首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

If calcifuges are forced to grow on a calcareous soil, they usually develop chlorosis. However, total leaf iron (Fe) does not often correlate well with Fe deficiency symptoms. The extraction of ‘active’ Fe by 1 M HCl or Fe chelators, e.g., 1,10‐phenanthroline, may reflect the relation between chlorosis and Fe‐concentration in the leaves better than total Fe does. Extraction of ‘active’ Fe from leaves of wild plants by 1,10‐phenanthroline, citric acid and HC1 was compared. The 1,10‐phenanthroline was chosen for further methodological studies. All samples were extracted at indoor light conditions and analyzed by AAS because dark incubation did not influence the oxidation state of Fe and non‐specific light absorbance seemed to be high in colorimetric analysis. Washing of leaf material with H2O seemed to clean the leaf surfaces equally well as with 0.1 M HCl. Only fresh leaf material was extracted, as pretreatment (freezing or drying) changed the extractability of Fe. An extraction time of 16 h was adequate for the herbaceous plants tested but not for Carex pilulifera, where extracted Fe increased linearly with time. The age of the extractant solution may play a role because 1,10‐phenanthroline had lost part of its chelation capacity after 6 weeks. The ratio of leaf weight:extractant volume did not influence the amount of Fe extracted, provided the same amount of chelator was supplied. The 1,10‐phenanthroline did not interfere with the Fe determination by AAS, and HCl pH 3 as used for the preparation of the extractants had only a marginal influence on Fe extractability compared to 1,10‐phenanthroline at pH 3. To get comparable results the extraction method should be standardized as much as possible. Samples can be stored in the refrigerator for several hours before adding the extractant and the extracts can be stored for a few days or frozen and measured on the same day, with the same instrument setting.  相似文献   

2.
The effect of soil and foliar application of different iron (Fe) compounds (FeSO4, Fe‐EDTA, Fe‐EDDS, and Fe‐EDDHA) on nutrient concentrations in lettuce (Lactuca sativa cv. Australian gelber) and ryegrass (Lolium perenne cv. Prego) was investigated in a greenhouse pot experiment using quartz sand as growth medium. Soil application was performed in both the acidic and alkaline pH range, and foliar application to plants grown in the alkaline sand only. Lettuce growth was depressed by Fe deficiency in the alkaline sand, whereas the treatments had no effect on ryegrass growth. Soil‐applied Fe compounds raised the Fe concentrations in lettuce. This was especially true for the Fe chelates, which also increased yields. Soil‐applied Fe compounds had no statistically significant effect on Fe concentrations in ryegrass. Concentrations of manganese (Mn) in lettuce were equally decreased by all soil‐applied chelates. In the alkaline sand, soil application of Fe‐EDDHA elevated copper (Cu) and depressed zinc (Zn) concentrations in lettuce. The chelates increased Zn concentration in ryegrass. Foliar application of Fe‐EDDS increased Fe concentrations in lettuce and in ryegrass most. Fe‐EDDHA depressed Mn and Zn concentrations in lettuce more than other Fe compounds, suggesting the existence of another mechanism, in addition to Fe, that transmits a corresponding signal from shoot to roots with an impact on uptake of micronutrients.  相似文献   

3.
The most widely used Iron (Fe) fertilizer in calcareous soils is the synthetic chelate Fe(o,o‐EDDHA). However, humic substances are occasionally combined with Fe chelates in drip irrigation systems in order to lower costs. We investigated the effect of various mixtures of Fe(o,o‐EDDHA) and a commercially available humic substance on Fe availability in a calcareous soil from Murcia, Spain (in vitro experiment) and on leaf Fe content and fruit‐quality attributes of Citrus macrophylla (field experiment). In the in vitro experiment, a calcareous soil was incubated for 15 d with solutions of sole Fe(o,o‐EDDHA) and humic substance and of a mixture of humic substance and Fe(o,o‐EDDHA) to determine the dynamics of available Fe. While the mixture did not significantly increase the available soil Fe, it did decrease the rate of Fe retention in the surface soil compared to sole Fe(o,o‐EDDHA). In the field experiment, the substitution in the application solution of 67% of Fe(o,o‐EDDHA) by commercial humic substance increased leaf P in lemon trees from 0.19% with sole Fe(o,o‐EDDHA) to 0.30% and leaf Fe from 94 mg kg–1 to 115 mg kg–1. Some quality parameters like vitamin C content and peel thickness were also improved with a partial substitution of Fe(o,o‐EDDHA) by humic substances. We conclude that a partial substitution of commercial Fe chelates by humic substance can improve crop Fe uptake and may thus be economically attractive. The underlying physiological mechanisms and ecological implications require further studies.  相似文献   

