首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of compost fertilization compared with mineral fertilization on N leaching to the groundwater was investigated in six plots of a long‐term field experiment and a lysimeter station on a Molli‐gleyic Fluvisol (WRB) near Vienna, Austria. The plots investigated included two treatments with compost fertilization (16 and 23 t ha–1 y–1, respectively, on average of 11 y), two treatments with mineral N fertilization (41 and 56 kg N ha–1 y–1, respectively), and two treatments with combined fertilization (9 t compost + 56 kg N ha–1 y–1 and 23 t compost + 22 kg N ha–1 y–1, respectively). Nitrogen leaching to the groundwater as determined using ceramic suction cups was not increased after 11 y of compost fertilization with higher amounts than used in practical farming (23 t ha–1 y–1, corresponding to an annual input of 205 kg Ntot ha–1) as compared to mineral fertilization under the conditions of the experiment. Even intensive N mineralization during a 4‐month period of bare fallow did not cause pronounced differences between the fertilization treatments. The results suggest that in the pannonic climate, compost fertilization does not pose a risk for groundwater eutrophication on the medium term.  相似文献   

2.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level.  相似文献   

3.
Little is known about nutrient fluxes and nutrient‐use efficiencies in urban and peri‐urban agriculture (UPA) of rapidly expanding cities in developing countries. Therefore, horizontal flows of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) as well as leaching losses of mineral N and P were measured over 2 years in three representative agricultural production systems of Kabul. These comprised 21 gardens and 18 fields dedicated to vegetable farming, cereal farming, and table‐grape production (vineyards). Across sites (fields and gardens) biennial inputs averaged 375 kg N ha–1, 155 kg P ha–1, 145 kg K ha–1, and 15 kg C ha–1 while with harvests 305 kg N ha–1, 40 kg P ha–1, 330 kg K ha–1, and 7 kg C ha–1 were removed. In vegetable gardens, biennial net balances were 80 kg N ha–1, 75 kg P ha–1, –205 kg K ha–1, and 4 kg C ha–1, whereas in cereal farming biennial horizontal balances amounted to –155 kg N ha–1, 20 kg P ha–1, –355 kg K ha–1, and 5 kg C ha–1. In vineyards, corresponding values were 295 kg N ha–1, 235 kg P ha–1, 5 kg K ha–1, and 3 kg C ha–1. Annual leaching losses in two selected vegetable gardens varied from 70 to 205 kg N ha–1 and from 5 to 10 kg P ha–1. Night soil and irrigation water were the major sources among the applied nutrient inputs in all studied farming systems, contributing on average 12% and 25% to total N, 22% and 12% to total P, 41% and 53% to total K, and 79% and 10% to total C, respectively. The results suggest that soils in extensive cereal fields are at risk of N and K depletion and in vegetable gardens of K depletion, while vineyards may be oversupplied with nutrients possibly contributing to groundwater contamination. This merits verification.  相似文献   

4.
A model for nitrogen (N) dynamics in compost‐amended vineyard soils was tested for its predictive power. A soil–mineral N data set from a 3‐year field study on four different vineyard sites was used for model evaluation. The soils were treated with mature bio‐waste compost (30 and 50 Mg ha–1 fresh matter, respectively). The model calculated soil mineral‐N contents at all sites with an overall mean bias error of –2.2 kg N ha–1 for layers of 0.1 m thickness and an overall mean absolute error of 7.4 kg N ha–1 layer–1. Modeling efficiencies for the simulations of the respective treatments ranged from –0.05 to 0.41, and Willmott's Index of Agreement showed values of between 0.41 and 0.81. Acceptable model predictions as defined by the observed variability of mineral‐N contents in the respective soils ranged from 40% to 72%. A strong increase in soil mineral‐N concentration following the compost application at all sites could not be reproduced with the model, thereby reducing the prediction accuracy significantly. The model performance confirms that previously derived N‐mineralization parameters are suitable to describe the N release from soil‐applied mature bio‐waste compost under the environmental conditions of vineyards in Germany.  相似文献   

