首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This study investigated the effects of historical long‐term and recent single applications of pig slurry on phosphorus (P) leaching from intact columns of two sandy topsoils (Mellby and Böslid). The soils had similar physical properties, but different soil P status (ammonium lactate‐extractable P; P‐AL) and degree of P saturation (DPS‐AL). Mellby had P‐AL of 220–280 mg/kg and DPS‐AL of 32–42%, which was higher than for Böslid (P‐AL 140 mg/kg and DPS 21%). The study investigated the effects since 1983 of four treatments with different fertilizer histories, in summary high (HighSlurryMellby) and low (LowSlurryMellby) rates of pig slurry and mineral P (MinMellby) applications at Mellby and mineral P application at Böslid (MinBöslid). The columns were irrigated in the laboratory five times before and five times after a single application of pig slurry (22 kg P/ha). Concentrations of dissolved reactive P (DRP), dissolved organic P and total‐P (TP) in leachate and loads were significantly higher (P < 0.005) from the treatments at Mellby than those at Böslid. TP concentrations followed the trend: HighSlurryMellby (0.57–0.59 mg/L) > MinMellby (0.41–0.49 mg/L) > LowSlurryMellby (0.31–0.36 mg/L) > MinBöslid (0.14–0.15 mg/L), both before and after the single slurry application. DRP concentrations in leachate were positively correlated with DPS‐AL values in the topsoil (R2 = 0.95, P < 0.0001) and increased with greater DPS‐AL values after the single slurry application (R2 = 0.79, P < 0.0001). Thus, DPS‐AL can be an appropriate indicator of P leaching risk from sandy soils. Moreover, the build‐up of soil P because of long‐term repeated manure applications seems to be more important for potential P losses than a single manure application.  相似文献   

2.

Purpose

Transformation and transport of soil phosphorus (P) from chemical fertilizer or manure are affected by agronomic practices (i.e., fertilization, irrigation, and tillage) and numerous abiotic factors (i.e., temperature, drought, and rainfall). Previous studies on the effects of manure application on P loss were mostly conducted during cultivation and often using the laboratory column approach. Validated field observations by integrating P availability with the risk of P loss are few. This study aimed to evaluate the effects of rainfall and manure application on P leaching during fallow season.

Materials and methods

An in situ field lysimeter experiment was performed. Leachate was collected and analyzed for total P (TP) and dissolved reactive P (DRP). At the end of the lysimeter trial, soils were sampled incrementally to a depth of 40 cm with the following depth intervals: 0–4, 4–10, 10–20, 20–30, and 30–40 cm. Soil water extractable P (Pw) was analyzed and degree of P saturation (DPS) was calculated after oxalate and Mehlich-3 (M3) extractions.

Results and discussion

Phosphorus loading was found below 40 cm in all treatments and P was most concentrated in the 4–10 cm soil layer. High rainfall enhanced P leaching and consequently led to lower Pw and higher leachate DRP and TP than low rainfall. Furthermore, P leaching was observed regardless of manure application, with the highest leachate DRP (1.83 mg L?1) and TP (7.46 mg L?1) concentrations found at the end of experiment (day 53). Observed P leaching loads during fallow season (53 days) varied between 0.08 and 1.21 kg ha?1. The thresholds of DPS indicating P leaching were identified at 18.9% DPSM3(Ca) and 12.9% DPSM3(Ca+Mg), respectively. In this study, the DPSM3(Ca) and DPSM3(Ca+Mg) values exceeded the corresponding thresholds in the upper 30-cm soil layer but did not reach the thresholds at 30–40 cm. Nevertheless, the leachate DRP and TP indicated soil P leaching.

Conclusions

The results showed that intensive rainfall could significantly increase P leaching from manure application. Moreover, P leaching could occur in fallow season even in the absence of manure input, which should be assessed by not only soil P sorption capacities, but also soil fertilization history and hydrologic conditions. Implementation of soil P level evaluation is critical before spreading manure on land to avoid P pollution. Cost-effective and applicable soil test methods are required to generate environmental indicators to classify agricultural lands for risk of P loss, providing basis to safe manure disposal.  相似文献   