4.
A method has been developed to consistently induce increases in root ferric chelate reductase activity in the fruit tree rootstock GF 677 (Prunus amygdalopersica) grown under iron (Fe) deficiency. Clonal GF 677 plants were grown hydroponically in a growth chamber with 0 or 90 μM Fe(III)‐EDTA. Root ferric chelate reductase activity was measured in vivo using BPDS. Plants grown without Fe developed visible symptoms of chlorosis and had lower root ferric chelate reductase activities than those grown with Fe. Root ferric chelate reductase activities were 0.1–1.9 and 0.6–5.3 nmol of Fe reduced per gram of fresh mass and minute, respectively, in Fe‐deficient and sufficient plants. However, when plants grown without Fe for several days were resupplied with 180 μM of Fe(III)‐EDTA, FC‐R activities increased within 1 day. The FC‐R values after Fe resupply were 20‐fold higher than those found in Fe‐deficient plants and 5‐fold higher than those found in the Fe‐sufficient controls. After three days of the Fe treatments the FC‐R activities had decreased again to the control values. The reduction of Fe was localized at the subapical root zone. In the conditions used we have found no decreases of the nutrient solution pH values, indicating that this type of response is not strong enough to be detected in peach tree rootstocks. Also, no major changes in root morphology have been found in response to Fe deficiency. This ferric chelate reductase induction protocol may be used in screening assays to select rootstock genotypes tolerant to Fe chlorosis.  相似文献   

5.
Iron (Fe) is an essential element for plants and its deficiency causes decrease not only in the photosynthetic rate but also in the actual photosystem II efficiency at steady‐state photosynthesis. The aim of this work was to determine the effect of Fe deficiency in plants of Cucumis sativus (L.) in two different experimental conditions. In the first experiment, plants were grown with or without Fe for 7 d. After 7 d, Fe‐deficient plants were resupplied with Fe and sampled after 12 h and 48 h. In the second experiment, plants were grown with Fe in the nutrient solution for 3 d and after this period, Fe was withdrawn and plants sampled after 3 and 6 d. Iron and chlorophyll (Chl) concentration and Chl‐fluorescence imaging were measured. In cucumber leaves subjected to Fe deficiency, fluorescence imaging of Chl a evidenced spatial changes on leaf lamina. Following Fe deficiency both after 7 d (Exp. 1) or 6 d (Exp. 2) leaves showed a slight, nonsignificant decrease in Fv/Fm ratio. However Chl‐fluorescence parameters determined in light conditions showed significant changes which indicate an alteration in the photosynthetic process. Surprisingly, the effect of Fe deficiency was more pronounced in leaves of plant of Exp. 2 as compared to those that had grown in complete absence of Fe (Exp. 1). In the latter case down‐regulated mechanisms preserved leaves from irreversible photoinhibition leading to complete recovery when plants were resupplied with the microelement.  相似文献   

6.
In comparison studies (11, 12), monocotyledonous corn (Zea mays L.) and oats (Avena byzantina C. Koch) did not respond to Fe stress as effectively nor to the same degree as the dicotyledonous soybeans (Glycine max (L.) Merr.) or tomatoes (Lycopersicon esculentum Mill.). Both the Fe‐inefficient and Fe‐efficient corn and oats developed Fe chlorosis; the Fe‐efficient dicotyledonous plants were green. In the present study, the method of inducing Fe stress was changed to make it less severe. Instead of using only NO3‐N and no Fe to induce Fe stress (11, 12), both NH4‐N and NO3‐N were used along with varied concentrations of Fe. Iron stress was induced with BPDS (4,7‐diphenyl‐l, 10‐phenan‐throline disulfonic acid) and phosphate; both competed with the plant for Fe. Phosphate also inhibits reduction of Fe3+ to Fe2+ (12). This method of inducing Fe stress in the plants was less severe than using only NO3‐N and no Fe in the nutrient solutions and we were able to measure a difference in Fe‐stress response for all four plant species (Fe‐inefficient and Fe‐efficient). At the lower Fe treatments, the roots of Fe‐efficient plants usually reduced more Fe3+ to Fe2+ than did the roots of Fe‐inefficient plants. The ‘inefficient’ ys1 corn and TAM 0–312 oat roots did not compete with BPDS or phosphate for Fe as effectively as did the ‘efficient’ WF9 corn and Coker 227 oat roots. The same type mechanism for solubilization, absorption, and transport of Fe seems to function in both monocotyledenous and dicotyledenous plants but it is more effective and more readily detected in the dicot than in the monocot plants. The reactions involved in reduction of Fe3+ to Fe2+ seemed to be confined inside or at the root surface for the inefficient genotypes; the efficient genotypes alter the ambient medium to a greater degree.  相似文献   

