首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this trial was to determine whether the selenium status of suckling calves could be improved by supplementing their dams' diet with organic Se instead of sodium selenite. A herd of 103 Hereford cows, which were on grass paddocks all year round, was divided into two groups. Both groups had free access to a mineral supplement that contained 30 mg of Se/kg; for one group the source of the Se was a Se yeast product, and for the other group the source was sodium selenite. The basal feed contained .02 mg of Se/kg DM. During the trial, the mean daily consumption of the mineral supplement was approximately 110 g/cow. The calving season started in the middle of March and ended in the middle of May. Blood samples were taken from 11 cows and their calves in the yeast group and from nine in the selenite group at the end of April and again at the beginning of June, and milk samples were taken at the same times. At both samplings, the concentration of Se in whole blood and the activity of glutathione peroxidase (GSH-Px) in the erythrocytes of the cows and calves in the yeast group were higher than in the samples from the animals in the selenite group. The same pattern was seen for plasma, except for the cows at the first sampling. The mean concentrations of Se in whole blood from calves in the yeast and selenite groups were 130 and 84 microg/L, respectively, and plasma concentrations were 48 and 34 microg/ L, respectively. Mean Se concentration in the milk from the yeast group (17.3 microg/L) was higher than that in milk from the selenite group (12.7 microg/L). There were significant correlations (r = .59 to .68) between the concentrations of Se in the cow's milk or cow's whole blood compared with Se concentrations in the calves whole blood and plasma or with the erythrocyte GSH-Px activity of the calves. The Se status of the calves in the selenite group was considered to be marginal, but the status of the calves in the yeast group was considered to be adequate. Supplementation of the suckler cows' diet with organic Se in the form of Se yeast rather than sodium selenite improved the Se status of their calves when the Se was mixed into a mineral supplement containing 30 mg of Se/kg. In practice, such supplementation would probably eliminate the risk of nutritional muscular degeneration in suckling calves.  相似文献   

2.
Three groups of four lactating cows received a subcutaneous injection of 0 . 05, 0 . 10 and 0 . 15 mg Se/kg body weighty respectively administered as sodium selenate. A fourth group was injected with saline. In all the cows injected with sodium selenate, the concentration of Se in blood increased rapidly and was significantly higher than in control cows for two days in the group receiving the lowest dose and for 182 days (the duration of the experiment) in the two other groups. The activity of glutathione peroxidase in blood increased slowly in all cows injected with sodium selenate and was significantly greater than in control cows after 15, 22 and 29 days respectively, and remained significantly greater for 63, 91 and 182 days respectively. In a second experiment a single subcutaneous injection of 0 . 15 mg Se/kg body weight had no effect on the mean milk yield of 37 animals (19 . 1 kg/day) compared with the milk yield of a similar group of control animals (19 . 1 kg/day) during 70 days. The concentration of Se in milk was significantly higher on the first (168 microgram/litre) and second (69 microgram/litre) day after injection than in control animals (mean 26 microgram/litre).  相似文献   

3.
选用35头处于干奶期40d、泌乳期相近和上胎平均日产奶量20kg的荷斯坦奶牛,采用完全随机区组设计分为7组,即:对照组,基础日粮(不加硒);试验组1、2、3添加亚硒酸钠,分别在基础日粮中加硒7.5mg/d、15mg/d和22.5mg/d;试验组4、5、6添加赛乐硒,分别在基础日粮中加硒7.5mg/d、15mg/d和22.5mg/d,研究赛乐硒和无机硒对奶牛发情周期生殖激素分泌和繁殖性能的影响。结果表明:赛乐硒较无机硒显著提高了发情周期促性腺激素释放激素、促卵泡素、促黄体素、雌二醇和孕酮含量,显著提高了受配率和受胎率,缩短了胎衣排出周期,促进母牛正常发情。适宜补硒量为15 mg/d。  相似文献   

