首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploiting genes and quantitative trait loci (QTLs) related to maize (Zea mays L.) alkaline tolerance is helpful for improving alkaline resistance. To explore the inheritance of maize alkaline tolerance at the seedling stage, a mapping population comprising 151 F2:3 lines derived from the maize cross between Zheng58, tolerant to alkaline, and Chang7-2, sensitive to alkaline, was used to establish a genetic linkage map with 200 SSR loci across the 10 maize linkage groups, with an average interval of 6.5 cM between adjacent markers. QTLs for alkaline resistant traits of alkaline tolerance rating (ATR), germination rate (GR), relative conductivity (RC), weight per plant (WPP) and proline content (PC) were detected. The obtained results were as follows: Five QTLs on chromosomes 2, 5 and 6 (GR and WPP: chr. 2; PC and ATR: chr. 5; and RC: chr. 6) were mapped. For precise mapping of the QTLs related to alkaline resistance, two bulked deoxyribonucleic acid (DNA) pools were constructed using individual DNAs from the most tolerant 30 F2 individuals and the most sensitive 30 F2 individuals according to the ATR and used to establish a high density map of SLAF markers strongly associated with the ATR by specific locus amplified fragment sequencing (SLAF-Seq) combined with super bulked segregant analysis (superBSA). One marker-intensive region involved three SLAFs at 296,000–6,203,000 bp on chromosome 5 that were closely related to the ATR. Combined with preliminary QTL mapping with superBSA, two major QTLs on chromosome 5 associated with alkaline tolerance at the maize seedling stage were mapped to marker intervals of dCap-SLAF31521 and dCap-SLAF31535 and phi024 and dCap-SLAF31521, respectively. These QTL regions involved 9 and 75 annotated genes, respectively. These results will be helpful for improving maize alkaline tolerance at the seedling stage by marker-assisted selection programs and will be useful for fine mapping QTLs for maize breeding.  相似文献   

2.
基于多个相关群体的玉米雄穗相关性状QTL分析   总被引:5,自引:0,他引:5  
雄穗相关性状对玉米生产至关重要。为了解析玉米雄穗相关性状的遗传机制,利用以黄早四为共同亲本组配的11个重组自交系群体,对玉米雄穗一级分枝数、雄穗主轴长和雄穗干重3个性状进行QTL分析。经过对11个群体及亲本两年三点的田间鉴定,单环境和联合环境下的玉米雄穗相关性状QTL定位,及基因型与环境互作和上位性互作分析,检测到15个在多环境下稳定表达(5个环境以上)的“环境钝感”主效QTL,其中,在染色体bin3.04区域,齐319群体和旅28群体中都定位到1个主效雄穗一级分枝数相关QTL,其平均贡献率分别为17.4%和14.4%,并且2个群体的QTL标记区间高度重叠,在IBM2008 Neighbors图谱上的重叠区间为226.0~230.1。对比不同群体结果发现,在2个群体以上都能检测到的一致性区间21个,其中在第2、第3、第6、第8染色体上的5个一致性区间在3个群体中可稳定表达。这些多环境和多个遗传背景下稳定表达的位点可作为玉米雄穗性状分子标记辅助选择、精细定位及基因克隆的候选位点。  相似文献   

3.
干旱胁迫对玉米产量及其相关性状有重要影响。本研究以我国玉米育种骨干亲本齐319和掖478分别和黄早四组配构建的两个F2:3群体为材料,应用逐步联合分析的QTL定位方法,剖析新疆不同水分环境下(包含水区和旱区)玉米产量构成因子及籽粒相关性状的遗传基础。结果表明,在相同水分处理不同年份间产量构成因子和籽粒相关性状超过70%的QTL可稳定表达,旱区QTL的稳定性明显低于水区,当全部环境联合分析时,各性状QTL稳定性呈现一定程度的降低,但超过60%的QTL仍然稳定表达。两群体中共检测到11个环境钝感的主效QTL(在2个以上环境中检测到,且至少在一个环境下的贡献率大于10%),分布在bin1.10、2.00、4.09、7.02、9.02、10.04和10.07共7个基因组区段上,除bin10.04外所有环境钝感的主效QTL在全部环境下稳定表达。因此,玉米产量构成因子和籽粒相关性状的QTL在新疆相同水分处理不同年份间,甚至不同水分条件下大部分均可稳定表达,这些主效QTL位点可为抗旱分子育种和进一步精细定位提供参考。  相似文献   