5.
Our contemporary society is struggling with soil degradation due to overuse and climate change. Pre‐Columbian people left behind sustainably fertile soils rich in organic matter and nutrients well known as terra preta (de Indio) by adding charred residues (biochar) together with organic and inorganic wastes such as excrements and household garbage being a model for sustainable agriculture today. This is the reason why new studies on biochar effects on ecosystem services rapidly emerge. Beneficial effects of biochar amendment on plant growth, soil nutrient content, and C storage were repeatedly observed although a number of negative effects were reported, too. In addition, there is no consensus on benefits of biochar when combined with fertilizers. Therefore, the objective of this study was to test whether biochar effects on soil quality and plant growth could be improved by addition of mineral and organic fertilizers. For this purpose, two growth periods of oat (Avena sativa L.) were studied under tropical conditions (26°C and 2600 mm annual rainfall) on an infertile sandy soil in the greenhouse in fivefold replication. Treatments comprised control (only water), mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), compost (5% by weight), biochar (5% by weight), and combinations of biochar (5% by weight) plus mineral fertilizer (111.5 kg N ha–1, 111.5 kg P ha–1, and 82.9 kg K ha–1), and biochar (2.5% by weight) plus compost (2.5% by weight). Pure compost application showed highest yield during the two growth periods, followed by the biochar + compost mixture. biochar addition to mineral fertilizer significantly increased plant growth compared to mineral fertilizer alone. During the second growth period, plant yields were significantly smaller compared to the first growth period. biochar and compost additions significantly increased total organic C content during the two growth periods. Cation‐exchange capacity (CEC) could not be increased upon biochar addition while base saturation (BS) was significantly increased due to ash addition with biochar. On the other hand, compost addition significantly increased CEC. Biochar addition significantly increased soil pH but pH value was generally lower during the second growth period probably due to leaching of base cations. Biochar addition did not reduce ammonium, nitrate, and phosphate leaching during the experiment but it reduced nitrification. The overall plant growth and soil fertility decreased in the order compost > biochar + compost > mineral fertilizer + biochar > mineral fertilizer > control. Further experiments should optimize biochar–organic fertilizer systems.  相似文献   

6.
The optimal nitrogen (N) rate for cotton (Gossypium hirsutum L.) production in the late 20th century is greater than it was in the middle of the century (112 versus 27 kg ha‐1). Part of the reason for this difference is that modern cultivars exhibit a greater harvest index than obsolete cultivars. This greater harvest index helps to allow modern cultivars to utilize greater N rates. However, factors other than harvest index, such as the development of leaf area in response to N, may also play an important role. Therefore, the objective of this study was to characterize leaf area index (LAI) of four obsolete and four modern cultivars at a low and high fertilizer N level. Cotton was grown in the field for two years (1992 and 1993) with two locations each year. The locations were a Beulah fine sandy loam and a Dubbs silt loam. Two preplant fertilizer‐N rates were used, a low (22 kg N ha‐1) and a high(112 kg N ha‐1). Leaf area index was determined at three stages in each year (early, mid, and late season). Yield was determined at maturity. Averaged across years, locations, and cultivars, late‐season LAI increased from 2.32 at 22 kg N ha‐1 to 3.15 at 112 kg N ha‐1 by late season. In 1992, modern and obsolete cultivars had similar LAI responses to N at early and mid season but by late season, LAI of modern cultivars was greater under high N than the obsolete cultivars (3.53 versus 2.95). Lint yield of the four modern cultivars was 372 kg ha‐1 greater than the four obsolete cultivars at 112 kg N ha‐1 and 289 kg lint ha‐1 greater at 22 kg N ha‐1 in 1992. The LAI response to N level of the modern cultivars was similar to that of obsolete cultivars in 1993 at all three sampling dates. In 1993, the lint yield of modern cultivars was 238 kg ha‐1 greater than obsolete cultivars under 112 kg N ha‐1 and 182 kg lint ha‐1 at 22 kg N ha‐1. In summary, our results best support the hypothesis that the higher yield of modern cultivars at high fertilizer N is unrelated to their LAI.  相似文献   

