首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]开展凋落叶分解速率研究,探讨凋落叶分解速率与初始质量的关系,为甘肃省兴隆山森林生态系统物质循环研究提供依据。[方法]采用凋落物分解袋法,以兴隆山青杄、山杨和白桦3种主要树种的凋落叶为研究对象,进行凋落叶分解速率及凋落叶初始质量的研究,明确凋落叶分解速率与初始质量的关系。[结果]青杄中龄林针叶分解速率为0.16,95%分解期为19.08a;青杄近熟林针叶分解速率为0.13,95%分解期为23.70a;山杨和白桦凋落叶分解速率均为0.11,95%分解期分别为28.57a和27.27a;山杨和白桦凋落叶分解速率明显要小于青杄针叶,这很可能是凋落叶分解主场效应和分解袋孔径较小所致。凋落叶分解速率与氮含量呈显著线性正相关,与木质素含量、碳/氮值、木质素/氮值和钾含量呈显著线性负相关,特别是与木质素含量、氮含量和木质素/氮值,相关系数均达0.700 0以上;钾含量、木质素含量、木质素/氮、碳/磷和纤维素含量是影响兴隆山森林凋落叶分解速率的重要指标。[结论]木质素/氮值是影响凋落叶分解速率的关键质量指标,凋落叶初始木质素/氮值越高,分解速率越低。  相似文献   

2.
The applicability of a modified, easily constructed litterbag is evaluated in this study. In this litterbag, designed for use in decomposition studies involving litter mixtures, litter species are decomposed in separated by mesh compartments so that they can interact with adjacent species and at the same time can be retrieved “non-contaminated” by them until late decomposition stages. The validity of the technique was examined by comparing mass loss rates of two litter species (Ailanthus altissima and Medicago sativa) incubated in single and mixed new litterbags, with rates in conventional litterbags. The results, referring to the disappearance of up to 65% of the material at constant moisture and temperature conditions, were not significantly affected by the use of the modified litterbag. Although differences between expected and measured decomposition rates of the mixture of the two species were not statistically significant, mixing resulted in a modification of decomposition rates of the individual components compared with their respective rates in single species litterbags.  相似文献   

3.
In a field study in an upper mountain rain forest in Sri Lanka leaf litter decay rates for nine tree species were measured using the standard litterbag method. The leaf species showed a wide variation in decomposition rates with k values ranging from 0.19 to 9.6 (t0.99 values ranging from 0.5 to 24 years), but it was possible to recognize fast, medium and slow decomposition groups. While there were considerable differences in physical and chemical litter properties these were poor predictors of decomposition rates. There was considerable variation in the N, P and lignin contents of mature green leaves and freshly fallen dead leaves of the different tree species. Percent resorption of N varied from 0 (one species) to 56 and of P from 0 (three species) to 73. There were no consistent patterns of nutrient mobilization and net release of N and P in the five leaf litter species studied.  相似文献   

4.
Bamboos are one of the fast-growing and multiple use species in the world, and thus bamboo forests/plantations play an important role in C sequestration at regional and global levels. We studied aboveground litterfall, litter decomposition and nutrient dynamics for two years in two subtropical bamboo ecosystems in Southwest China so as to test the hypothesis that litter quality determine the rate and nutrient dynamics during decomposition of different litter fractions. Mean annual total aboveground litter production ranged from 494 to 434 g m-2 in two bamboo stands (P stand, dominated by Pleioblastus amarus and H stand, hybrid bamboo dominated by Bambusa pervariabilis x Dendrocalamopsis daii). Bulk (-80%) of litter production was contributed by leaf litter in two stands followed by twigs and sheathes. Different litter fractions represented considerable variations in the rates of mass loss and nutrient release. Variation of the mass remaining after 2 years of decomposition was significantly explained by initial C/N ratio and initial P concentration. Initial concentrations of N, P, Ca, and Mg explained 57.9%, 95.0%, 99.8% and 98.1%, respectively, of the variations of these elements mass remaining after 2 years of decomposition. The patterns of nutrient dynamics and the final amount remaining were mainly determined by their initial litter substrate quality in tl~ese two subtropical bamboo plantations.  相似文献   