3.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

4.
Animal slurry can be separated into solid and liquid manure fractions to facilitate the transport of nutrients from livestock farms. In Denmark, untreated slurry is normally applied in spring whereas the solid fraction may be applied in autumn, causing increased risk of nitrate and phosphorus (P) leaching. We studied the leaching of nitrate and P in lysimeters with winter wheat crops (Triticum aestivum L.) after autumn incorporation versus spring surface application of solid manure fractions, and we compared also spring applications of mineral N fertilizer and pig slurry. Leaching was compared on a loamy sand and a sandy loam soil. The leaching experiment lasted for 2 yr, and the whole experiment was replicated twice. Nitrate leaching was generally low (19–34 kg N/ha) after spring applications of mineral fertilizer and manures. Nitrate leaching increased significantly after autumn application of the solid manures, and the extra nitrate leached was equivalent to 23–35% of total manure N and corresponded to the ammonium content of the manures. After spring application of solid manures and pig slurry, only a slight rise in N leaching was observed during the following autumn/winter (<5% of total manure N). Total P leaching was 40–165 g P/ha/yr, and the application of solid manure in autumn did not increase P leaching. The nitrogen fertilizer replacement value of solid manure N was similar after autumn and spring application (17–32% of total N). We conclude that from an environmental perspective, solid manure fractions should not be applied to winter wheat on sandy and sandy loam soils under humid North European conditions.  相似文献   

5.
Two field experiments with drained plots on clay soils (60% and 25% clay) demonstrated a significant reduction in leaching of total phosphorus after application of structure lime. Aggregate stability was significantly improved. Phosphorus leaching in particulate form was significantly reduced following structure liming at the site with a very high clay content. Sites representing low (50 mg kg?1) and high (140 mg kg?1) levels of phosphorus extractable with acid ammonium lactate in topsoil displayed differing effects on leaching of dissolved reactive P (DRP). This form of phosphorus was only significantly reduced compared with the control at one site with high topsoil phosphorus status and relatively high (17–18%) degree of phosphorus saturation in the subsoil. Laboratory experiments with simulated rain events applied to topsoil lysimeters from the same site also demonstrated a significant reduction in leaching of DRP. These findings indicate that structure liming is an appropriate leaching mitigation measure on soils with both a high clay content and high soil phosphorus status.  相似文献   

6.
In this study, three types of cropping systems with different nutrient management strategies were studied on a clay soil with the aim of comparing leaching of N, P and K and obtaining knowledge on nutrient budgets. A conventional cropping system with cereals and application of mineral fertilizers (CON) was compared with two organic cropping systems, one without animal manure in which green manure crops were used for N supply (OGM) and one where animal manure (cattle slurry) was applied (OAM). Leaching and crop uptake of N, P and K, and soil mineral N were measured in pipe‐drained plots over a 6‐year period. The mean annual leaching loads of N were moderate and did not differ significantly (P > 0.05) between treatments; 13 kg N ha?1 in CON, 11 kg N ha?1 in OGM and 7.4 kg N ha?1 in OAM. Average annual P leaching showed greater variation than N leaching and was significantly greater in OGM (0.81 kg ha?1 year?1) than in CON (0.36 kg ha?1) and OAM (0.41 kg ha?1). For all cropping systems, removal in harvested crops was the most important export of nutrients from the field and constituted between 80 and 94% of total N outputs (harvested and leached N). Yields of cereals in the organic systems were considerably less (15–50%) than in the CON system, leading to a less efficient use of N than in the conventional system.  相似文献   

7.
Land application of dairy slurry can result in incidental losses of phosphorus (P) to runoff in addition to increased loss of P from soil as a result of a buildup in soil test P (STP). An agitator test was used to identify the most effective amendments to reduce dissolved reactive phosphorus (DRP) loss from the soil surface after land application of chemically amended dairy cattle slurry. This test involved adding slurry mixed with various amendments (mixed in a beaker using a jar test flocculator at 100 rpm), to intact soil samples at approximate field capacity. Slurry/amended slurry was applied with a spatula, submerged with overlying water and then mixed to simulate overland flow. In order of effectiveness, at optimum application rates, ferric chloride (FeCl2) reduced the DRP in overlying water by 88%, aluminium chloride (AlCl2) by 87%, alum (Al2(SO4)3·nH2O) by 83%, lime by 81%, aluminium water treatment residuals (Al‐WTR; sieved to <2 mm) by 77%, flyash by 72%, flue gas desulphurization by‐product by 72% and Al‐WTR sludge by 71%. Ferric chloride (€4.82/m3 treated slurry) was the most cost‐effective chemical amendment. However, Al compounds are preferred owing to stability of Al–P compared with Fe–P bonds. Alum is less expensive than AlCl2 (€6.67/m3), but the risk of effervescence needs further investigation at field‐scale. Phosphorus sorbing materials (PSM) were not as efficient as chemicals in reducing DRP in overlying water. The amendments all reduced P loss from dairy slurry, but the feasibility of these amendments may be limited because of the cost of treatment.  相似文献   