4.
益康XP对奶牛产后日粮适应及生产性能影响的研究   总被引:5,自引:1,他引:5  
选取围产期(产前3~4周以内)健康奶牛20头和泌乳前期(泌乳天数小于56天)健康奶牛66头,按照胎次、泌乳天数和产量相同或相似的原则进行配对,分为围产期和泌乳期两个处理,每个处理又分为试验组和对照组。试验组和对照组的日粮组成相同,日粮由精料、羊草、苜蓿干草、青贮、混合料及一些糟粕类组成,试验组牛每天另添加酵母培养物益康“XP”60g,一次性投喂,试验期180天。结果表明:泌乳期试验牛产奶比对照组平均高2.10kg(p<0.05),差异显著;围产期试验牛产奶日平均比对照组高1.21kg(p>0.05),益康XP组泌乳期试验牛和围产期试验牛的乳脂率和乳蛋白均有一定的改善,但差异不显著。泌乳期试验中,两组体细胞数数据跳越性大,无明显改善效果,而在围产期试验中试验组初期(前60天)低于对照组,但整体高于对照组(P>0.05),且两组均值都小于35万/ml;本研究中,情期受胎率,两个处理中试验组和对照组无明显差异;泌乳期试验组乳房炎发病少于对照组,但围产期试验组乳房炎稍多,蹄病发病率却正好与乳房炎发病相反;产科疾病中试验组出现1次(死胎),对照组出现5次(4次胎衣不下,1次倒生助产)。  相似文献   

5.
AIM: To determine the effect of grazing pasture that had a low selenium (Se) concentration on serum concentrations of triiodothyronine (T3) and thyroxine (T4), and erythrocyte glutathione peroxidase (GSH-Px) activity in dairy cows. METHODS: Forty pregnant Friesian cows were grazed on pasture that contained 0.03-0.04 ppm Se on a dry matter (DM) basis. Two months before parturition, 20 cows were randomly selected and treated with 1 mg Se/kg bodyweight subcutaneously, as barium selenate (Group Se-S). The other group (Se-D) was not supplemented. Blood samples were taken before supplementation (-60 days) and 30, 60, 90, 180 and 270 days after parturition, for determination of concentrations of T3 and T4 in serum, and GSH-Px activity in erythrocytes. RESULTS: Erythrocyte GSH-Px activity in the Se-D group was <60 U/g haemoglobin (Hb) throughout the experiment. Supplementation increased (p<0.05) activities to >130 U/g Hb throughout lactation. Mean serum concentrations of T4 in Se-D and Se-S cows increased from 23.7 (SEM 0.7) and 23.4 (SEM 0.8) nmol/L, respectively, in the prepartum period to 69.6 (SEM 0.1) and 67.6 (SEM 0.2) nmol/L, respectively, at 180 days of lactation (p<0.01), and no effect of Se supplementation was evident. Serum concentrations of T3 in Se-D cows decreased (p<0.05) from 1.6 (SEM 0.1) nmol/L prepartum to 1.0 (SEM 0.2) nmol/L at the beginning of lactation, and remained lower (p<0.05) than those in the Se-S cows which did not decrease after calving and ranged from 1.9 (SEM 0.1) to 2.4 (SEM 0.2) nmol/L throughout lactation. CONCLUSIONS: Serum T3 concentrations decreased during early lactation in unsupplemented cows grazing pastures low in Se (0.03-0.04 ppm) and both serum T3 and erythrocyte GSHPx activities were consistently lower throughout lactation compared with Se-supplemented cows. Se supplementation had no effect on serum T4 concentrations.  相似文献   

6.
选取泌乳期高产和低产奶牛各18头。高产和低产中各随机选取9头在日粮中添加纤维素复合酶,添加量为0.1kg/t精料;其余18头在日粮中添加酵母培养物,添加量为2kg/t精料。结果显示,高产组饲喂纤维素复合酶的奶牛试验期第35天时产奶量显著高于饲喂酵母培养物的奶牛(P=0.024),低产组饲喂纤维素复合酶的奶牛试验期内产奶量呈稳步上升趋势;高产组饲喂纤维素复合酶的奶牛乳脂率在试验期28天显著高于同组中饲喂酵母培养物的奶牛(P=0.022),乳蛋白率在试验第7天(P=0.044)和第28天(P=0.018)显著高于同组中饲喂酵母培养物的奶牛。  相似文献   

7.