5.
Forest ecosystems in Taiwan are periodically influenced by typhoons that cause large amounts of litter input to the soil. The potential rapid decomposition of such litter under the warm and moist climatic conditions in Taiwan may lead to nutrient losses via seepage. The goal of this study was to investigate the dynamics of C, N, K, Ca, Mg, and dissolved organic carbon (DOC) during decomposition of Chamaecyparis obtusa var. formosana leaves in a field study at the Yuanyang Lake site in N Taiwan. We simulated the effect of a typhoon by adding about three times the annual aboveground litterfall (totally 13,900 kg ha–1) as fresh leaves. Litterbags were taken at 7 dates over 16 months, followed by detection of mass loss and element composition in the remaining litter. Aqueous extracts of the remaining litter were analyzed for DOC and major elements. The properties of DOC were characterized by fluorescence spectra and by its stability against microbial decomposition. The litter mass loss was 35% after 16 months. The losses of Ca after 16 months from the litter bags were about equivalent to mass loss (39%), while those of K and Mg reached 86% and 60% of the initial amount, respectively. From the 13,900 kg ha–1 of litter applied in total, 59 kg K ha–1 and 12 kg Mg ha–1 were released in the 16 months decomposition period, most of it in the first 4 months. The total release of Ca amounted to 69 kg ha–1 but was more evenly distributed throughout the 16 months of observation. The absolute amount of N in the decomposing litter increased by 37% while the C : N decreased from 69 to 34. Extrapolated to the manipulation treatment, this resulted in a N gain of 36 kg N ha–1 within 16 months. The leaching of K and DOC in laboratory extractions followed an asymptotic function with highest leaching from the initial litter and subsequent decrease with time of decomposition. On the contrary, the leaching of Ca and Mg reached a maximum after 2–4 months of incubation. About 2% of the C was extractable with water from the initially incubated leaves. The bioavailability of the extracted DOC decreased with litter age. Our results indicate that the decomposition of large amounts of litter induces a high risk of K and Mg losses with seepage, but the risk for N losses is low. The sources of N accumulation in decomposing litter at this site require further studies. In the initial phase of litter decomposition, the release of DOC seems to be an important contribution to mass loss.  相似文献   

6.
Spiders are major predators in forest-floor leaf litter, yet little is known about their impact on prey populations and on forest-floor processes such as litter decomposition. This experiment investigated the effect of removing spiders on Collembola densities. We also examined the potential indirect effect of spider removal on rate of litter disappearance. Twenty-eight 1-m2 plots were randomly assigned to one of four treatments: O – open, no manipulations; F – fenced, no litter sifted, no spiders removed; FS – fenced, litter sifted, no spiders removed; and FSR – fenced, litter sifted, spiders removed. In early August, we sifted the litter in the FS and FSR plots, removing all encountered spiders from the FSR treatment. A month later, we placed into each plot one 15 × 15-cm litterbag filled with a known amount (ca. 3 g) of dried straw. After six weeks, litterbags were collected and fauna were extracted in a Kempson-McFadyen apparatus. Decreasing spider predation increased densities of Collembola, and increased the rate at which straw disappeared from litterbags. These results indicate that spider predation may reduce Collembola densities enough to lower rates of litter disappearance on the forest floor.  相似文献   

7.
川西3种亚高山针叶林的养分和凋落物格局分析   总被引:4,自引:0,他引:4  
LIN Bo  LIU Qing  WU Yan  HE Hai 《土壤圈》2006,16(3):380-389
Investigations were conducted to quantify litterfall, and litter and nutrient accumulation in forest floor, and to acquire information on litter decomposition and nitrogen and phosphorus release patterns in three different subalpine coniferous forests, a plantation (P1), a secondary forest (SF), and a primitive forest (PF), in western Sichuan, China. The litter trap method was used to evaluate litterfall with the litterbag method being utilized for litter decomposition. Seasonal patterns of litterfall were similar in the three forests, with two peaks occurring in September-November and March-May. The plantation revealed an annual litterfall of 4.38 x 103 kg ha-1, which was similar to those of SF and PF, but P1 had a lower mass loss rate and a higher C/N ratio. The C/N ratio may be a sound predictor for the decomposition differences. N concentrations of leaf litter in both the secondary forest and primitive forest increased first and then decreased, and the percentages of their final/initial values were 108.9% and 99.9%, respectively. P concentration in the three forests increased by the end of the study. The results of litterfall and decomposition indicated that in the plantation the potential to provide nutrients for soil organic matter was similar to those of SF and PF; however, its slower decomposition rate could result in a somewhat transient accumulation of litter in the forest floor.  相似文献   