8.
Abstract

An outdoor pot experiment was conducted using wheat plants (Triticum aestivum L. cv. Lotti). Each pot was filled with the upper layer of either a Cambic arenosol (soil A) or a Dystric cambisol (soil B) removed from the correspondent lysimeter where a two‐year wheat experiment (1993–1995) had been carried out with an equivalent experimental design as in the present study. The main objectives of this research were (1) to study the effects of increasing applications (5, 15, and 25 t ha‐1) of solid phase from pig slurry (SP) on wheat yield and tissue elemental composition and (2) to investigate the risk of contamination of drainage water by leaching of phosphorus (P) and mineral nitrogen (Nmin) as a result of those applications to the soil. The control consisted of a basic dressing of NPK fertilizer. Results from the study showed that grain production was lower in the 5 and 15 t ha‐1 SP treatments compared to the control in soil A probably due to a potassium (K) deficiency. Increasing application rates of SP significantly enhanced P and Nmin leaching losses in both soils. Finally on soil A high rates of SP amendments led to the contamination of water with P.  相似文献   

9.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

10.
Maintenance and improvement of soil quality across spatially variable soils in continuous cropping systems are critical to sustaining agricultural productivity and environmental quality. The objectives of this project were (i) to study the effects of variable-rate application of animal manure on selected topsoil quality parameters across site-specific management zones (MZs) and (ii) to evaluate the variable-rate applications of manure using risk-assessment tools of nitrogen (N) leaching and phosphorus (P) runoff indices to understand its impact on environmental quality. This study was conducted in northeastern Colorado on continuous and furrow-irrigated maize fields. Experimental strips, 4.5 m wide and 540 m long, spanned across all MZs with treatments nested within MZs in the field. Variable rates of dairy and beef feedlot manure applied on irrigated and dryland fields respectively ranged from 0 to 67 Mg ha?1. Surface soil quality parameters evaluated before and after this study included bulk density, organic matter, water-holding capacity, electrical conductivity, and particle-size analysis. Results indicate that animal manure applications of 44 and 67 Mg ha?1 significantly (P ≤ 0.05) increased soil organic matter and decreased bulk density of low- and medium-productivity-level MZs and had no significant impact on surface soil organic matter and bulk density of the high-productivity-level MZs. Animal manure significantly (P ≤ 0.05) increased surface soil water-holding capacity and soil electrical conductivity across zones; however, the maximum manure-induced soil EC was 1.0 dS m?1, which was below levels regarded as potentially harmful for maize production. Soil texture was not affected by animal manure applications. Colorado N leaching and P index indicated no environmental hazard associated with variable rate application of animal manure across MZs. This study indicates that variable-rate application of animal manure across MZs has potential to improve or maintain soil quality parameters over time without impairing the environment.  相似文献   

11.
Appropriate management of P from slurry can increase crop production and decrease nutrient loss to water bodies. The present study examined how the application of different size fractions of dairy slurry influenced the quantity and composition of P leached from grassland in a temperate climate. Soil blocks were amended (day 0 = start of the experiment) with either whole slurry (WS), the > 425 μm fraction (coarse slurry fraction, CSF), the < 45 μm slurry fraction (fine liquid slurry fraction, FLF), or not amended, i.e., the control soil (CON). Deionized water was added to the soil blocks to simulate six sequential rainfall events, equivalent to 250 mm (day 0.2, 1.2, 4.2, 11.2) or 500 mm of rainfall (day 18.2 and 25.2), with leachates collected the following day. The results showed that total dissolved P (TDP), dissolved reactive P (DRP), dissolved unreactive P (DUP), orthophosphate, phosphomonoester, and pyrophosphate concentrations generally decreased with the increasing number of simulated rain events. Total dissolved P was leached in the following order WS > FLF ≈ CSF > CON. Dissolved organic C was correlated with TDP, DRP, and DUP in leachates of all treatments. The highest concentrations of dissolved phosphomonoesters and pyrophosphate (147 μg P L–1 and 57 μg P L–1, respectively) were detected using solution 31P‐NMR spectroscopy in the WS leachates. Overall, there were significant differences observed between slurry treatments (e.g., relative contributions of inorganic P vs. organic P of dissolved P in leachates). Differences were independent from the rate at which slurry P was applied, because the highest dissolved P losses per unit of slurry P applied were measured in the FLF, i.e., the treatment that received the smallest amount of P. We conclude that the specific particle‐size composition of applied slurry influences dissolved P losses from grassland systems. This information should be taken in account in farm‐management approaches which aim to minimizing dissolved slurry P losses from grassland systems.  相似文献   