7.
Iron speciation in soils is still poorly understood. We have investigated inorganic and organic standard substances, diluted mixtures of common Fe minerals in soils (pyrite, ferrihydrite, goethite), soils in a forested watershed which constitute a toposequence with a hydrological gradient (Dystric Cambisol, Dystric Planosol, Rheic Histosol), and microsites of a dissected soil aggregate by X‐ray Absorption Near Edge Spectroscopy (XANES) at the iron K‐edge (7112 eV) to identify different Fe(II) and Fe(III) components. We calculated the pre‐edge peak centroid energy of all spectra and quantified the contribution of different organic and inorganic Fe‐bearing compounds by Linear Combination Fitting (LCF) conducted on the entire spectrum (E = 7085–7240 eV) and on the pre‐edge peak. Fe‐XANES conducted on organic and inorganic standards and on synthetic mixtures of pyrite, ferrihydrite and goethite showed that by calculating the pre‐edge peak centroid energy, the Fe(II)/Fe(III) ratio of different Fe‐bearing minerals (Fe sulphides, Fe oxyhydroxides) in mineral mixtures and soils can be quantified with reasonable accuracy. A more accurate quantification of the Fe(II)/Fe(III) ratio was possible with LCF conducted on the entire XANES spectrum. For the soil toposequence, an increased groundwater influence from the Cambisol to the Histosol was reflected in a larger contribution of Fe(II) compounds (Fe(II) silicate, Fe monosulphide, pyrite) and a smaller contribution of Fe(III) oxyhydroxides (ferrihydrite, goethite) to total iron both in the topsoil and the subsoil. In the organic topsoils, organically bonded Fe (33–45% of total Fe) was 100% Fe(III). For different microsites in the dissected aggregate, spatial resolution ofμ‐XANES revealed different proportions of Fe(II) and Fe(III) compounds. Fe K‐edge XANES andμ‐XANES allows an approximate quantification of Fe(II) and Fe(III) and different Fe compounds in soils and (sub)micron regions of soil sections, such as mottles, concretions, and rhizosphere regions, thus opening new perspectives in soil research.  相似文献   

8.
Many dicotyledonous species respond to iron (Fe) deficiency by morphological and physiological changes at root level, which are usually defined as Strategy I. Particularly, these latter modifications include a higher acidification of the external medium and the induction of a high root Fe reductase activity. The aim of this work was to investigate the response of kiwi (Actinidia deliciosa cv. Hayward) plants, which often exhibit Fe chlorosis in the field, to Fe deficiency. Actinidia kept for two weeks in nutrient solution without Fe showed visual deficiency symptoms (leaf chlorosis). Moreover, upon prolonged micronutrient shortage shoot, and to a lesser extent, root dry weight accumulation was greatly impaired. Roots of Fe‐deficient Actinidia showed an increased capacity of net proton extrusion and higher ferric ethylenediaminetetraacetate [Fe(III)EDTA] reductase activity as compared to plants grown in the presence of 10 μM Fe(III)EDTA. Localization of the increased acidification and reductase capacity by means of agar‐technique revealed that these activities are both present in the sub‐apical region of the roots. Re‐supply of Fe after two weeks partially reversed the tendency of the roots to acidify the nutrient solution and to reduce Fe(III)EDTA.  相似文献   

9.
Some plants respond to Fe‐deficiency stress by inducing Fe‐solubilizing reactions at or near the root surface. In their ability to solubilize Fe, dicotyledonous plants are more effective than monocotyledonous plants. In this study we determined how representative plants differ in their response when subjected to Fe‐deficiency stress in a calcareous soil and in nutrient solutions. Iron‐inefficient genotypes of tomato, soybean, oats, and corn all developed Fe chlorosis when grown in soil, whereas Fe‐efficient genotypes of these same species remained green. The same genotypes were grown in complete nutrient solutions and then transferred to nutrient solutions containing N (as NO3 ) and no Fe.