7.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

8.
Given high mineralization rates of soil organic matter addition of organic fertilizers such as compost and manure is a particularly important component of soil fertility management under irrigated subtropical conditions as in Oman. However, such applications are often accompanied by high leaching and volatilization losses of N. Two experiments were therefore conducted to quantify the effects of additions of activated charcoal and tannin either to compost in the field or directly to the soil. In the compost experiment, activated charcoal and tannins were added to compost made from goat manure and plant material at a rate of either 0.5 t activated charcoal ha?1, 0.8 t tannin extract ha?1, or 0.6 t activated charcoal and tannin ha?1 in a mixed application. Subsequently, emissions of CO2, N2O, and NH3 volatilization were determined for 69 d of composting. The results were verified in a 20‐d soil incubation experiment in which C and N emissions from a soil amended with goat manure (equivalent to 135 kg N ha?1) and additional amendments of either 3 t activated charcoal ha?1, or 2 t tannin extract ha?1, or the sum of both additives were determined. While activated charcoal failed to affect the measured parameters, both experiments showed that peaks of gaseous CO2 and N emission were reduced and/or occurred at different times when tannin was applied to compost and soil. Application of tannins to compost reduced cumulative gaseous C emissions by 40% and of N by 36% compared with the non‐amended compost. Tannins applied directly to the soil reduced emission of N2O by 17% and volatilization of NH3 by 51% compared to the control. However, emissions of all gases increased in compost amended with activated charcoal, and the organic C concentration of the activated charcoal amended soil increased significantly compared to the control. Based on these results, tannins appear to be a promising amendment to reduce gaseous emissions from composts, particularly under subtropical conditions.  相似文献   

9.
Little is known about the effects of compost application to reclaim artisanal mining sites for agriculture in Central Africa. A field experiment was therefore conducted to examine the effects of locally available organic household waste composted under traditional (pit under leaf shade) versus improved management (pit under double plastic sheeting) and mixed with either Tithonia diversifolia biomass or Minjingu Phosphate Rock (13–15% P) on climbing bean sown on degraded Technosols (former Tantalum mining sites) and un‐mined control soils (Cambisols). Both soil types were derived from pegmatite. After 6 months of composting, nutrient concentrations in traditional compost were 0.27–0.32% N, 0.06–0.08% P, and 0.20–0.22% K. Comparative values in amended compost were 1.02–1.65% N, 0.10–0.31% P, and 0.41–1.13% K. In farmyard+solid waste, composted under traditional system, dry matter was 65.4%, pH 6.7, and C : N ratio 13.0, as opposed to 81.5% DM, a pH of 8.6, and a C : N ratio of 8.6 in farmyard+solid waste+Minjingu phosphate under improved compost, and 68.3% dry matter, a pH of 8.4, and a C : N ratio of 7.4 for Tithonia +farmyard+solid waste under improved conditions. Compared to bean (Phaseolus vulgaris L.) grain yields of 0.28 (mined soil) and 0.11 (unmined soil) without amendments, the application (on a dry matter basis) of 5 t compost ha−1 led to yields of 3.54 t DM ha−1 for improved compost Tithonia +farmyard+solid waste on mined soil versus 2.26 t DM ha−1 (P < 5%) for the same treatment at the un‐mined sites. The yield obtained for farmyard+solid waste+Minjingu phosphate composted under improved conditions averaged 3.06 t DM ha−1 at mined sites compared with 2.85 t DM ha−1 at un‐mined sites (P > 5%). All amendments were more effective in enhancing bean yields on Technosols with significant positive effects with improved compost than on Cambisols.  相似文献   