12.
Abstract

Soil tests with extractions are commonly used for risk assessments of phosphorus (P) leaching. Procedures for routine analysis of crop-available soil P by extraction with acid ammonium lactate (P-AL) have been used for nearly 50 years in Sweden, Norway and several East European countries. Aluminium and iron (Al-AL and Fe-AL) were determined in the same extract for 40 well known clayey, loamy or sandy soils from the Swedish long-term studies. Average outcome was 16.8 and 6.0% for the two elements related to extraction with chelating ammonium oxalate (Al-AO and Fe-AO) and concentrations had a correlation coefficient of 0.947 and 0.891, respectively, when the two extraction agents were compared. On average, P-AL determination using inductive coupled plasma (ICP) resulted in 19% higher soil P concentrations compared to analysis using a colorimetric method based on non-calcareous and calcareous soils from the southern counties in the Swedish soil survey, represented mainly by sandy loam soils. Degree of P saturation on a molar basis in the AL extract (DPS-AL) was determined for 22 Nordic observation fields with drained clayey, loamy and sandy soils. Results were used together with long-term flow-weighed concentration of dissolved reactive P (DRP) concentration in drainage water. These parameters were correlated (r=0.918, p=0.000) and could be fitted to a linear regression model (R2=84.3). In addition, two fields with unusually high DPS-AL values could clearly be identified as those with lowest P sorption index and highest DRP concentrations in drainage water. This demonstrates DPS-AL to have the potential as an environmental risk indicator for Swedish acid soils. A set of 230 non-calcareous soils in the southern counties of Sweden from the Swedish soil survey indicated that 3% of the soils had a high DPS-AL in the topsoil or subsoil, from which high DPS leaching probably occurs.  相似文献   

13.
Abstract

Soil pH can be increased by manure or compost application because feed rations usually contain calcium carbonate. This study was conducted from 1992 to 1996 to evaluate effects of phosphorus (P) and nitrogen (N)‐based manure and compost application management strategies on soil pH level. Composted and uncomposted beef cattle (Bos taunts) feedlot manure was applied to supply N or P needs of corn (Zea mays L.) for either a one‐ or two‐year period. Phosphorus‐based manure or compost treatments also received additional fertilizer N (ammonium nitrate) to provide for a total of 151‐kg available N ha‐1 yr‐1. Fertilized and unfertilized checks also were included. Manure and composted manure contained about 9 g CaCO3kg‐1 resulting in application rates of up to 1730 kg CaCO3 ha‐1 in 4 years. The surface soil (0–150 mm) pH was significantly decreased with ammonium nitrate application compared to soil in the unfertilized check or to soil receiving manure or compost. Soil pH was significantly increased with the N‐based management strategy compared with the soil original level. In contrast, 4 yr of P‐based manure and compost application strategy maintained soil pH at the original level. Nitrogen‐based applications resulted in higher soil pH than P‐based. Beef cattle feedlot manure and compost can be good sources of CaCO3 for soils requiring lime addition.  相似文献   

14.
Repeated application of phosphorus (P) as superphosphate either alone or in conjunction with cattle manure and fertilizer N may affect the P balance and the forms and distribution of P in soil. During 7 years, we monitored 0.5 M NaHCO3 extractable P (Olsen‐P) and determined the changes in soil inorganic P (Pi) and organic P (Po) caused by a yearly dose of 52 kg P ha—1 as superphosphate and different levels of cattle manure and fertilizer N application in a soybean‐wheat system on Vertisol. In general, the contents of Olsen‐P increased with conjunctive use of cattle manure. However, increasing rate of fertilizer nitrogen (N) reduced the Olsen‐P due to larger P exploitation by crops. The average amount of fertilizer P required to increase Olsen‐P by 1 mg kg—1 was 10.5 kg ha—1 without manure and application of 8 t manure reduced it to 8.3 kg ha—1. Fertilizer P in excess of crop removal accumulated in labile (NaHCO3‐Pi and Po) and moderately labile (NaOH‐Pi and Po) fractions linearly and manure application enhanced accumulation of Po. The P recovered as sum of different fractions varied from 91.5 to 98.7% of total P (acid digested, Pt). Excess fertilizer P application in presence of manure led to increased levels of Olsen‐P in both topsoil and subsoil. In accordance, the recovery of Pt from the 0—15 cm layer was slightly less than the theoretical P (P added + change in soil P — P removed by crops) confirming that some of the topsoil P may have migrated to the subsoil. The P fractions were significantly correlated with apparent P balance and acted as sink for fertilizer P.  相似文献   

