首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potassium (K) deficiency is one of the main limiting factors in cotton (Gossypium hirsutum L.) production. To study the mechanism of high K‐use efficiency of cotton, a pot experiment was conducted. The experiment consisted of two cotton genotypes differing in K‐use efficiency (H103 and L122) and two K‐application levels (K0: 0 g (kg soil)–1; K1: 0.40 g (kg soil)–1). Root‐hair density and length, partitioning of biomass and K in various organs, as well as K‐use efficiency of the two cotton genotypes were examined. The results show that there was no significant difference in K uptake between the two genotypes at both treatments, although the genotype H103 (high K‐use efficiency) exhibited markedly higher root‐hair density than genotype L122 in the K1 treatment. Correlation analysis indicates that neither root‐hair density nor root‐hair length was correlated with plant K uptake. Furthermore, the boll biomass of genotype H103 was significantly higher than that of genotype L122 in both treatments, and the K accumulation in bolls of genotype H103 was 39%–48% higher than that of genotype L122. On the other hand, the litter index (LI) and the litter K‐partitioning index (LKPI) of genotype H103 were 14%–21% and 22%–27% lower than that of genotype L122. Lastly, the K‐use efficiency of total plant (KUE‐P) of genotype H103 was comparable with that of genotype L122 in both treatments, but the K‐use efficiency in boll yield (KUE‐B) of genotype H103 was 24% and 41% higher than that of genotype L122 in K0 and K1 treatments. Pearson correlation analysis indicated that KUE‐P was positively correlated with BKPI and negatively correlated with LKPI, while KUE‐B was positively correlated with BKPI and boll‐harvest index (HIB), and negatively correlated with LKPI. It is concluded that there were no pronounced effects of root‐hair traits on plant K uptake of the two genotypes. The difference in K‐use efficiency was attributed to different patterns of biomass and K partitioning rather than difference in K uptake of the two genotypes.  相似文献   

2.
嫁接对不同棉花基因型钾效率的影响   总被引:1,自引:0,他引:1  
采用全生育期土培盆栽试验,在研究2个棉花基因型钾吸收效率和利用效率的基础上,对未嫁接和经嫁接的自根苗(接穗和砧木为同一基因型)处理的棉花干物质和钾的积累、分配进行比较。结果表明:自根苗植株与未嫁接植株相比,不同棉花基因型在不同钾水平下干物质和钾的积累及分配不同。高效基因型103经过嫁接后营养器官中的干物质和钾比例增加,生殖器官中的干物质和钾减少,产量和钾利用指数下降;低效基因型122经过嫁接后营养器官中的干物质和钾比例减少,生殖器官中的干物质和钾增加,产量和钾利用指数升高。吸收效率因钾水平而异,高效基因型103嫁接后施钾时吸收效率降低,缺钾时升高;而低效基因型122嫁接后施钾时吸收效率升高,缺钾时降低。嫁接对不同棉花基因型产生的效应不同,通过嫁接使不同棉花基因型物质分配趋于平衡。  相似文献   

3.
Abstract

A three‐year field study was conducted on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudult) in North Alabama. The objective of the study was to evaluate the effects of winter grazing by cattle on the potassium (K) and starter fertilizer needs of cotton (Gossypium hirsutum L.) the following season. Grazed and non‐grazed treatments were established by planting a wheat (Triticum aestivum L.) cover crop in the fall and allowing cattle to graze half of the treatment area for 35 to 65 days in late winter‐early spring. After grazing, the grazed and non‐grazed wheat was killed and cotton was planted using a strip‐tillage system. Test areas had medium to high soil test ratings for K. Fertility treatments consisted of three rates of K (0, 37, and 74 kg K ha‐1), three methods of K application (surface broadcast; in‐row, band application at a depth of 30.5 cm; and surface banding using a spacing of 50.8 cm) and two rates of starter fertilizer (no starter and 168 kg#lbha‐l of a liquid 15–15–0). Seed cotton yields were affected by grazing of the winter cover crop prior to planting, but not by the method of K fertilizer application. During the two years that a yield reduction was observed, winter grazing reduced seed cotton yields by an average of 14%. Cotton responded to K rate only under the ungrazed system. During the first and second year of the test, an application of 37 kg K ha‐1 increased seed cotton yields by an average of 351 kg#lbha‐1. Starter fertilizer consistently gave slightly higher yields with a significant response occurring in two out of the three years.  相似文献   