10.
Abstract

Soil pH can be increased by manure or compost application because feed rations usually contain calcium carbonate. This study was conducted from 1992 to 1996 to evaluate effects of phosphorus (P) and nitrogen (N)‐based manure and compost application management strategies on soil pH level. Composted and uncomposted beef cattle (Bos taunts) feedlot manure was applied to supply N or P needs of corn (Zea mays L.) for either a one‐ or two‐year period. Phosphorus‐based manure or compost treatments also received additional fertilizer N (ammonium nitrate) to provide for a total of 151‐kg available N ha‐1 yr‐1. Fertilized and unfertilized checks also were included. Manure and composted manure contained about 9 g CaCO3kg‐1 resulting in application rates of up to 1730 kg CaCO3 ha‐1 in 4 years. The surface soil (0–150 mm) pH was significantly decreased with ammonium nitrate application compared to soil in the unfertilized check or to soil receiving manure or compost. Soil pH was significantly increased with the N‐based management strategy compared with the soil original level. In contrast, 4 yr of P‐based manure and compost application strategy maintained soil pH at the original level. Nitrogen‐based applications resulted in higher soil pH than P‐based. Beef cattle feedlot manure and compost can be good sources of CaCO3 for soils requiring lime addition.  相似文献   

11.
The purpose of this research project was to 1) evaluate rate of compost application and 2) to compare compost with uncomposted raw material and inorganic fertilizer N application upon maize and soybean growth and productivity, and upon soil characteristics. During the first three years of the study, the source of uncomposted material and compost was food waste and ground newsprint. During years 4 to 9 of the study, the source of uncomposted material and compost was dairy cow manure and wood chips. Application rates in field site 1 were 0, 11.2, 22.4, 33.6 and 44.8 Mg ha?1 compost, 44.8 Mg ha?1 uncomposted material and 140 kg ha?1 fertilizer N (as urea). Application rates in field site 2 were 0, 22.4, 44.8, 67.2 and 134.4 Mg ha?1 compost, 134.4 Mg ha?1 uncomposted manure and 180 kg ha?1 fertilizer N (dry matter basis). The high rates of compost application significantly raised organic matter levels, and available P and K compared to inorganic fertilizer N. Uncomposted manure and increasing compost application rates significantly increased grain yield, number of kernels per plant and plant weight. Composting significantly reduced pathogen indicator bacteria concentrations. The data of this study suggest that on these high organic matter soils 22.4 Mg ha?1 to 44.8 Mg ha?1 are optimal compost application rates.  相似文献   

12.
Urban and peri‐urban agriculture (UPA) is an important livelihood strategy for the urban poor in sub‐Saharan Africa and contributes to meeting increasing food demands in the rapidly growing cities. Although in recent years many research activities have been geared towards enhancing the productivity of this land‐use system, little is known about turnover processes and nutrient efficiency of UPA. The aim of our study therefore was to determine horizontal fluxes of N, P, K, and C as well as gaseous N and C emissions in urban vegetable gardens of Bobo‐Dioulasso, Burkina Faso. Two gardens referred to as “Kodéni” and “Kuinima” were selected as representative for urban and peri‐urban systems classified as: (1) “commercial gardening + field crops and livestock system” and (2) “commercial gardening and semicommercial field crop system”, respectively. A nutrient‐balance approach was used to monitor matter fluxes from March 2008 to March 2009 in both gardens. Ammonia (NH3), nitrous oxide (N2O) and carbon dioxide (CO2) emissions from the respective soils were measured during the coolest and the hottest period of the day using a closed‐chamber system. Annual partial balances amounted to 2056 kg N ha–1, 615 kg P ha–1, 1864 kg K ha–1, and 33 893 kg C ha–1 at Kodéni and to 1752 kg N ha–1, 446 kg P ha–1, 1643 kg K ha–1, and 21 021 kg C ha–1 at Kuinima. Emission rates were highest during the hot midday hours with peaks after fertilizer applications when fluxes of up to 1140 g NH3‐N ha–1 h–1, 154 g N2O‐N ha–1 h–1, 12 993 g CO2‐C ha–1 h–1 were recorded for Kodéni and Kuinima. Estimated annual gaseous N (NH3‐N + N2O‐N) and C (CO2‐C + CH4‐C) losses reached 419 kg N ha–1 and 35 862 kg C ha–1 at Kodéni and 347 kg N ha–1 and 22 364 kg C ha–1 at Kuinima. For both gardens, this represented 20% and 106% of the N and C surpluses, respectively. Emissions of NH3, largely emitted after surface application of manure and mineral fertilizers, accounted for 73% and 77% of total estimated N losses for Kodéni and Kuinima. To mitigate N losses nutrient‐management practices in UPA vegetable production of Bobo‐Dioulasso would greatly benefit from better synchronizing nutrient‐input rates with crop demands.  相似文献   