8.
 This study tested whether urban land use can affect the chemistry and decomposability of Quercus rubra L. (red oak) leaf litter in forests within and near a large metropolitan area. Cities may affect the quality of leaf litter directly through foliar uptake of atmospheric pollutants, and indirectly through alterations in local climate and changes in soil fertility caused by pollutant loads and altered nutrient cycling regimes. Using a microbial bioassay, we tested whether red oak leaf litter collected from urban and suburban forests in and near New York City differed in decomposability from litter of the same species collected from rural forests 130 km from the city. We found that oak litter from the urban forests decayed 25% more slowly and supported 50% less cumulative microbial biomass in a laboratory bioassay than rural litter. Rural litter contained less lignin and more labile material than urban litter, and the amounts of these chemical constituents were highly correlated with the decay rate coefficients and integrated microbial growth achieved on the litter. The specific causes of the variation in litter chemistry are not known. The results of this study suggest that decomposer activity and nutrient cycling in forests near large cities may be affected both by altered litter quality and by altered biotic, chemical and physical environments. The sensitivity of the microbial bioassay makes it useful for distinguishing differences in within-species litter quality that result from natural or anthropogenic variation in the environment. Received: 7 January 1999  相似文献   

9.
The decomposition of oak leaf litter was studied by means of a litterbag experiment in an oak forest in the Netherlands. The contribution of microbial activity and leaching to weight loss and element dynamics during the first 6 weeks of decomposition was investigated by means of frequent respiration measurements and extractions of the litter and by a qualitative comparison of throughfall and litter percolation water chemistry. The oak-leaf litter lost 9.3% of its initial dry weight during the first 6 weeks. In total, 90% of this observed weight loss was explained by the processes studied. About 5.9% (64% of the total) of this weight loss was attributed to microbial tespiration and 0.5% (5%) to the loss of inorganic solutes. Leaching of dissolved organic compounds was estimated to account for 2.0% (21%). The results indicated a fast leaching of K and Cl out of the fresh litter during the first 2 weeks, while Mg, Fe, Mn, Si, ortho P, and dissolved organic N were released at a much lower rate. At the same time, small amounts of H+, NH inf4 sup+ and NO inf3 sup- were retained in the litter.  相似文献   

10.
The aim of this study was to determine the influence of leaf‐litter type (i.e., European beech—Fagus sylvatica L. and European ash—Fraxinus excelsior L.) and leaf‐litter mixture on the partitioning of leaf‐litter C and N between the O horizon, the topsoil, the soil microbial biomass, and the CO2 emission during decomposition. In a mature beech stand of Hainich National Park, Thuringia, Germany, undisturbed soil cores (?? 24 cm) were transferred to plastic cylinders and the original leaf litter was either replaced by 13C15N‐labeled beech or ash leaf litter, or leaf‐litter‐mixture treatments in which only one of the two leaf‐litter types was labeled. Leaf‐litter‐derived CO2‐C flux was measured every second week over a period of one year. Partitioning of leaf‐litter C and N to the soil and microbial biomass was measured 5 and 10 months after the start of the experiment. Ash leaf litter decomposed faster than beech leaf litter. The decomposition rate was negatively related to initial leaf‐litter lignin and positively to initial Ca concentrations. The mixture of both leaf‐litter types led to enhanced decomposition of ash leaf litter. However, it did not affect beech leaf‐litter decomposition. After 5 and 10 months of in situ incubation, recoveries of leaf‐litter‐derived C and N in the O horizon (7%–20% and 9%–35%, respectively) were higher than in the mineral soil (1%–5% and 3%–8%, respectively) showing no leaf‐litter‐type or leaf‐litter‐mixture effect. Partitioning of leaf‐litter‐derived C and N to microbial biomass in the upper mineral soil (< 1% of total leaf‐litter C and 2%–3% of total leaf‐litter N) did not differ between beech and ash. The results show that short‐term partitioning of leaf‐litter C and N to the soil after 10 months was similar for ash and beech leaf litter under standardized field conditions, even though mineralization was faster for ash leaf litter than for beech leaf litter.  相似文献   