The T3238 FER tomato (Lycopersican esculentum Mill.) Fe‐efficient) was the only genotype that released significant amounts of H from the roots (the pH was lowered to 3.9) and concomitantly released reductants. Under similar conditions, Hawkeye soyhean [Glycine max (L.) Merr.] released reductants but the solution pH was not lowered. Both Fe‐inefficient and Fe‐efficient genotypes of oats (Avena sativa L.) and corn (Zea mays L.) released insufficient H or reductant from their roots to solubilize Fe; as a result, each of these genotypes developed Fe‐deficiency (chlorosis).

The marked differences observed among these genotypes illustrate the genetic variability inherent within many plant species. A given species or genotype may accordingly not be adapted to a particular soil. Conversely, a given species or genotype may be found (or developed) that is precisely suited for a particular soil. In this event, the need for soil amendments may be reduced or eliminated.  相似文献   

10.
《Journal of plant nutrition》2013,36(10-11):1969-1984
Abstract

Iron chlorosis is a mineral disorder due to low Fe in the soil solution and the impaired plant uptake mechanism. These effects increased with high pH and bicarbonate buffer. The solution to Fe chlorosis should be made by either improving the Fe uptake mechanism or increasing the amount of Fe in the soil solution. Among Fe fertilizers, only the most stable chelates (EDDHA and analogous) are able to maintain Fe in the soil solution and transport it to the plant root. In commercial products with the same chelating agent, the efficacy depends on the purity and the presence of subproducts with complexing activity, that can be determined by appropriate analytical methods such as HPLC. In commercial products declaring 6% as Fe‐EDDHA, purity varied from 0.5% to 3.5% before 1999, but in 2002 products ranging 3–5.4% chelated Fe are common in the Spanish market. Fe‐o,p‐EDDHA, as a synthesis by‐product with unknown efficacy, is present in all Fe‐EDDHA formulations. Commercial Fe‐EDDHMA products also contain methyl positional isomers. Fe‐EDDHSA synthesis produces condensation products with similar chelating capacity to the Fe‐EDDHSA monomer that can account for more than 50% of the chelated iron in the commercial products. Chelates with different molecules should be compared for their efficacy considering firstly their ability to maintain Fe in solution and secondly their capacity to release iron to the roots. Accepting the turnover hypothesis, their efficacy is also dependent thirdly on the ability of the chelating agent to form the chelate using native iron from the soil. The 1st and 3rd points are related to the chemical stability of the chelate, while plants make better use of iron from the less stable chelates. Plant response is the ultimate evaluation method to compare commercial products with the same chelating agent or different chelates.  相似文献   

11.
《Journal of plant nutrition》2013,36(10-11):1985-1996
Abstract

A field experiment was carried out in a drip‐irrigated orchard of Clementine (Citrus clementina Ort. ex. Tan) grafted on Troyer citrange (C. sinensis × Poncirus trifoliata) rootstock located in the Valencian Citrus area (Spain). The trees received a single iron (Fe) EDDHA (ethylene diamine diorthohydroxyphenyl acetate) rate (3 g Fe tree?1) supplied in different application frequencies from April to September (8‐, 4‐, 2‐, or 1‐week intervals). Leaf chlorophyll (Chl) concentrations were estimated every month by using an SPAD‐502 meter. The foliar contents of Fe were also evaluated with time. Mineral composition of leaves, total Chl concentration, yield, and fruit quality were also evaluated at the end of the assay. SPAD readings, Chl, N, K, Mg, Fe, and Mn concentration in leaves increased as a result of Fe application. The concentration of Zn, however, significantly decreased in comparison to the control trees. Iron treatment increased yield and some of the fruit quality parameters, like total juice, sugar, and acid contents. Iron application frequency had not a consistent effect on the concentrations of macro and micronutrients in leaves, yield, and fruit quality. The highest values of SPAD readings and the leaf Chl content were obtained when Fe was applied at 4‐week intervals along the year. These results suggest that soil Fe‐EDDHA application with a moderate frequency could be recommended to the Citrus farmers in the area for a more rational Fe application along the growth cycle in Citrus orchards.  相似文献   