13.
Abstract

A field trial was conducted during the short‐day period of 2004–2005 at Ona, Fl., to study the factorial effect of nitrogen (67, 90, and 134 kg N ha?1) and phosphorus (0, 5, 10, 20, and 40 kg P ha?1) rates on forage dry‐matter yield, quality, nutrient uptake, and leaf pigment concentration of limpograss (Hemarthria altissima). The N and P fertilizers were applied 45 days before each of two harvests. There was no interaction between N and P rates on any of the measured variables. Cool‐season forage yield increased curvilinearly from 137 to 350 kg ha?1 in winter and 237 to 1389 kg ha?1 in early spring, whereas crude protein (CP) concentration increased from 145 to 158 g kg?1, as P was increased from 0 to 40 kg ha?1, but yield and CP were not affected by N rate. There was a decreasing linear relationship between leaf concentration of anthocyanins and P rate of application such that forage obtained with 0 kg P ha?1 had 61% more leaf anthocyanins and purple pigmentation than with 40 kg P ha?1. There was no effect of N on anthocyanins content. It was concluded that increased level of leaf anthocyanins was due to the cumulative stress from cool weather and lower plant‐tissue P levels, which resulted in reduced growth and yield of limpograss. In cool weather, P played a critical role in controlling leaf purple pigmentation and forage yield.  相似文献   

14.
Nitrogen (N) and phosphorus (P) deficiencies are key constraints in rainfed lowland rice (Oryza sativa L.) production systems of Cambodia. Only small amounts of mineral N and P or of organic amendment are annually applied to a single crop of rainfed lowland rice by smallholder farmers. The integration of leguminous crops in the pre‐rice cropping niche can contribute to diversify the production, supply of C and N, and contribute to soil fertility improvement for the subsequent crop of rice. However, the performance of leguminous crops is restricted even more than that of rice by low available soil P. An alternative strategy involves the application of mineral P that is destined to the rice crop already to the legume. This P supply is likely to stimulate legume growth and biological N2 fixation, thus enhancing C and N inputs and recycling N and P upon legume residue incorporation. Rotation experiments were conducted in farmers' fields in 2013–2014 to assess the effects of P management on biomass accumulation and N2 fixation (δ15N) by mungbean (Vigna radiata L.) and possible carry‐over effects on rice in two contrasting representative soils (highly infertile and moderately fertile sandy Fluvisol). In the traditional system (no legume), unamended lowland rice (no N, + 10 kg P ha?1) yielded 2.8 and 4.0 t ha?1, which increased to 3.5 and 4.7 t ha?1 with the application of 25 kg ha?1 of urea‐N in the infertile and the moderately fertile soil, respectively. The integration of mungbean as a green manure contributed up to 9 kg of biologically fixed N (17% Nfda), increasing rice yields only moderately to 3.5–4.6 t ha?1. However, applying P to mungbean stimulated legume growth and enhanced the BNF contribution up to 21 kg N ha?1 (36% Nfda). Rice yields resulting from legume residue incorporation (“green manure use”–all residues returned and “grain legume use”–only stover returned) increased to 4.2 and 4.9 t ha?1 in the infertile and moderately fertile soil, respectively. The “forage legume use” (all above‐ground residues removed) provided no yield effect. In general, legume residue incorporation was more beneficial in the infertile than in the moderately fertile soil. We conclude that the inclusion of mungbean into the prevailing low‐input rainfed production systems of Cambodia can increase rice yield, provided that small amounts of P are applied to the legume. Differences in the attributes of the two major soil types in the region require a site‐specific targeting of the suggested legume and P management strategies, with largest benefits likely to accrue on infertile soils.  相似文献   