Background

Selenium (Se) is important for the postnatal development of the calf. In the first weeks of life, milk is the only source of Se for the calf and insufficient level of Se in the milk may lead to Se deficiency. Maternal Se supplementation is used to prevent this.We investigated the effect of dietary Se-enriched yeast (SY) or sodium selenite (SS) supplements on selected blood parameters and on Se concentrations in the blood, colostrum, and milk of Se-deficient Charolais cows.

Methods

Cows in late pregnancy received a mineral premix with Se (SS or SY, 50 mg Se per kg premix) or without Se (control – C). Supplementation was initiated 6 weeks before expected calving. Blood and colostrum samples were taken from the cows that had just calved (Colostral period). Additional samples were taken around 2 weeks (milk) and 5 weeks (milk and blood) after calving corresponding to Se supplementation for 6 and 12 weeks, respectively (Lactation period) for Se, biochemical and haematological analyses.

Results

Colostral period. Se concentrations in whole blood and colostrum on day 1 post partum and in colostrum on day 3 post partum were 93.0, 72.9, and 47.5 μg/L in the SY group; 68.0, 56.0 and 18.8 μg/L in the SS group; and 35.1, 27.3 and 10.5 μg/L in the C group, respectively. Differences among all the groups were significant (P < 0.01) at each sampling, just as the colostrum Se content decreases were from day 1 to day 3 in each group. The relatively smallest decrease in colostrum Se concentration was found in the SY group (P < 0.01).Lactation period. The mean Se concentrations in milk in weeks 6 and 12 of supplementation were 20.4 and 19.6 μg/L in the SY group, 8.3 and 11.9 μg/L in the SS group, and 6.9 and 6.6 μg/L in the C group, respectively. The values only differed significantly in the SS group (P < 0.05). The Se concentrations in the blood were similar to those of cows examined on the day of calving. The levels of glutathione peroxidase (GSH-Px) activity were 364.70, 283.82 and 187.46 μkat/L in the SY, SS, and C groups, respectively. This was the only significantly variable biochemical and haematological parameter.

Conclusion

Se-enriched yeast was much more effective than sodium selenite in increasing the concentration of Se in the blood, colostrum and milk, as well as the GSH-Px activity.  相似文献   

8.
AIM: To determine the effect of grazing pasture that had a low selenium (Se) concentration on serum concentrations of tri iodothyronine (T3) and thyroxine (T4), and erythrocyte glutathione peroxidase (GSH-Px) activity in dairy cows.

METHODS: Forty pregnant Friesian cows were grazed on pasture that contained 0.03–0.04 ppm Se on a dry matter (DM) basis. Two months before parturition, 20 cows were randomly selected and treated with 1 mg Se/kg bodyweight subcutaneously, as barium selenate (Group Se-S). The other group (Se-D) was not supplemented. Blood samples were taken before supplementation (-60 days) and 30, 60, 90, 180 and 270 days after parturition, for determination of concentrations of T3 and T4 in serum, and GSH-Px activity in erythrocytes.