12.
The relative amount of phytosiderophore produced by various Strategy II plants has been categorized as follows: barley (Hordeum vulgare L.) > wheat (Triticum aestivum L.) > oat (Avena byzantina C. Koch.) > rye (Secale cereale L.) >> corn (Zea mays L.) >> sorghum (Sorghum bicolor (L.) Moench) > rice (Oryza sativa L.). With the exception of rice, these plants developed under oxidized soil conditions, and the C‐3 species produce more phytosiderophore than C‐4 species under Fe‐deficiency stress. Iron‐efficient Coker 227 oat produced phytosiderophore in response to Fe‐deficiency stress, while Fe‐inefficient TAM 0–312 oat did not. Although Fe‐efficient WF9 corn and Fe‐inefficient ys1 corn differed in their ability to obtain Fe, neither produced sufficient quantities of phytosiderophore to explain these differences. The objectives of this research were to determine: (a) if phytosiderophore production of Fe‐deficiency stressed C‐4 species millet (Panicum miliaceum L.) and corn is low or absent compared to identically stressed C‐3 species oat and barley, and (b) if native, inbred and hybrid corn cultivars differ in ability to produce and utilize phytosiderophores.

Although release of phytosiderophore for Fe‐stressed corn and millet was generally lower than oat, quantity of release was not always related to obtaining Fe and maintaining green plants. Barley maintained high leaf Fe and low chlorosis with a minor release of phytosiderophore. Oat with increased release acted similarly to barley, whereas a relatively high release of phytosiderophore from White maize did not effect Fe uptake or greening. Likewise, small amounts of phytosiderophore were produced by all corn types, but corn was generally unable to obtain adequate Fe from the growth medium. Two of the native corns, Coneso and Tepecintle, maintained relatively low chlorosis, but they differed in phytosiderophore release. Thus, it appears that the C‐4 plants studied herein generally release a lower amount of phytosiderophore than do C‐3 species, but overcoming Fe‐deficiency chlorosis is not guaranteed by such release. The Strategy II mechanism of mere release of phytosiderophore and consequential Fe acquisition appears simplistic. There is a need for understanding what other factors are involved.  相似文献   

13.
Two sorghum (Sorghum bicolor L. Moench) hybrids CSH‐10 and ‐ 11 and their parent cultivars 296‐A, SB‐1055 and MR‐715 were examined for their tolerance to Fe‐deficiency stress, and also Fe uptake. It was observed that there was greater reduction of pH of the nutrient media and more rapid recovery from chlorosis only in the female parent 296‐A, and to some degree in the hybrids, but not in the male parents. The results indicated that Fe uptake‐translocation were inversely related to their Fe stress tolerance.  相似文献   

14.
《Journal of plant nutrition》2013,36(10-11):2009-2021
Abstract

A collaborative assay among three laboratories was made in order to compare both the ion (CEN. EN 13368‐2:2001 E. Determination of chelating agents in fertilizers by ion chromatography. Part 2: EDDHA and EDDHMA, 2001a) and the ion‐pair (Lucena, J.J.; Barak, P.; Hernandez‐Apaolaza, L. Isocratic ion‐pair high‐performance liquid chromatographic method for the determination of various iron(III) chelates. J. Chromatogr. A 1996, 727, 253–264) high performance liquid chromatography (HPLC) methods as well as the soluble and complexed Fe (CEN. EN 13366:2001 E. Treatment with a cation exchange resin for the determination of the chelated micronutrient content and of the chelated fraction of micronutrients, 2001b) methods. Fifteen and ten samples of commercial fertilizers of Fe‐EDDHA, Fe‐EDDHMA, respectively were analysed by three laboratories using these methods. No significant differences were observed between the results obtained for the Fe‐EDDHA content using the Lucena et al. or CEN method. The first method makes it possible to distinguish between the meso and DL‐racemic diasteroisomers of Fe‐o, o‐EDDHA. For the Fe‐EDDHMA formulations, the CEN method gives higher values than the ion‐pair method, since in the first one Fe‐EDDH4,6MA coelutes with FeEDDHMA. Also the CEN method does not makes it possible to distinguish between Fe‐EDDHMA and Fe‐EDDH5MA products. The variability among laboratories was larger for the CEN method than for the Lucena et al. method.  相似文献   