15.
A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture before and after, and cultivated soil after leaching to simulate a wet winter-autumn) from a field trial. Data on DOP in drainage waters from the field trial were also generated. In water extracts, used as a surrogate for soil solution and drainage water, 70-90% of the total dissolved P (TDP) concentration was made up of DOP, of which 40% was hydrolysable by phosphatase enzymes. Proportions of hydrolysable DOP to TDP in drainage waters of the field trial were less than in water extracts due to enhanced DRP loss via dung inputs, but still large at 35% of DOP. Analysis of lysimeter soils by sequential fractionation indicated that several organic P fractions changed with land use and due to leaching. Further investigation using NaOH-EDTA extracts and 31P nuclear magnetic resonance spectroscopy indicated that the greatest changes were a decrease in the concentrations of orthophosphate diester P and an increase in orthophosphate monoester P. This was attributed to mineralization by cultivation and plant roots and also to the leaching of mobile diester P. This study suggests that in such soils with a dynamic soil organic P pool, the concentration of readily bioavailable P in soil solution and drainage waters and the potential to impair surface water quality cannot be determined from the DRP concentration alone.  相似文献   

16.
Abstract. The repeated application of pig slurry to agricultural soils may result in an accumulation of salts and a risk of aquifer pollution due to nitrate leaching and salinization. Under Mediterranean conditions, a field experiment on a sandy loam soil (Typic Xerofluvent) was performed with maize (Zea mays) in 1998, 1999 and 2001 to study the effects of applying optimal (P1) and excessive rates (P3) of pig slurry on soil salinization, nitrate leaching and groundwater pollution. The rate of pig slurry was established considering the optimal N rate for maize in this soil (170, 162 and 176 kg N ha?1 for 1998, 1999 and 2001, respectively). Pig slurry treatments were compared to an optimal N rate supplied as urea (U) and a control treatment without N fertilizer (P0). The composition of the slurries showed great variability between years. Mean NO3? leaching losses from 1998 to 2001 were 329, 215, 173 and 78 kg N ha?1 for P3, P1, U and P0 treatments, respectively. The amount of total dissolved salts (TDS) added to the soil in slurry application between 1998 and 2001 was 2019 kg TDS ha?1 for the P1 treatment and 6058 kg TDS ha?1 for the P3 treatment. As a consequence, the electrical conductivity (EC) of the slurry‐treated soils was greater than that of the control soil. The EC correlated significantly with the sodium concentration of the soil solution. Over the entire experimental period, 2653, 2202 and 2110 kg Na ha?1 entered the aquifer from the P3, P1 and P0 treatments, respectively. The P3 treatment did not significantly increase grain production in 1999 and 2001 compared with that achieved with the optimal N rate treatment (P1). This behaviour shows the importance of establishing application guidelines for pig slurry that will reduce the risk of soil and groundwater pollution.  相似文献   

17.
Purpose

Land application of farm dairy effluent (FDE) to pasture soils is the preferred practice in New Zealand. Recently, a new FDE treatment technology has been developed to recycle the water for washing the yard Cameron and Di (J Soils Sediments 2018). Here we report a lysimeter study to compare the leaching losses of Escherichia coli, phosphorus (P), and nitrogen (N) and emissions of greenhouse gases from the treated FDE compared with the untreated original FDE.

Materials and methods

Lysimeters were collected from a Balmoral silt loam soil (Typic Dystrudept, USDA) and installed in a field trench facility. Treatments included (1) treated effluent (TE), (2) a mixture of TE and recycled water (M), (3) untreated original FDE (FDE), and (4) water as control. The effluents were applied at a surface application rate of 24 mm on each lysimeter in May and again in September 2017. Measurements included leaching losses of E. coli, total phosphorus (TP), dissolved reactive phosphorus (DRP), total mineral nitrogen (TN), ammonium-N (NH4+-N), and nitrate-N (NO3?-N); emissions of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4); herbage yield; and N uptake.