4.
Peanut (Arachis hypoaaea L.) is a major cash crop in Georgia. Corn (Zea mays L.) is the preferred rotation crop, but is often not profitable because of large inputs costs. Fertilizer comprises approximately 50% of the variable production costs of irrigated corn. There is interest in reducing fertilizer inputs, in particular N, to reduce variable costs and decrease nitrate leaching to groundwater, but yields may suffer. Our objective was to investigate the effect of N, P, and K fertilizer rates on the yield of N‐fertigated corn in a corn/peanut rotation. Field experiments were conducted during 1987 and 1988 on a Tifton loamy sand (fine‐loamy, siliceous, thermic Plinthic Paleudult) at Tifton, GA. Treatments were three rates each of N, P, and K fertilizer in a complete factorial. Nitrogen, P, and K rates were 168, 252, 336 kg N ha‐1 yr‐1; 44, 73, 103 kg P ha‐1 yr‐1; and 84, 223, and 363 kg K ha‐1 yr‐1, respectively. Grain yields were large, 12.6 and 10.4 Mg ha‐1 in 1987 and 1988, respectively, but not affected by N, P, or K rate. Since the lower rates of N, P, and K were less than recommended, fertilizer use efficiency for fertigated corn can be improved, for at least one year, by reducing N, P, and K fertilizer rates to less than current recommendations. Rates of N, P, and K did not result in a substantial difference in the concentration of essential nutrients. Stalk rot was limited (< 15%), but decreased with increasing K fertilizer rate.  相似文献   

5.
钾高效基因型棉花的筛选及其生理机制的研究   总被引:3,自引:0,他引:3  
通过营养液培养,设缺K和适K处理,进行棉花苗期培养,以苗期干物质的K效率系数(-K/ K)评价K效率差异,从86个不同系谱的棉花品种中分次逐步筛选,获得4个候选品种.对候选品种进行全生育期土培试验,设施K和不施K处理,获得皮棉产量,以皮棉产量的K效率系数(-K/ K)来反映品种间的K效率差异,确定103为K高效高潜力基因型,122为K低效低潜力基因型,163和165为K高效低潜力基因型.103具有较强的吸收土壤速效K、活化土壤缓效K的能力,并以较低的K含量往繁殖器官运输分配,建成较多的子棉和皮棉,这可能是其K高效的机制之一.  相似文献   

6.
A field experiment was carried out to study the effect of different rates of potassium (K) fertilizer [0, 50, 100, and 150 potassium oxide (K2O) ha–1] in the presence of increased supply of nitrogen (N) (120, 180, and 240 kg N ha–1) on cotton (Gossypium hirsutum L.) yield and the N and K use efficiencies using the 15N isotopic dilution technique. Potassium fertilizer increased cotton yield, which was significant and more pronounced with the application of N in the high level (N3). The greatest cotton yield (6442 kg ha–1) was obtained in N2K3 treatment with an increase of 14% over the control. In addition, K fertilizer significantly increased N uptake efficiency in the N2 and N3 treatments. The greatest N uptake efficiency (98%) was in N2K3 treatment. The greatest K uptake efficiency (42%) was occurred in N3K1 treatment. In conclusion, the use of K fertilizer could be useful when growing cotton in soils of moderate to high N content to improve N uptake efficiency and consequently increase cotton yield.  相似文献   

7.
Potassium (K) is one of the major mineral elements required for normal growth of cotton. However, understanding the effect of controlled‐release K fertilizer on leaf photosynthesis and K use efficiency (KUE) of cotton is currently limited. A two‐year pot experiment was consecutively conducted in 2014 and 2015 with three kinds of K fertilizer including K2SO4, KCl, and polymer‐coated KCl (CRK), each at four application rates (0.00, 0.86, 1.73, and 2.59 g K plant−1, respectively). For each type of K fertilizer, the yield and K uptake of cotton increased but the KUE decreased with higher K fertilizer application. The release characteristics of K from CRK corresponded well to the K requirements during cotton growth. Plant‐available soil K, as well as leaf SPAD values, net photosynthetic rate (Pn), maximal photochemical efficiency (Fv/Fm), and effective quantum yield of photosystem II (ΦPSII) in CRK treatments were increased after full bloom stage compared to conventional K fertilizers under the same potassium application rate. Consequently, the CRK treatments significantly increased lint cotton yields by 8.1–32.7% and 3.7–20.8%, while the KUE increased by 15.5–54.8% and 14.5–45.4% compared to KCl and K2SO4 treatments, respectively. The results indicate that the application of CRK is intensively recommended to replace conventional potassium fertilizers for gaining greater yields and higher KUE of cotton.  相似文献   