15.
Research on the reduction of iron (Fe) by plant‐root exudates has been conducted using hydroponic solutions containing Fe salts or chelates. These solutions, however, fail to reflect the true soil environment because plants derive their majority requirement from the solid Fe(III) sources. An in vitro Geoponic system (IVGS) is developed to study the reduction of Fe‐bearing clay minerals, i.e., Upton and SWa‐1 (smectite), and Si‐containing amorphous Fe oxide by soybean‐root exudates. Surface sterilized soybean seeds, [Glycine max (L.) Men.] cv. Williams (marginally susceptible to Fe chlorosis), were germinated in presterilized glass culture tubes containing semi‐solid agar media (sucrose free) and Fe minerals. These tubes were placed in an incubator programmed for a white‐fluorescent light cycle for 16 h and temperature setting of 25±2°C. After 15 d of plant growth, the system was analyzed for Fe2+ and total Fe. The amount of structural Fe reduction was 0.012, 0.095 and 0.182 mmol/g for Upton, SWa‐1, and Si‐containing amorphous Fe oxide samples, respectively. The reduction of structural Fe in the Fe containing minerals was likely caused by phenolic root exudates which oxidized to diquinones.  相似文献   

16.
In order to study the iron (Fe) distribution pattern in bean plants with different Fe nutritional status, french bean (Phaseolus vulgaris L.) seedlings were precultured in a complete nutrient solution with 8x10‐5 M FeEDTA for five days. Thereafter, plants were further supplied with 8x10‐5 M FeEDTA (Fe‐sufficient) or with only 2x10‐6 M FeEDTA (Fe‐deficient) for another eight days. At this stage, the Fe‐deficient plants had much lower chlorophyll contents and lower dry weight of the leaves but higher reducing capacity of the roots compared with the Fe‐sufficient plants. For studies on short‐term distribution of Fe, the Fe‐sufficient plants were supplied 8x10‐5 M 59FeEDTA (specific activity 9.9 GBq/mol) and the Fe‐deficient plants 1x106 M 59FeEDTA (specific activity 98.8 GBq/mol). The plants were harvested after 4 and 24 hours. Despite a much lower supply of 59FeEDTA/(factor 80), the Fe‐deficient plants took up significantly more 59Fe but translocated less to the shoots (14.6% after 24 h) compared with the Fe‐sufficient plants (29.4% after 24 h). However, regardless of the Fe nutritional status of the plants, the majority of 59Fe was translocated in the primary leaves. Our results demonstrate a similar distribution patterns of root‐derived 59Fe in the shoots of Fe‐sufficient and Fe‐deficient plants, and thus, no preferential direct translocation of Fe to the shoot apex in the Fe‐deficient plants.  相似文献   

17.
Grapevine is considered a ‘Strategy I’ plant because it performs some peculiar biochemical and physiological responses when grown under iron (Fe) deficiency stress conditions. Callus cultures were started from leaf and internode cuts of micropropagated plantlets of two grapevine genotypes well known for their Fe‐chlorosis characteristic: Vitis riparia a very susceptible genotype and Vitis berlandieri a resistant one. Modification of NADH: ferric (Fe3+) reductase activity was spectrophotometrically evaluated by following the formation of the complex ferrous (Fe2+)‐(BPDS)3, while the malic and citric acid production were determined in callus cultures grown both in the presence (+Fe) and absence (‐Fe) of Fe. Moreover, a microsomal fraction was isolated from the calli to evaluate the H+‐ATPase and the Fe3+‐EDTA reductase activities. As expected, calli of the Fe‐efficient genotype (V. berlandieri) was able to enhance Fe3+‐EDTA reductase activity when growing under Fe deficiency while the Fe‐chlorosis susceptible V. riparia could not or did it with lower efficiency. Therefore, the H+‐ATPase assay showed a higher enzymatic activity in the microsomal fraction isolated from Vitis berlandieri grown without Fe with respect to its control (+Fe). Organic acid determination gave quite contradictory results, specially regarding malic acid which, under our study conditions, seemed not to be linked with the strategies of response to Fe deficiency.  相似文献   