RESULTS: Erythrocyte GSH-Px activity in the Se-D group was >60 U/g haemoglobin (Hb) throughout the experiment. Supplementation increased (p>0.05) activities to >130 U/g Hb throughout lactation. Mean serum concentrations of T4 in Se-D and Se-S cows increased from 23.7 (SEM 0.7) and 23.4 (SEM 0.8) nmol/L, respectively, in the prepartum period to 69.6 (SEM 0.1) and 67.6 (SEM 0.2) nmol/L, respectively, at 180 days of lactation (p>0.01), and no effect of Se supplementation was evident. Serum concentrations of T3 in Se-D cows decreased (p>0.05) from 1.6 (SEM 0.1) nmol/L prepartum to 1.0 (SEM 0.2) nmol/L at the beginning of lactation, and remained lower (p>0.05) than those in the Se-S cows which did not decrease after calving and ranged from 1.9 (SEM 0.1) to 2.4 (SEM 0.2) nmol/L throughout lactation.

CONCLUSIONS: Serum T3 concentrations decreased during early lactation in unsupplemented cows grazing pastures low in Se (0.03–0.04 ppm) and both serum T3 and erythrocyte GSH-Px activities were consistently lower throughout lactation compared with Se-supplemented cows. Se supplementation had no effect on serum T4 concentrations.  相似文献   

9.
The aim of the study was to define possible differences between selenite, selenate and selenium yeast on various aspects of selenium status in growing cattle. Twenty-four Swedish Red and White dairy heifers were fed no supplementary selenium for 6 months. The basic diet contained 0.026 mg selenium/kg feed dry matter (DM). After the depletion period the animals were divided into 4 groups; group I-III received 2 mg additional selenium daily as sodium selenite, sodium selenate, and a selenium yeast product, respectively. Group IV, the control group, received no additional selenium. The total dietary selenium content for groups I-III during the supplementation period was 0.25 mg/kg DM. After the depletion period the mean concentration of selenium in blood (640 nmol/l) and plasma (299 nmol/l) and the activity of GSH-Px in erythrocytes (610 mukat/l) were marginal, but after 3 months of supplementation they were adequate in all 3 groups. The concentration of selenium in blood and plasma was significantly higher in group III than in groups I and II, but there was no significant difference between groups I and II. The activity of GSH-Px in erythrocytes did not differ between any of the supplemented groups. The animals in the control group had significantly lower concentrations of selenium in blood and plasma and lower activities of GSH-Px in erythrocytes than those in the supplemented groups. The activity of GSH-Px in platelets was also increased by the increased selenium intake. There was no difference in the concentration of triiodothyronine (T3) between any of the groups, but the concentration of thyroxine (T4) was significantly higher in the unsupplemented control group.  相似文献   

10.
On December 2, 1999, 120 pregnant cows were weighed, their body condition scored, and then sorted into six groups of 20 stratified by BCS, BW, breed, and age. Groups were assigned randomly to six, 5.1-ha dormant common bermudagrass (Cynodon dactylon [L.] Pers.) pastures for 2 yr to determine the effects of supplemental Se and its source on performance and blood measurements. During the winter, each group of cows had ad libitum access to bermudagrass/dallisgrass (Paspalum dilatatum Poir.) hay plus they were allowed limited access (1 to 4 d/wk) to a 2.4-ha winter-annual paddock planted in half the pasture. Treatments were assigned randomly to pastures (two pastures per treatment), and cows had ad libitum access to one of three free-choice minerals: 1) no supplemental Se, 2) 26 mg of supplemental Se from sodium selenite/kg, and 3) 26 mg of supplemental Se from seleno-yeast/kg (designed intake = 113 g/cow daily). Data were analyzed using a mixed model; year was the random effect and treatment was the fixed effect. Selenium supplementation or its source had no effect (P > or = 0.19) on cow BW, BCS, conception rate, postpartum interval, or hay DMI. Birth date, birth weight, BW, total BW gain, mortality, and ADG of calves were not affected (P > 0.20) by Se or its source. Whole blood Se concentrations and glutathione peroxidase (GSH-Px) activity at the beginning of the trial did not differ (P > or = 0.17) between cows receiving no Se and cows supplemented with Se or between Se sources. At the beginning of the calving and breeding seasons, cows supplemented with Se had greater (P < 0.01) whole blood Se concentrations and GSH-Px activities than cows receiving no supplemental Se; cows fed selenoyeast had greater (P < or = 0.05) whole blood Se concentrations than cows fed sodium selenite, but GSH-Px did not differ (P > or = 0.60) between the two sources. At birth and on May 24 (near peak lactation), calves from cows supplemented with Se had greater (P < or = 0.06) whole blood Se concentrations than calves from cows fed no Se. At birth, calves from cows fed seleno-yeast had greater (P < or = 0.05) whole blood Se concentrations and GSH-Px activities than calves from cows fed sodium selenite. Although no differences were noted in cow and calf performance, significant increases were noted in whole blood Se concentrations and GSH-Px activities in calves at birth as a result of feeding of seleno-yeast compared to no Se or sodium selenite.  相似文献   