11.
Recent studies have demonstrated that mass loss, nutrient dynamics, and decomposer associations in leaf litter from a given plant species can differ when leaves of that species decay alone compared to when they decay mixed with other species’ leaves. Results of litter-mix experiments have been variable, however, making predictions of decomposition in mixtures difficult. It is not known, for example, whether interactions among litter types in litter mixes are similar across sites, even for litter mixtures containing the same plant species. To address this issue, we used reciprocal transplants of litter in compartmentalized litterbags to study decomposition of equal-mass litter mixtures of sugar maple (Acer saccharum Marshall) and red oak (Quercus rubra L.) at four forest sites in northwestern Connecticut. These species differ significantly in litter quality. Red oak always has higher lignin concentrations than maple, and here C:N is lower in oak leaves and litter, a pattern often observed when oak coexists with maple. Overall, we observed less mass loss and lower N accumulation in sugar maple and red oak litter mixtures than we predicted from observed dynamics in single-species litterbags. Whether these differences were significant or not depended on the site of origin of the leaves (P<0.02), but there was no significant interaction between sites of decay and the differences in observed and predicted decomposition (P>0.2) . Mixing of leaf litter types could have significant impacts on nutrient cycling in forests, but the extent of the impacts can vary among sites and depends on the origin of mixed leaves even when the species composition of mixes is constant.  相似文献   

12.
Abstract

Litter decomposition dynamics of three Mediterranean riverine species [Alnus glutinosa (L.) Gaertn, Fraxinus angustifolia Vahl., and Populus x hybrida] was studied in a 2‐year experiment in the province of Guadalajara (Spain) using the litterbag technique. Decay rates of the litter were estimated by fitting a single exponential model to the litter decomposition data. At the end of the experiment (after 485 days), the remaining litter necromass varied in the following order: Populus x hybrida>Alnus glutinosa>Fraxinus angustifolia. Litter of the three species was fast degraded; ash litter was almost totally degraded at the end of the experiment. Alder had the highest concentrations of total nitrogen and ammonium in litter, and its pattern of degradation and release to the system was different to the other two litters. This could influence the soil nutrient contents in each system as was indicated by the soil nutrient values.  相似文献   

13.
The objective of this study was to develop a near‐infrared (NIR) imaging system to determine rice moisture content. The NIR imaging system fitted with 15 band‐pass filters (wavelengths of 870–1,014 nm) was used to capture the spectral image. In this work, calibration methods including multiple linear regression (MLR), partial least squares regression (PLSR), and artificial neural network (ANN) were used in both near‐infrared spectrometry (NIRS) and the NIR imaging system to determine the moisture content of rice. Comprehensive performance comparison among MLR, PLSR, and ANN approaches has been conducted. To reduce repetition and redundancy in the input data and obtain a more accurate network, six significant wavelengths selected by the MLR model, which had high correlation with the moisture content of rice, were used as the input data of the ANN. The performance of the developed system was evaluated through experimental tests for rice moisture content. This study adopted the coefficient of determination (rval2), the standard error of prediction (SEP), and the relative performance determinant (RPD) as the performance indices of the NIR imaging system with respect to the tests of rice moisture content. Utilizing these three models, the analysis results of rval2, SEP, and RPD for the validation set were within 0.942–0.952, 0.435–0.479%, and 4.2–4.6, respectively. From experimental results, the performance of NIR imaging system was almost the same as that of NIRS. Using the developed NIR imaging system, all of the three different calibration methods (MLR, PLSR, and ANN) provided a high prediction capacity for the determination of moisture in rice samples. These results indicated that the NIR imaging system developed in this study can be used as a device for the measurement of rice moisture content.  相似文献   

14.
Leaf litter decomposition of Cunninghamia lanceolata, Michelia macclurei, and their mixture in the corresponding stands in subtropical China was studied using the litterbag method. The objective was to assess the influence of native evergreen broadleaved species on leaf litter decomposition. The hypotheses were: (1) M. macclurei leaf litter with lower C/N ratio and higher initial N concentration decomposed faster than C. lanceolata litter, (2) decomposition rates in litter mixtures could be predicted from single-species decay rates, and (3) litters decomposed more rapidly at the site that contained the same species as in the litterbag. The mass loss of leaf litter was positively correlated with initial N concentration and negatively correlated with C/N ratio. The decomposition rate of M. macclurei leaf litter was significantly higher than that of C. lanceolata needle litter in the pure C. lanceolata stand. Contrary to what would be predicted, the litter mixture decomposed more slowly than expected based on the results from component species decomposing alone. There was no significant difference in litter decomposition rate between different habitats.  相似文献   