18.
Abstract

Iron chlorosis is a serious crop production problem in many calcareous soils of Southern Spain. The objective of this study was to determine which indigenous soil properties (i.e., those which are essentially permanent) were related to Fe chlorosis. Experiments, using two chickpea (Cicer ariethinum L.) cultivars and a sunflower (Helianthus annuuus L.) cultivar, were carried out in a growth chamber with 25 calcareous soils representing widespread Xerofluvents, Xerorthents, Xerochrepts, Haploxeralfs, Rodoxeralfs, Chromoxererts, and Pelloxererts of Southern Spain. The average chlorophyll contents for the three cultivars were significantly correlated with several properties of the carbonate and Fe oxide phases, such as calcium carbonate equivalent (r = 0.69***), “active lime”; (r = 0.58**), acid NH4‐oxalate extractable Fe (r = 0.68***), Tiron‐extractable Fe (r = 0.61**), and DTPA‐extractable Fe (r = 0.55**). The present and other studies indicate that the soil property most consistently related to Fe chlorosis is acid NH4‐oxalate extractable Fe (Feo). The Feo critical level separating soils with a high probability from those with a low probability of responding to Fe fertilization was 0.63 g/kg soil, a value similar to those found in other studies. This further supports the use of Feo as a key property to predicting the appearance of Fe chlorosis.  相似文献   

19.
Abstract

Although sunflower (Helianthus annus L.) is an Fe efficient plant, tumorous crown gall tissue development and tissue ability to reduce Fe3+ to Fe2+ were both diminished by Fe‐deficiency stress. Crown gall also develops readily on Fe‐efficient and Fe‐inefficient tomato cultivars (Lycopersicon esculentum Mill.). The objective of this study was to determine if the effect of a limited Fe supply on the growth, nutrition and reduction of Fe3+ to Fe2+ by tumorous crown gall would differ between Fe‐efficient T3238FER and Fe‐inefficient T3238fer tomato. Healthy green 25‐day‐old plants were either stem‐inoculated with Agrobacterium tumefaciens to induce tumorous crown gall tissue development or were left uninoculated for comparison. Plants were grown in modified Hoagland nutrient solutions containing 0.0, 0.15, 0.6 and 2.0 mg Fe L?1. Yield of tumorous crown gall tissue was not diminished by low solution Fe in T3238FER, but was in T3238fer. This was attributed to inability of the T3238fer tomato to make Fe available to itself. Tumor tissue from both cultivars contained more Fe, Cu and P than normal stem tissues, which confirms a modified metabolism in these tissues previously observed in sunflower. An abundant supply of Fe enhances the development and growth of the tumorous crown gall tissue, but a deficient supply of Fe retards its growth.  相似文献   

20.
Identifying cultivars resistant to iron (Fe) deficiency chlorosis so prevalent in calcareous soils is a more economical solution than fertilizer application in field crops. The current method of screening for resistance using chlorosis ratings in field trials is time consuming and highly variable. Root Fe reduction successfully separated cultivars or rootstocks, varying widely in resistance, of soybean (Glycine max L.), peach (Prunus persica L.), and grape (Vitis spp.), but was unsuccessful in sub‐clover (Trifolium subterraneum L.). Dry bean (Phaseolus vulgaris L.) exhibits Fe deficiency chlorosis in calcareous soils and initiates Fe reduction by the roots in response to such stress. The resistance of 24 dry bean cultivars to Fe deficiency chlorosis was assessed by measuring and summing daily Fe reduction by the roots. The cultivars were grown both hydroponically in an environmental chamber in low Fe solutions (0.05 mg‐L‐1) and at three field sites in both 1995 and 1996. A significant relationship (P<0.01) between field chlorosis scores made 36 days after planting and root Fe reduction summations was observed for all sites in 1995 and 1996 (r = ‐0.42 to ‐0.71). The variability of chlorosis scores among sites, especially in 1996, points out the difficulty of using field chlorosis scores for screening. These results indicate that measurements of root Fe reduction can be used to predict resistance to Fe deficiency chlorosis in dry bean. Successful implementation of this technique should reduce if not eliminate field trials for screening resistance to Fe deficiency chlorosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号