11.
The objective of this study was to investigate whether feeding selenium (Se)-replete cows a Se-yeast supplement in late pregnancy affects nutrient metabolism and inflammatory response during the periparturient period. Twenty cows were randomly assigned to two groups with 10 cows each. Cows in one group received Se-yeast at 0.3 mg Se/kg DM during the last 4 weeks before calving in addition to fed a TMR containing supplemented sodium selenite at 0.3 mg Se/kg DM (Se-yeast), while cows in another group were only fed a TMR containing supplemented sodium selenite at 0.3 mg Se/kg DM (Control). Blood samples were collected and analyzed for nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), glucose, insulin, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, serum amyloid A (SAA), haptoglobin (Hp), and albumin. In control cows, plasma NEFA, IL-1β, IL-6, SAA, and Hp levels increased after calving, but glucose, insulin, and albumin levels decreased after parturition. Se-yeast supplemental cows had lower postpartum concentrations of NEFA, TNF-α, IL-1β, IL-6, SAA, and Hp, and higher postpartum levels of glucose, insulin, and albumin compared with control cows. The results indicate that feeding Se-replete cows a Se-yeast supplement in late pregnancy improves nutrient metabolism and attenuates the inflammatory response after calving.  相似文献   

12.
The effect of Se supplementation before or after calving on Se status in deficient cows and their calves was studied using 72 beef cows in two experiments. In Exp. 1, cows calving in February or March 1997 were supplemented orally for 15 d in late pregnancy with 13.0, 32.5, or 45.5 mg of Se/d as sodium selenite. Glutathione peroxidase (GSH-Px) activities were measured in red blood cells (RBC) or plasma of cows and calves at d 15 and between d 17 and 88 after calving. In Exp. 2, cows calving in January 1997 were supplemented orally with .0, 13.0, or 32.5 mg of Se/d for 15 d postpartum, and calves were injected with 1.38 mg of Se when 2 d old and at an average age of 49 d. The GSH-Px activities were measured in 30-d-old calves and in cows and calves between d 77 and 115 after calving. In both experiments, Se supplementation resulted in adequate Se status for the dams. The increase in RBC GSH-Px activity was faster with 45.5 mg of Se/d, and GSH-Px activities remained high for up to 98 d after the end of supplementation. The improvement in Se status in calves as a result of maternal supplementation was greater in Exp. 1 than in Exp. 2, suggesting that the placental transfer of Se is more efficient than milk transfer. Prepartum oral Se supplementation of deficient beef cows with 13.0 mg of Se/d for 15 d allowed adequate Se status of dams and calves, and 45.5 mg of Se/d resulted in a faster improvement of Se status. Parenteral administration of 1.38 mg of Se to newborn calves did not sustain normal Se status in calves issued from deficient cows.  相似文献   