15.
In Sudan, tree plantations remain the first choice and are widely used in protecting arable lands from sand movement. Decomposition and nutrient changes from leaves of some agroforestry trees (Eucalyptus microtheca, Ficus spp., and Leucaena leucocephala) and litter fall from guava (Psidium guajava) and mango (Magnifera indica) were monitored (in a 12‐week litter‐bag experiment). Rate of dry‐matter weight loss from guava (0.098 wk?1) was significantly (P < 0.01) faster than from mango residues (0.04 wk?1). Corresponding values for Leucaena, Eucalyptus, and Ficus were 0.0533, 0.0524, and 0.0438 wk?1, respectively. In general, micronutrients tend to accummulate during a decomposition period. Potassium (K) was the only element found to be consistently lost by leaching very rapidly from all litters. Nitrogen (N) was released at a significantly (P < 0.03) higher rate from Leucaena (0.0558 wk?1) compared to Ficus (0.0399 wk?1) and Eucalyptus (0.0301 wk?1). Mobility of nutrients from the litters was in the order of K > phosphorus (P) = N > calcium (Ca) > magnesium (Mg). It is concluded that ficus and mango leaves are suitable for improving quality of arid soils through buildup of soil organic matter and supplying easily released organic sulfur (S) (environmentally sound management practice) whereas litter from guava is suitable for temporary nutrient correction. Mixing of guava and mango residues may slow fast decomposition of the former.  相似文献   

16.
Abstract

The feasibility of using near‐infrared reflectance spectroscopy (NIRS) was investigated for the analysis of pH, electrical conductivity (EC), phosphorus (P), sulfur (S), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), iron (Fe), and manganese (Mn) in 28 Canadian soil samples from three boreholes down to 10 m in depth. Field moist soil samples were scanned for pH and EC, and air‐dry samples were scanned for the analysis of the elements. Calibrations were developed between the near‐infrared spectral data and results obtained by conventional analyses. The NIR‐predicted values were highly correlated to the measured values obtained by the conventional methods (r2>0.9) for P, Ca, Mg, K, Fe, and Mn, and almost as highly correlated (r2>0.8) for S and Na Results for pH were somewhat less successful (r2>0.6), and appeared to be useful only for screening purposes, whereas EC was not successfully predicted by NIRS in this study. It appeared that NIRS could be a useful method for the rapid, non‐destructive, simultaneous analysis of elemental concentrations in dry soils, useful in routine analysis.  相似文献   

17.
In natural conditions, litters shed from different species become mixed with each other, and decompose together. Most studies deal with decomposition of individual species; few studies investigate the influence of litter mixing on decomposition and nutrient dynamics; the results are contradictory as positive, negative, or no effect, of litter mixing have been observed. In this study we test the hypothesis: i) that litter mixing in the Mediterranean maquis, a nutrient poor, high diversity ecosystem, produces non-additive effects on nutrient dynamics; ii) that the effects vary with the composition in species of the mixture and with the relative amount of the species component the mixture. Two types of 3-species mixtures were set up; one contained three sclerophylls, Phillyrea angustifolia, Pistacia lentiscus and Quercus ilex; the other contained the first two species with the mesophyll Cistus. Litterbags, containing monospecific litters and even and uneven mixtures, were incubated under natural condition in situ; even mixtures had the 3 species in equal proportion, whereas uneven mixtures had one of the species as dominant (50%) and the other two species in equal proportion (25%:25%). Litterbags were retrieved after 92, 188 and 403 days; litters from the mixtures were separately analyzed for mass loss and content of nitrogen (N), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn). Results indicate that mixing influences the dynamics of N, Mn, Ca, Mg, Fe, Cu and Zn, but scarcely affects the dynamics of K and Na. The comparison of observed to expected values for changes of nutrients in litterbags indicates the occurrence of non-additive effects of litter mixing on movements of N, Fe, Cu, and Zn to or from the litterbags containing the mixtures. The effects depend on the composition in species of the mixture, whereas the relative amount of the species component the mixture is not relevant.  相似文献   