4.
不同密度下玉米穗部性状的QTL分析   总被引:2,自引:0,他引:2  
为研究玉米穗部性状对不同种植密度的遗传响应,以郑58和HD568为亲本构建的220个重组自交系群体为材料,于2014年春、2014年冬及2015年春分别在北京和海南进行3个种植密度的田间试验,调查玉米穗长、穗粗、穗行数和行粒数等表型性状。利用SAS软件计算穗部性状的最优线性无偏估计值(BLUP),并采用完备区间作图法进行QTL定位。结果表明,在3个种植密度下共检测到42个QTL,单个QTL可解释4.20%~14.07%的表型变异。3个种植密度下同时检测到位于第2染色体上控制穗行数的QTL。2个种植密度下同时检测到4个与穗粗、穗行数和行粒数有关的QTL,其中第4染色体上1个与穗行数有关的主效QTL,在低、中种植密度下可分别解释表型变异的10.88%和14.07%。此外,在第2、4和9染色体上检测到3个同时调控不同穗部性状的QTL。研究结果表明玉米穗部性状在不同种植密度下的遗传调控发生变化,在不同密度下共同检测到的稳定QTL可应用于精细定位或开发玉米耐密性分子标记用于辅助育种。  相似文献   

5.
Morphological traits for ear leaf are determinant traits influencing plant architecture and drought tolerance in maize. However, the genetic controls of ear leaf architecture traits remain poorly understood under drought stress. Here, we identified 100 quantitative trait loci (QTLs) for leaf angle, leaf orientation value, leaf length, leaf width, leaf size and leaf shape value of ear leaf across four populations under drought‐stressed and unstressed conditions, which explained 0.71%–20.62% of phenotypic variation in single watering condition. Forty‐five of the 100 QTLs were identified under water‐stressed conditions, and 29 stable QTLs (sQTLs) were identified under water‐stressed conditions, which could be useful for the genetic improvement of maize drought tolerance via QTL pyramiding. We further integrated 27 independent QTL studies in a meta‐analysis to identify 21 meta‐QTLs (mQTLs). Then, 24 candidate genes controlling leaf architecture traits coincided with 20 corresponding mQTLs. Thus, new/valuable information on quantitative traits has shed some light on the molecular mechanisms responsible for leaf architecture traits affected by watering conditions. Furthermore, alleles for leaf architecture traits provide useful targets for marker‐assisted selection to generate high‐yielding maize varieties.  相似文献   

6.
Hong Zhang  Fa Cui  Honggang Wang 《Euphytica》2014,196(3):313-330
In order to detect quantitative trait loci (QTLs) for drought tolerance in wheat during seed germination conditional and unconditional QTL analyses of eight seedling traits were conducted under two water regimes using three related F9 recombinant inbred line populations with a common female parent. A total of 87 QTLs for the eight seedlings traits and 34 specific QTLs related to drought tolerance were detected. Seventy-one of these QTLs were major QTLs with contributions to phenotypic variance of >10 %. Of the 34 QTLs related to drought tolerance only eight were also detected by unconditional analysis of seedling traits under osmotic stress conditions indicating that most of the QTLs related to drought tolerance could not be detected by unconditional QTL analysis. Therefore, conditional QTL analysis of stress-tolerance traits such as drought tolerance was feasible and effective. Of 11 important QTL clusters located on chromosomes 1BL, 1D, 2A, 2B, 2D, 4A, 6B, and 7B, nine were detected in multiple populations and eight were detected by both unconditional and conditional analyses.  相似文献   