8.
Potassium (K) fertilization of cotton (Gossypium hirsutum L.) has been a major research focus the last few years throughout the cotton belt. The objective of this field research, conducted from 1991 through 1994 on two high Mehlich I extractable K (EK) soils, was to evaluate broadcast and foliar applied K for conventional‐ (CT) and no‐tillage (NT) production. Main plot broadcast K rates were 0, 28, 56, and 112 kg K ha‐1. Foliar sub‐plot treatments were a non‐foliar check, KNO3, and Ca(NO3)2. The KNO3 was applied four times per year at 4.1 kg K ha‐1 application‐1. Calcium nitrate was applied at 1.6 kg N ha‐1 to equal the N applied in the KNO3. Extractable K increased annually with broadcast K for both tillage systems and soils and was higher for NT than CT. Lint yields from CT of both soils were increased two of the eight site‐years while yields from NT were increased five of eight site‐years by broadcast K. Three of the NT site‐year yields plus four‐year mean yields of both soils were increased by applying 56 kg K ha‐1, a rate higher than currently recommended for high EK soils. Yield responses to foliar fertilization were from added N rather than the K. Petiole K levels were sufficient so that extra K applied foliarly was not recommended for either soil or tillage system.  相似文献   

9.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

10.
Winter legumes can serve dual purposes in no-tillage cropping systems. They can provide a no-tillage mulch, and supply a considerable quantity of N for thesummer crops. Cotton (Gossypium hirsutum L.) was no-tillage planted into crimson clover (Trifolium incarnatum L.), common vetch (Vicia sativa L.), and fallowed soil for two years to determine the effects of winter legume mulches on growth, yield, and N fertilizer requirements. The legumes were allowed to mature and reseed prior to planting cotton. The winter legumes produced no measurable changes in soil organic matter, N, or bulk density, but water infiltration was more rapid in the legume plots than in the fallowed soil. In the fallow system, 34 kg ha?1 N fertilizer was required for near maximum yields. In the clover plots, yields without N fertilizer were higher than when N (34 and 68 kg ha?1) was applied. In the vetch plots, cotton yields were highest without N fertilizer the first year, but yields were increased with 34 kg ha?1 N the second year because of a poor vetch seed crop and a subsequently poor legume stand. In the clover plots, a 20–30% cotton seedling mortality occurred in one year, but this stand reduction apparently did not affect cotton yields. Winter legume mulches can provide the N needs for no-tillage cotton without causing an excessive and detrimental quantity of N in sandy soils naturally low in soil N (0.04%). Unless the reseeding legume systems are maintained for at least 3 years, the legumes do not, however, provide an economical N source for cotton when N fertilizer requirementsare low (34 kg ha?1 in this study). A possible disadvantage of the system for reseeding legumes is that cotton planting is delayed 4–6 weeks beyond the normal planting date, which can reduce yields in some years.  相似文献   

11.
Insufficient potassium (K) nutrition produces detrimental effects on cotton (Gossypium hirsutum L.) lint yield and fiber quality. To further understand the deleterious effects caused by K deficiency, a 2‐yr (1991 and 1992) field study was conducted to determine how dry matter partitioning and nutrient concentrations of various plant tissues for the cotton genotypes, ‘DES 119’ and ‘MD 51 ne’, were altered by varying the application rate of fertilizer K and nitrogen (N). All plots received a preplant application of 112 kg N ha‐1, and half of the plots were later sidedressed with an additional 38 kg N ha‐1. Within each N treatment, half the plots received 112 kg K ha‐1, preplant incorporated, with the remaining plots not receiving any fertilizer K. Dry matter harvests were taken three times in 1991 and two times in 1992. At cutout (slowing of vegetative growth and flowering), plants that received K fertilization had a 14% more leaf area index (LAI), a 3% increase in the number of main stem nodes, and a 2% increase in plant height. However, those plants had a 12% lower specific leaf weight (SLW) than plants receiving no K fertilization. By the end of season, the of K fertilization had resulted in more stem (21%), bur (13%), seed (19%), and lint weight (20%), but harvest index was not affected. Varying the level of N fertilization did not affect any of these dry matter parameters at any harvest. In general, the larger plants produced under K fertilization had reduced concentrations of N, phosphorus (P), magnesium (Mg), and sodium (Na) in the various plant parts. While N uptake efficiency was not affected by K fertility, plants that received K fertilization had increased efficiency of fertilizer N use and of N utilization within the plant. The smaller LAI of the K deficient plants probably reduced the photosynthetic capacity per plant. A reduced assimilation capacity could explain the inefficiency of N use, lint yield reductions, and poorer fiber quality often associated with K deficiencies.  相似文献   