13.
To investigate the effects of supplemental Se on the transfer of Se to nursing pigs when sows are fed diets containing a Se level above the NRC recommendation (0.15 ppm), sows were fed diets containing no supplemental Se or supplemental (0.3 ppm) Se from sodium selenite or Se yeast. A nonSe-fortified corn-soybean meal basal diet with a high endogenous Se content served as the negative control (0.20 to 0.23 ppm Se). Fifty-two sows were fed diets from 60 d prepartum until 14 d of lactation. Six sows per treatment were bled at 60 and 30 d prepartum, at farrowing, and at 14 d postpartum to measure serum Se concentrations. Colostrum was collected within 12 h postpartum, and milk was collected at 14 d of lactation. Blood was obtained from 3 pigs each from 12 litters per treatment at birth and at weaning (d 14), and pooled serum was analyzed for Se and immunoglobulin G concentrations and glutathione peroxidase activity. Regardless of treatment, serum Se in sows declined throughout gestation and gradually increased during lactation. Sows fed Se yeast tended (P < 0.06) to have greater serum Se at farrowing than sows fed unsupplemented diets. Colostrum and milk (d 14) Se concentrations increased (P < 0.01) when sows were fed Se from yeast but not from sodium selenite. At birth, serum Se was increased (P < 0.01) for pigs whose dams were fed Se yeast compared with pigs from sows fed the basal diet. At 14 d of age, there was no difference in serum Se concentration of pigs from dams fed any of the treatments. Pig serum immunoglobulin G concentrations and glutathione peroxidase-1 activity were unaffected by dietary Se source. Supplementation of gestating and lactating sow diets with Se (0.3 ppm) from an organic or inorganic source reduced the number of stillbirths per litter. However, only pigs born to sows fed organic Se (Se yeast) had greater serum Se at birth. Organic Se increased Se concentration of colostrum and 14-d milk to a greater degree than inorganic Se.  相似文献   

14.
《动物营养(英文)》2021,7(4):1087-1094
The effects of selenium (Se) yeast supplementation on performance, blood biochemical and antioxidant parameters, and milk Se content and speciation were evaluated. Thirty-six mid-lactation Holstein dairy cows were randomly assigned to 1 of 3 treatments: 1) control (basal diet containing Se at 0.11 mg/kg DM), 2) basal diet + 0.5 mg supplemental Se/kg DM (SY-0.5), and 3) basal diet + 5 mg supplemental Se/kg DM (SY-5). Selenium was supplemented as Se yeast. The trial consisted of a 1-week pretrial period and an 8-week experimental period. Milk somatic cell score decreased with SY-5 supplementation (P < 0.05), but other performance parameters were not affected (P > 0.05). The serum Se concentration increased with the increasing levels of Se yeast supplementation (P < 0.05), however, blood biochemical parameters showed few treatment effects. The antioxidant capacity of dairy cows was improved with Se yeast supplementation reflected in increased serum glutathione peroxidase activity (P < 0.05) and total antioxidant capacity (P = 0.08), and decreased malondialdehyde concentration (P < 0.05). Milk total Se concentration increased with Se dose (P < 0.05). Also, the selenomethionine concentration increased with Se dose from 13.0 ± 0.7 μg/kg in control to 33.1 ± 2.1 μg/kg in SY-0.5 and 530.4 ± 17.5 μg/kg in SY-5 cows (P < 0.05). Similarly, selenocystine concentration increased from 15.6 ± 0.9 μg/kg in control and 18.9 ± 1.1 μg/kg in SY-0.5 to 22.2 ± 1.5 μg/kg in SY-5 cows (P < 0.05). In conclusion, Se yeast is a good organic Se source to produce Se-enriched cow milk with increased Se species including selenomethionine and selenocystine. The results can provide useful information on milk Se species when a high dose Se yeast was supplemented in the cow diet.  相似文献   