15.
In a field experiment conducted at Aligarh, India, nine combinations of nitrogen (N) and phosphorus (P) were factorially randomized with four triticales and one check each of wheat and rye to investigate the effect of progressive rates of application (180–300 kg N+P ha‐1) of combined N+P fertilizer on grain yield and quality. Grain yield, protein content, and values for yield components significantly increased with increasing combined N+P fertilizer rates up to 240 kg N+P ha‐1 (200 kg N+40 kg P ha‐1). The response of further increases in N+P rates gradually diminished, thereafter, despite increasing N and/or P in the fertilizer combinations. The data facilitated the selection of improved cultivars in terms of yield and quality of grain and simultaneously revealed the harmful effects of overfertilization.  相似文献   

16.
Healthy, well‐rooted planting stocks are important for profitable fruit production of strawberry (Fragaria × ananassa Duch.). Adequate nutrient inputs and crop‐rotation practices are among the most important measures to insure a successful, rapid development of strawberry nursery plants. However, relationships between macronutrient use and strawberry‐nursery‐plant formation in different rotation environments are not well understood. Our objectives were to assess strawberry plant P : N nutrition and nursery development under various limited and unlimited P inputs applied at different growth stages and to examine how nursery plants cope with limited P inputs. The field studies were conducted in a wheat–ryegrass–ryegrass–strawberry (WRRS) system in 2008 and in another corn–ryegrass–ryegrass–strawberry (CRRS) system in 2009 in Nova Scotia, Canada. The nursery crop was cv. Strawberry Festival and the experimental treatments consisted of three mother‐stock P (MSP) rates (0, 6.6, and13.2 P kg ha–1) and five daughter‐plant P (DPP) rates (0, 13.2, 26.4, 39.6, and 52.8 kg P ha–1), representing 0%–125% of the regional recommendations for strawberry nursery. The P treatments were arranged with three blocks in a split‐plot design in each field. The results showed that the effects and interactions of the MSP and DPP treatments were significant (P < 5%) on whole‐plant P and N acquisition and nursery productivity. Two‐year whole‐plant total P and N acquisition varied between (13.2 ± 2.0) kg P ha–1 and (46 ± 7.3) kg N ha–1 (n = 270) in both nursery systems. There was a quadratic regression relationship between nursery runners and daughter plants with plant P and N acquisition (0.33 < R2 < 0.42, P < 5%). Soil pH levels declined with time and were positively correlated with nursery‐plant formation. Too many runners (18–22 per mother stock) might reduce nursery‐plant formation. Limited P inputs (37.5%–62.5% of regular recommendation) might result in a suitable plant P : N ratio (0.12–0.13) and adequate daughter plant‐to‐runner ratios (1.4–1.7) for optimum nursery formation (14–16 daughter plants per mother stock). Nutrient P was the single controlled factor influencing the N acquisition of nursery plants. High P inputs (> 39.6 P ha–1 or > 75% of regular recommendation) may harm the crops. Therefore, this study implies that low‐input horticulture can improve the nutrition management of strawberry nursery.  相似文献   