18.
Mid‐infrared spectroscopy (MIRS) is assumed to be superior to near‐infrared spectroscopy (NIRS) for the prediction of soil constituents, but its usefulness is still not sufficiently explored. The objective of this study was to evaluate the ability of MIRS to predict the chemical and biological properties of organic matter in soils and litter. Reflectance spectra of the mid‐infrared region including part of the near‐infrared region (7000–400 cm–1) were recorded for 56 soil and litter samples from agricultural and forest sites. Spectra were used to predict general and biological characteristics of the samples as well as the C composition which was measured by 13C CPMAS‐NMR spectroscopy. A partial least‐square method and cross‐validation were used to develop equations for the different constituents over selected spectra ranges after several mathematical treatments of the spectra. Mid‐infrared spectroscopy predicted well the C : N ratio: the modeling efficiency EF was 0.95, the regression coefficient (a) of a linear regression (measured against predicted values) was 1.0, and the correlation coefficient (r) was 0.98. Satisfactorily (EF ≥ 0.70, 0.8 ≤ a ≤ 1.2, r ≥ 0.80) assessed were the contents of C, N, and lignin, the production of dissolved organic carbon, and the contents of carbonyl C, aromatic C, O‐alkyl C, and alkyl C. However, the N mineralization rate, the microbial biomass and the alkyl–to–aromatic C ratio were predicted less satisfactorily (EF < 0.70). Limiting the sample set to mineral soils did generally not result in improved predictions. The good and satisfactory predictions reported above indicate a marked usefulness of MIRS in the assessment of chemical characteristics of soils and litter, but the accuracies of the MIRS predictions in the diffuse‐reflectance mode were generally not superior to those of NIRS.  相似文献   

19.
Bryophytes and lichen are important components of many boreal forest ecosystems, making the quantification of moss and lichen decomposition rates critical to understanding the C cycle of these forests. Cryptogam decomposition has been predominantly studied in wetlands, while few studies exist for forest-habitat mosses and even fewer for foliose ground lichen. We used a) the litterbag and b) the minicontainer (MC) method to quantify the decomposition rates of i) feathermoss, ii) forest peatmoss, iii) foliose ground lichen, and iv) alder leaves (reference litter) in cool, wet high-boreal Labrador black spruce forests. A total of 1560 litter samples (360 litterbags, 1200 MCs) were incubated for two years in six forest stands of different disturbance origin: three old-growth stands of wildfire origin, and three recently clearcut stands. Litter samples were retrieved after 6.5, 13, 47, 57 and 109 weeks of field incubation, and analysed for mass loss, C, N, nutrient, and fibre content.While clearcut harvesting had no significant effect on litter decomposition at all, decomposition rates significantly differed between litter types, with residual mass increasing in the order alder ≤ lichen < feathermoss ≤ peatmoss. Compared to wetlands, forest moss litter was more labile in the studied forest types, with lichen producing especially fast-decomposing litter. Litter type was a better predictor of decomposition rates than individual chemical parameters, indicating that, even in extreme climates like in Labrador, substrate quality is more important in determining decomposition rates than environmental factors. For all litter types, decomposition models accounting for the seasonality of decay dynamics performed better than models assuming constant or continuously decreasing decay rates. Compared to the litter bag method, which yielded decomposition rates comparable to previous studies, the MC method overestimated decomposition rates for alder and lichen due to fragmentation artefacts. The small sample size of the MC method therefore outweighs its statistical advantages arising from ease of replication. In order to derive reliable estimates of litter decomposition, both the field incubation method and the applied decomposition model must therefore be selected to suit the studied litter types.  相似文献   

20.
How the mixture of tree species modifies short-term decomposition has been well documented using litterbag studies. However, how litter of different tree species interact in the long-term is obscured by our inability to visually recognize the species identity of residual decomposition products in the two most decomposed layers of the forest floor (i.e. the Oe and Oa layers respectively). To overcome this problem, we used Near Infrared Reflectance Spectroscopy (NIRS) to determine indirectly the species composition of forest floor layers. For this purpose, controlled mixtures of increasing complexity comprising beech and spruce foliage materials at various stages of decomposition from sites differing in soil acid-base status were created. In addition to the controlled mixtures, natural mixtures of litterfall from mixed stands were used to develop prediction models. Following a calibration/validation procedure, the best regression models to predict the actual species proportion from spectral properties were selected for each tree species based on the highest coefficient of determination (R2) and the lowest root mean square error of prediction (RMSEP). For the validation, the R2 (predictions versus true proportions) were 0.95 and 0.94 for both beech and spruce components in mixtures of materials at all stages of decomposition from the gradient of sites. The R2 decreased only marginally by 0.04 when models were tested on independent samples of similar composition. The best models were used to predict the beech-spruce proportion in Oe and Oa layers of unknown composition. They provided in most cases plausible predictions when compared to the composition of the canopy above the sampling points. Thus, tedious and potentially erroneous hand sorting of forest floor layers may be replaced by the use of NIRS models to determine species composition, even at late stages of decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号