12.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

13.
In this study, in order to investigate the boron (B) efficiency and response to changes in leaves structure and chemical compositions correlated with B efficiency, two different cotton genotypes including genotype 103 and genotype 122 were treated by B-deficiency (0 mg L?1) or moderate B (0.2 mg L?1). All the seedlings were grown in hydroponics situation with modified Hoagland and Arnon solution under greenhouse conditions for 6 weeks. The changes in chemical compositions and cell structure of leaves as a consequence of B deficiency were revealed by Fourier-transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (13C-NMR) and transmission electron microscope (TEM). The results showed that the leaves of genotype 122 appeared crinkled and prolapsed having more obvious symptoms than genotype 103. Besides, the dry mass of every part was higher while B concentration was lower in genotype 103, indicating that genotype 103 was much tolerant to low B, which was related to higher B utilization efficiency of genotype 103 under B-deprived condition. In addition, B deficiency stunted the synthesis of proteins, carbohydrates, cellulose and lignin, which is noticed more seriously in leaves of genotype 122, and the structure and integrity of cells were significantly destroyed by B starvation. These results indicated that genotype 103 had higher B efficiency than genotype 122, and the changes in the chemical composition and cell structure might be either specific or adaptive responses to B efficiency.  相似文献   

14.
Rice is the staple food for nearly 40% of the world's population. In Malawi, rice is ranked second only to maize as a cereal food crop. In rainfed areas of Malawi, grain yields typically average 1.0–1:5 t ha‐1 while potential yield is 4–5 t ha1. To bridge the gap between current and potential yields, several novel nutrient management systems were studied. Many research reports indicate that rice responds to silicon (Si) application as well as to nitrogen (N), phosphorus (P), and potassium (K) which are commonly applied. Rice crop residues (straws and hulls) are rich in Si and K, but are not utilized currently in rice production. The effect of rice‐hull ash, rice straw, and method of N application (prilled or briquetted urea) on a transplanted rice crop was studied through field experiments in Malawi during 1995 and 1996. Application of urea in briquette form increased rice grain yield by 1056 and 122 kg ha‐1 compared to prilled urea in the 1995 winter and 1996 summer experiments, respectively. However in the 1996 winter experiment, prilled urea was superior to urea briquette and increased the rice grain yield by 307 kg ha1. Incorporation of rice straw significantly increased rice grain yields over the control in three consecutive experiments. Rice‐hull ash alone increased the rice grain yields in all three experiments up to 12%; however, the increase was not statistically significant. The combination of rice straw and rice‐hull ash along with optimum N rates (60 kg ha‐1) increased the rice grain yields significantly in 1996 winter season but the increase was not significant in the other two experiments.  相似文献   

15.
Soil-test crop-response experiments on rice were conducted in the Bastar Plateau Agroclimatic Zone of Chhattisgarh during 2009–2011 to assess yield, soil, plant, and fertilizer nitrogen (N), phosphorus (P), and potassium (K) nutrient relationships and calibrate optimum fertilizer doses for attaining yield targets. Soil fertility status was poor to medium for N (194–283 kg ha?1) and P (7.53–19.66 kg ha?1), and medium to good for K (226–320 kg ha?1). Based on nutrient requirements (NR, kg q?1) and contributions from soil (CS, %), fertilizer (CF, %), and farmyard manure (CFYM, %), optimum fertilizer doses were derived. The fertilizer doses were validated for attaining yield targets of 5000 and 6000 kg ha?1 in farmer’s fields. Rice yield within 10% deviation was attained, which indicated that soil-test-based fertilizer dose was superior. This approach could be adopted for regions with similar soil and agroclimatic conditions in other parts of the world to increase rice yields.  相似文献   

16.
Abstract

Coastal bermudagrass yields were increased by 3.1 Mg ha‐1 with K applications of 300 kg ha‐1 yr‐1 in a 7‐year study on Olivier silt loam at Baton Rouge, but available soil K depletion occurred even though K applications exceeded K removal in the forage. At lower rates of K application, K removal exceeded K applications, causing severe depletion of available soil K. Applying 600 kg of K ha‐1 exceeded both the crop K requirement and K removal in the forage, resulting in increased levels of available soil K. Ninety percent of the maximum yield was obtained at about 100 kg of K ha‐1. Potassium concentrations in the forage averaged 9.2 and 13.4 g kg‐1 at K rates of 100 and 300 kg ha‐1, respectively. Apparent recovery of fertilizer K decreased from 53 to 47% as K applications increased from 37 to 300 kg ha‐1. The Olivier silt loam supplied 105 kg of K ha‐1 annually where no K was applied. The study indicates that K applications must be sufficient to produce yields very near the maximum yield in order to avoid depletion of available soil K by high‐yielding Coastal bermudagrass.  相似文献   