17.
Earthworms can influence incorporation of animal manures and composts into the soil. As this activity can decrease the potential for phosphorus (P) loss in runoff and increase plant nutrient availability, we evaluated the effect of manure application on earthworm activity. Earthworm activity (as indicated by surface casts of Lumbricus terrestris) and soil P distribution were determined as a function of superphosphate, manure, and compost (dairy and poultry) applied at rates of 0, 50, 100, and 200 kg P ha–1 yr–1. Surface earthworm cast production was greatest in the wet and warm months of May to July. For instance, average annual cast production was 24,520 and 13,760 kg ha–1 with respective applications of dairy manure and compost (100 kg P ha–1) compared with 9,090 kg ha–1 when superphosphate was added. This increased activity was accompanied by lower Mehlich 3 P (130 mg kg–1) at the surface (0–5 cm) of soils treated with 100 kg P ha–1 yr–1 dairy manure than those treated with superphosphate (210 mg kg–1) but greater concentrations at 5 to 10 cm deep (95 and 50 mg kg–1, respectively). While there may have been greater downward movement of organic P added in manure and compost, the stimulation of L. terrestris activity by application of manure or compost has the potential to redistribute surface-applied P within the soil profile to a greater extent than when equivalent applications of P are made in the form of inorganic fertilizer.  相似文献   

18.
A two-year field experiment (2001 and 2003) was carried out in a Mediterranean environment to study the effects of municipal solid waste (MSW) compost application compared with mineral nitrogen (N) fertilization on the agronomic performance and N utilization of a tomato crop, in rotation with durum wheat. The research was conducted in the south of Italy where five N treatments and two soil tillage depths (40-45 cm and 10-15 cm) were compared. The N treatments were: MSW compost at 140 kg ha?1 (Ncom); mineral N fertilizer at 140 kg ha?1 (Nmin); MSW compost combined with mineral N fertilizer (Nmix) (70 kg ha?1 as organic N plus 70 kg ha?1 as mineral N); mineral N fertilizer at 70 kg ha?1 combined with two applications of foliar fertilizer (Nfito) (3 kg ha?1 as hydrolyzed proteins), and an untreated control (Contr). During cropping cycles, growth parameters and plant N status (SPAD readings and petiole nitrate content) were determined; at harvest the marketable, overripe, green fruit, total yield, yield components, quality performance, total and fruit N uptake, and N efficiency were recorded. In addition, at the beginning and at the end of the two-year experiment, soil chemical characteristics and mineral N was measured, allowing for the calculation of the mineral N deficit in the soil. The results of this research indicate that the application of MSW compost to tomato plants can serve as a N source in Mediterranean conditions, especially when MSW compost is combined with mineral N fertilizer and deeper soil tillage is applied. In fact, deeper soil tillage increased total yield 7.0 t ha?1 compared to surface tillage, whereas soil amended with MSW compost increased total yield compared to the untreated control by approximately 6.4% when used alone and 11.1% when combined with mineral N fertilizer. Nitrogen utilization parameters and Harvest Index varied significantly across years and N treatments. Petiole nitrate content and SPAD readings did not vary between Nmin and Nmix treatments, but they were significantly different from the untreated control. This indicates that plant N status was an effective tool to monitor N supply. After the two-year experiment, the Nmix treatment was statistically not significant in total yield (86.1 and 88.2 t ha?1, respectively), marketable yield (66.9 and 67.7 t ha?1) and quality compared to the Nmin treatment. Furthermore, the Nmix treatment ensured the least N deficit in the soil, indicating that MSW applications were effectively used as alternative organic supplements. Finally, the results indicated a positive effect of MSW application on organic carbon content in the soil and did not show any significant increase of the heavy metals at the end of the two-year experiment.  相似文献   

19.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

20.
Bauxite residues are very slow to naturally vegetate due to nutrient deficiency and high sodicity. In order to test the effectiveness of amendments at promoting revegetation, bauxite residue was amended with varying rates of compost to increase fertility (0, 60, 80 and 120 t ha−1) and gypsum to reduce sodicity (0, 40 and 90 t ha−1). Amended residue was sown with Holcus lanatus, a perennial grass. Following a 1‐year growth period, substrate properties, plant performance and plant nutrient uptake were assessed. Compost application substantially increased substrate N, P, K and Mn concentrations, while gypsum application greatly reduced sodicity and improved nutrient uptake for Mn and P. Compost amendment was essential for sustainable plant growth. Foliar deficiencies in N, P and Mg may persist with lower compost application rates, requiring the addition of supplemental fertiliser for healthy plant growth. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号