15.
The objective of this experiment was to explore the effects of different sources and levels of selenium (Se) on growth performance and tissue Se content of 10~11 months porcupine.Eighty and 10-month-old porcupine with a similar body weight were assigned to 5 groups with 8 replicates of 2 porcupines each.The porcupine were fed a basal diet without Se complementation (control group) or the basal diet adding 0.30 mg/kg Se in the form of sodium selenite (group Ⅰ),0.20 mg/kg Se in the form of yeast selenium (group Ⅱ),0.30 mg/kg Se in the form of yeast selenium (group Ⅲ) and 0.30 mg/kg mixed Se (0.15 mg/kg sodium selenite and 0.15 mg/kg yeast selenium)(group Ⅳ),respectively.The pre-test period lasted for 7 days and the trial period lasted for 45 days.The results showed that compared with the control group,there was no significant differences in the average daily feed intake (ADFI) in each group (P>0.05),the average daily gain (ADG) in groups Ⅱ and Ⅲ was significantly increased (P<0.05),the feed/gain (F/G) in group Ⅲ was significant decreased (P<0.05).Compared with the control group,the concent of Se in liver and muscle of group Ⅲ was extremely significantly increased (P<0.01),the content of Se in liver and muscle of groups Ⅱ and Ⅳ was also significantly increased (P<0.05 or P<0.01),and there was no significant difference in group Ⅰ(P>0.05).In conclusion,the basal diet supplemented with yeast selenium could improve the growth performance and increase the tissue Se concent in 10~11 months porcupine,and adding 0.30 mg/kg yeast selenium had the best effect.  相似文献   

16.
奶牛日粮中添加富硒酵母对乳硒和血清硒含量的影响   总被引:4,自引:4,他引:0  
通过日粮添加富硒酵母研究有机硒对泌乳奶牛乳硒含量和血清硒含量的影响。试验选择24头胎次相同,泌乳日龄、产奶量和体重相近的荷斯坦奶牛,随机分为2组,对照组和处理组均饲喂相同的TMR基础日粮,TMR基础日粮硒含量为0.33 mg/kg,处理组另补充富硒酵母,源于富硒酵母的硒为0.78 mg/kg DM,整个试验期56 d。试验结果表明,添加富硒酵母后对奶牛干物质采食量、产奶量、乳常规和乳常规产量没有显著影响,但显著提高了血清和牛奶中硒含量,分别为123.1和97.7 μg/L,与对照组相比,血清硒含量和牛奶硒含量分别提高了60.5%和194.3%。同时,在整个试验期内,血清硒含量呈上升趋势,而牛奶硒很快达到了稳定状态。  相似文献   

17.
The objective of this study was to evaluate the effect of selenium (Se) supplementation on milk somatic cell count (SCC) in dairy cows. Twelve multiparous Holstein-Friesian cows were fed a diet containing a suboptimal Se concentration (<0.05 ppm, dry basis) starting 2 months before calving. Supplemented cows (n=6) received a single s.c. injection of barium selenate (1 ml/50 kg BW) 45 days prior to calving, whereas control group was kept unsupplemented. Twenty weeks after calving, two mammary quarters (right side) of each cow were challenged with 205,000 cfu/ml of Staphylococcus aureus (strain Newbould 305). Blood was collected bi-weekly until day 150 of lactation for the analysis of blood glutathione peroxidase (GPx1; EC 1.11.1.9) activity. To re-isolate the challenging pathogen and to evaluate SCC, aseptic milk samples were collected daily starting on the day of challenge, and finishing 7 days after inoculation. Unsupplemented cows had a lower activity of GPx1 through the experiment (P<0.001). Natural log SCC (lnSCC) was higher in unsupplemented than Se-supplemented cows (P=0.04), showing evidence of significance after 5 days. Selenium supplementation of dairy cows fed a diet containing a suboptimal Se concentration, resulted in higher blood activity of GPx1, and lower mean lnSCC after an intramammary challenge with Staph. aureus.  相似文献   