17.
Abstract

Considerable amounts of phosphorus (P) fertilizer will be required on soils in the proposed Ord Stage II area of northwestern Australia if a sustainable dry‐season, cotton‐production system is to be established, because in their virgin state, the soils are known to be inherently low in P. This study aimed to determine P‐fertilizer requirements on these soils to optimize cotton yield as well as nutrient uptake. Five rates of P fertilizer were applied to soil recently cleared of trees and prepared for irrigation. In the second year, these same rates were imposed over the trial. It was concluded that the application of 60 kg ha?1 of P was sufficient to allow maximum yield and quality for dry‐season cotton grown in the first season on virgin soils in the Ord River Irrigation Area (ORIA), and a total of 80 kg ha?1 of P was required when cotton was grown over two seasons.  相似文献   

18.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

19.
To study the differences in growth and potassium (K)–use efficiency of two different K-use-efficiency cotton genotypes, a pot experiment was conducted in 2007. Experimental materials include two cotton genotypes (HG103 and LG122) and two K application levels (0 and 0.23 g kg–1 soil). The initial dates of various growth stages, plant heights, numbers of leaves, squares, and bolls, and the amount of litter during the whole growing season were recorded. The distribution and accumulation of dry matter and K content in various organs were measured to compare the differences in K-use efficiency. Significant differences (P < 0.05) between the two genotypes and K levels were found in initial bolling time. At the reproductive growth stage, the plant heights and leaf number of HG103 were less than those of LG122. Greater numbers of squares and bolls were recorded from HG103 than LG122 with K application. Significant differences (P < 0.05) existed in dry matter and K contents in each organ in the two genotypes and K-application levels. The seed cotton yields of HG103 were 3.24 times larger than those of LG122 with K application and 1.77 times larger than those of LG122 with the marginal K treatments. Reproductive-to-vegetative ratios (RVR) and harvest indices (HI) of LG122 were less than those of HG103 whether K was applied or not. The ratios of K in reproductive organs to vegetative organs for LG122 were 0.47 and 0.51 with K application and the marginal treatments, respectively, and for HG103 were 0.66 and 0.75 respectively. The K accumulations in root, stem, and litter of LG122 were more than those of HG103, whereas those in leaves and bolls were less than those of HG103. These results indicated that HG103 transferred more photosynthesis products and K to cotton reproductive organs than LG122.  相似文献   

20.
Soil fertility is declining in most agro‐ecosystems in sub‐Saharan Africa, and incorporation of forage legumes into production systems to utilize the nitrogen fixed by the legumes could alleviate the problem, if efficient nitrogen‐fixing legumes are used. The amounts of nitrogen fixed by Lablab, Medicago, Trifolium, and Vicia species and their contribution to the following wheat crop were estimated in field experiments on an Alfisol at Debre Zeit in the Ethiopian highlands. The amounts of nitrogen (N) fixed ranged from 40 kg N ha‐1 for T. steudneri to 215 kg N ha‐1 for L. purpureus. The increase in grain yields of wheat following the legumes ranged from 16% for T. steudneri to 71% for M. tranculata where no N fertilizer was applied to the wheat. Additional N fertilizer applied to wheat at 60 kg N ha‐1 had no significant effects on wheat grain or straw DM andN yields. In another experiment, eight lablab treatments consisting of factorial combinations of two cultivars (Rongai and Highworth), two Rhizobium inoculation treatments (inoculated and uninoculated) and two times of harvest (for hay at 50% flowering and for seed at seed maturity), were compared on lablab forage production and N yield, and residual effects on two succeeding wheat crops. Inoculation had no significant effects on nodulation, shoot DM or N yields. Rongai had significantly higher shoot DM and N yields than Highworth. Lablab harvested at flowering had significantly higher shoot DM and N yields than lablab harvested at seed maturity. Grain yields of the first wheat crop following the various lablab crops were 93–125% higher than grain yields of the wheat following wheat (continuous wheat) where no N fertilizer was applied. Therefore, lablab is a potential forage crop for incorporation into cereal production systems to improve feed quality and to reduce dependence on N fertilizers for cereal production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号