surface area of intestinal villi and the number of beneficial bacteria, inhibit the proliferation of harmful bacteria, maintain the balance of intestinal microflora and improve the digestibility of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号