7.
基于高密度遗传图谱的玉米籽粒性状QTL定位   总被引:4,自引:1,他引:4  
籽粒大小及百粒重是决定玉米产量的重要因素。为解析籽粒性状遗传基础,本研究以玉米自交系黄早四(HZS)和Mo17为亲本,构建包含130个重组自交系(recombination inbred line,RIL)的RIL群体。基于GBS(genotypingby-sequencing)技术获得的高密度多态性SNP(single nucleotide polymorphism)位点,构建了包含1262个Bin标记的高密度遗传图谱。采用完备区间作图法,对5个环境条件下的粒长、粒宽、百粒重、粒长/粒宽4个性状分别进行QTL(quantitative trait locus)定位,共检测到30个QTL。利用5个环境性状均值,共检测到11个QTL。其中粒长主效QTL qklen1、粒长/粒宽主效QTL qklw1在3个单环境条件下均被检测到,且定位在第1染色体相邻区域,物理位置分别为210~212 Mb、207~208 Mb,表型贡献率分别为22.60%和26.79%,被认为是控制玉米籽粒形状的主效位点。针对第1染色体207~212 Mb区间,采用成组法t检验,对黄早四(受体)和Mo17(供体)构建的BC3F1回交群体进行单标记分析。结果表明,在BC3F1群体中qklen1和qklw1同样具有显著的遗传效应。本研究结果不仅为分子标记辅助选择籽粒性状提供了实用标记,而且为主效基因的进一步精细定位和候选基因挖掘奠定了基础。  相似文献   

8.
小麦苗期性状能够指示品种的耐盐性。本研究以小麦骨干亲本燕大1817与品系北农6号衍生的230个重组自交系为材料,利用2013年3个不同时间的水培试验数据和已经构建的SSR和SNP高密度遗传连锁图谱分别对正常和盐胁迫条件下根数和最长根长等7个苗期性状进行QTL定位。利用完备复合区间作图法(ICIM)共检测到69个加性效应QTL(LOD≥2.5),分布于除1A染色体外的所有20条染色体上,单个QTL解释的表型变异率为2.70%~19.00%。有46个QTL的增效效应来自于燕大1817,有23个QTL的增效效应来自于北农6号。有12个QTL能够在3个或3个以上的环境中被检测到,在燕大1817中定位到稳定的多分蘖主效QTL QTn.cau-7BS.1和盐胁迫条件下特异表达的根数QTL QRn.cau-2A,解析了小麦骨干亲本燕大1817的繁茂性和抗逆性遗传基础,为解析小麦品种耐盐遗传机制和耐盐性的分子标记辅助选择提供了重要信息。  相似文献   

9.
Leaf architecture traits in maize are quantitative and have been studied by quantitative trait loci (QTLs) mapping. However, additional QTLs for these traits require mapping and the interactions between mapped QTLs require studying because of the complicated genetic nature of these traits. To detect common QTLs and to find new ones, we investigated the maize traits of leaf angle, leaf flagging‐point length, leaf length and leaf orientation value using a set of recombinant inbred line populations and single nucleotide polymorphism markers. In total, 19 QTLs contributed 4.13–13.52% of the phenotypic effects to the corresponding traits that were mapped, and their candidate genes are provided. Common and major QTLs have also been detected. All of the QTLs showed significant additive effects and non‐significant additive × environment effects in combined environments. The majority showed additive × additive epistasis effects and non‐significant QTL × environment effects under single environments. Common and major QTLs provided information for fine mapping and gene cloning, and SNP markers can be used for marker‐assisted selection breeding.  相似文献   