Results and discussion

The results showed that E. coli, TP, and DRP leaching losses from the TE were 1.31?×?1010 cfu/ha, 0.26 kg P/ha, and 0.009 kg DRP/ha and from M treatments were 6.96?×?108 cfu/ha, 0.18 kg P/ha, and 0.004 kg DRP/ha, respectively, which were significantly (P?<?0.05) lower than those from the FDE which were 4.21?×?1010 cfu/ha, 1.75 kg P/ha, and 0.034 kg DRP/ha, respectively. There were no significant differences in NO3?-N leaching losses amongst the different forms of effluents. There were no significant differences in total N2O, CO2 emissions, and CH4 uptakes from the different effluents (P?<?0.05). Herbage dry matter yields and N uptakes were also similar in the different effluent-treated lysimeters.

Conclusions

Results from this research indicate that land application of the treated effluents (TE) or a mixture of TE plus clarified water (M) would result in significant environmental benefits by reducing E. coli and P leaching without increasing greenhouse gas emissions.

  相似文献   

18.
It has been suggested that surface applications of animal manure can ameliorate both top and subsoil acidity. For that reason, the effects of surface incorporation (0–5 cm) of a high rate of poultry manure to an acid soil on pH and exchangeable and soluble Al in the top‐ and subsoil were investigated in a leaching column study. During the experimental period of 108 d, columns received a total of 875 mm with leaching events occurring after 9, 37, 58, and 86 d. Incorporation of poultry manure into the surface 5 cm resulted in a large rise in pH measured in both 1M KCl and in soil solution. This liming effect was attributed primarily to the substantial CaCO3 content of poultry manure. In the 15–45 cm layer, pHKCl was not significantly different between poultry manure and control treatments but surprisingly, soil‐solution pH was substantially less in the poultry‐manure treatments. Exchangeable Al was significantly less in poultry manure than in control in all soil layers although the effect was most marked in the 0–5 cm layer. However, although concentrations and activities of monomeric Al (Almono), and the proportion of total Al present as Almono, in soil solution were lower under poultry manure than in control in the 0–5 cm layer, the reverse was, in fact, the case in lower soil horizons. This was attributed to a soluble‐salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. Indeed, electrical conductivity and concentrations of Ca2+, Mg2+, K+, and Na+ in soil solution were substantially higher in the poultry‐manure than in the control treatments at all soil depths. Poultry‐manure applications also resulted in substantial increases in the concentrations of Ca2+, Mg2+, K+, Na+, Almono, NH , and NO in leachates, particularly at the fourth leaching. It was concluded that although surface application of poultry manure can raise soil pH in the topsoil, increases in soluble‐salt concentrations in soil solution can greatly modify this effect in the subsoil.  相似文献   

19.
A two years lysimeter experiment was carried out using wheat plants (Triticum aestivum L. cv. Lotti) on two texturally contrasting soils. The main purpose of this study was to evaluate the influence of increasing applications (5,10, 15,20, and 25 t.ha‐1) of solid phase (SP) from pig slurry on soil nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) content, nitrate‐N (NO3‐N) leaching as well as on wheat composition and yield. As the control, a basic dressing of NPK fertilizer was applied. Results showed that plant growth was stimulated by increasing amounts of SP, yet the additions of 15 to 20 t SP ha‐1 led to similar effects on yield as that for the control. An accumulation of P on both soils was observed as well as a significant increase on NO3‐N leaching due to increasing rates of SP added to the soils. The N and P content in wheat plants (straw and grain) increased with increasing rates of applied SP.  相似文献   

20.
Abstract

As livestock operations become larger and concerns about water quality become greater, attention must be paid to the composition of animal manure and its potential impact on the environment. One current concern involves the amount and forms of phosphorus (P) being added to land with manure. The objective of this experiment was to determine the forms and availability of P in soils receiving 4 years of continuous dairy manure applications. Soil samples were collected from lysimeter plots established in 1991 to study the impact of dairy manure applications on surface water and groundwater. Soil P was fractionated into available (NaHCO3), iron (Fe)‐ and aluminum (Al)‐bound (NaOH), and calcium (Ca)‐bound (HC1) forms. These data were related to manure application rates, soluble P concentrations, and anion exchange membrane (AEM) bound P. Results indicate that the potential to move P by leaching through these loessial soils is very low even at high manure application rates. Large manure additions resulted in increases in all P forms; however, the inorganic pools increased more than the organic pools. The AEM values were a good tool for predicting potential P movement by soil erosion or runoff with membrane bound P being strongly correlated with manure application rate (r2=0.82) and available P (NaHCO3). Best management practices for manure disposal need to consider the potential for P movement through erosion and runoff, and the AEM technique provides a means for evaluating this potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号