18.
The present study was performed to examine the mechanism by which selenate ameliorates the insulin sensitivity in type II diabetic dbdb mice. Therefore, 21-adult female dbdb mice were randomly assigned to three experimental groups (0Se, SeIV and SeVI) with seven animals per group. Mice of group 0Se were fed with a selenium-deficient diet (<0.02 mg Se/kg) based on wheat and torula yeast for 8 weeks whereas the mice of groups SeIV (selenite) and SeVI (selenate) were fed with sodium selenite and sodium selenate (up to 35% of the LD(50) for mice in eighth week), in addition to the diet by daily tube feeding. Eight weeks of selenate application led to significantly elevated insulin sensitivity in comparison with selenium deficiency and selenite application. The activity of cytosolic protein tyrosine phosphatases (PTPs) as important negative regulators of insulin signalling was reduced from 53.8% to 22.5% in the liver and skeletal muscle of selenate-treated mice in comparison with the selenium deficient and selenite-treated controls, suggesting an inhibition of PTPs by intermediary selenate metabolites. In an additional in vitro inhibition study, selenate (oxidation state +VI) did not inhibit PTP activity. Selenium metabolites in the oxidation state +IV were found to be the actual inhibitors of PTP activity. In conclusion, the results of the present study show that one possible mechanism by which supranutritional selenate doses enhance insulin sensitivity in type II diabetic dbdb mice is based on the inhibition of PTPS as negative regulators of insulin signalling. Moreover the cellular metabolism of selenate including its intermediary reduction to the oxidation state +IV seems to play a crucial role during this process.  相似文献   

19.
Influence of selenium on antibody production in sheep   总被引:3,自引:0,他引:3  
Three experiments were carried out, using sheep fed a marginally low selenium diet, to study the effect of selenium supplementation on the antibody response to tetanus toxoid and on the serum IgG concentration. Six groups of three six-month-old lambs were fed a basal diet containing 0.13 mg Se kg-1 supplemented with either 0.1, 0.5 or 1.0 mg Se kg-1, as sodium selenite or as selenomethionine. These animals generally showed enhanced antibody response to tetanus toxoid, parainfluenza-3 virus and Corynebacterium pseudotuberculosis, and their total serum IgG concentrations were higher than in unsupplemented control animals although few responses were statistically significant. In two field studies significantly higher titres to tetanus toxoid were detected in ewes injected with 100 mg selenium as barium selenate, although no influence on serum IgG concentrations was detected. Lambs from selenium supplemented ewes had significantly higher titres to tetanus toxoid than lambs from ewes in the control group. Dietary vitamin E supplementation had a similar effect on the antibody response to tetanus toxoid in ewes, though no additive effect was seen when vitamin E was given together with selenium.  相似文献   

20.
Three groups of beef cow and calf pairs were studied to determine plasma vitamin E and blood selenium (Se) concentrations of calves at 1 month old. Group 1 was managed on irrigated pasture and calves received no Se/vitamin E injections at birth. Group 2 was managed on irrigated pasture, and the calves were injected with Se/vitamin E at birth. Group 3 was managed on dry foothill grasslands, and these cows were supplemented with 56.3 mg vitamin E and 3 mg Se daily, and the calves received a Se/vitamin E injection at birth. The plasma concentration of vitamin E in group 1 and 2 cows (9.5 +/- 1.24 and 8.43 +/- 1.0 microg/ml, respectively) was significantly higher than that of the group 3 cows (2.28 +/- 0.42 microg/ml; P < 0.05). The blood Se concentrations in group 3 cows (169 +/- 37 ng/ml) were significantly higher than those in group 1 and 2 cows (36.4 +/- 15.9 and 31.1 +/- 12.5 ng/ml, respectively; P < 0.05). Calf Se was highly correlated to cow Se (r = 0.965), and calf vitamin E was moderately correlated to cow vitamin E (r = 0.605). Calf vitamin E concentrations were consistently lower than cow vitamin E concentrations, and many values would be considered deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号