10.
盐胁迫和干旱胁迫是非生物胁迫中影响作物产量的重要因素,检测与耐盐和耐旱相关的QTL,可为抗逆油菜品种的选育提供理论依据。本研究利用德国冬性甘蓝型油菜Express和中国半冬性甘蓝型油菜SWU07为亲本构建的包含261个株系的双单倍体(doubled haploid,DH)群体,分别以1.2%NaCl溶液和20%PEG-6000溶液作为培养液模拟盐胁迫和干旱胁迫,去离子水为对照,对2个亲本和DH群体进行发芽试验。播种后7 d测定幼苗根长、鲜重及发芽率,计算各性状在盐胁迫和干旱胁迫下的相对值,并作为评价耐盐和耐旱的指标。根据已构建的遗传连锁图谱进行QTL定位。盐胁迫下,在3次重复中共检测到与盐胁迫相关的QTL 12个,分布在A02、A03、A05、A09、C01和C09染色体上,单个QTL可解释的表型变异为3.61%~10.59%,其中5个QTL在不同的重复中被检测到。干旱胁迫下,共检测到与干旱胁迫相关的QTL 9个,分布在A01、A02、A03、A05、A09、A10和C03染色体上,单个QTL可解释的表型变异为3.94%~12.90%,其中2个QTL在不同的重复中被检测到。此外,在A02和A03染色体上检测到与2种胁迫都相关的相互交叠的QTL。这些结果可为油菜耐盐和耐旱性改良提供更多遗传信息。  相似文献   

11.
Summary Quantitative trait loci (QTL) analysis for Al tolerance was performed in rice using a mapping population of 98 BC1F10 lines (backcross inbred lines: BILs), derived from a cross of Al-tolerant cultivar of rice (Oryza sativa L. cv. Nipponbare) and Al-sensitive cultivar (cv. Kasalath). Three characters related to Al tolerance, including root elongation under non-stress conditions (CRE), root elongation under Al stress (SRE) and the relative root elongation (RRE) under Al stress versus non-stress conditions, were evaluated for the BILs and the parents at seedling stage. A total of seven QTLs for the three traits were identified. Among them, three putative QTLs for CRE (qCRE-6, qCRE-8 and qCRE-9) were mapped on chromosomes 6, 8 and 9, respectively. One QTL for SRE (qSRE-4) was identified on chromosome 4. Three QTLs (qRRE-5, qRRE-9 and qRRE-10) for RRE were detected on chromosomes 5, 9, 10 and accounted for 9.7–11.8% of total phenotypic variation. Interestingly, the QTL qRRE-5 appears to be syntenic with the genomic region carrying a major Al tolerance gene on chromosome 6 of maize. Another QTL, qRRE-9, appears to be similar among different rice populations, while qRRE-10 is unique in the BIL population. The common QTLs for CRE and RRE indicate that candidate genes conferring Al tolerance in the rice chromosome 9 may be associated with root growth rates. The existence of QTLs for Al tolerance was confirmed in substitution lines for corresponding chromosomal segments. These results also provide the possibilities of enhancing Al tolerance in rice through using marker-assisted selection (MAS) and pyramiding QTLs.  相似文献   

12.
Average maize yield per hectare has increased significantly because of the improvement in high-density tolerance, but little attention has been paid to the genetic mechanism of grain yield response to high planting density. Here, we used a population of 301 recombinant inbred lines (RILs) derived from the cross YE478 × 08–641 to detect quantitative trait loci (QTLs) for 16 yield-related traits under two planting densities (57,000 and 114,000 plants per ha) across four environments. These yield-related traits responded differently to high-density stress. A total of 110 QTLs were observed for these traits: 33 QTLs only under low planting density, 50 QTLs under high planting density and 27 QTLs across both densities. Only two major QTLs, qCD6 and qWKEL2-2, were identified across low- and high-density treatments. Seven environmentally stable QTLs were also observed containing qED6, qWKEL3, qRN3-3, qRN7-2, qRN9-2 and qRN10 across both densities, as well as qRN9-1 under low density. In addition, 16 and eight pairs of loci with epistasis interaction (EPI) were detected under low and high planting densities, respectively. Additionally, nine and 17 loci showed QTL × environment interaction (QEI) under low- and high-density conditions, respectively. These interactions are of lesser importance than the main QTL effects. We also observed 26 pleiotropic QTL clusters, and the hotspot region 3.08 concentrated nine QTLs, suggesting its great importance for maize yield. These findings suggested that multiple minor QTLs, loci with EPI and QEI, pleiotropy and the complex network of “crosstalk” among them for yield-related traits were greatly influenced by plant density, which increases our understanding of the genetic mechanism of yield-related traits for high-density tolerance.  相似文献   

13.
玉米出籽率、籽粒深度和百粒重的QTL分析   总被引:4,自引:1,他引:3  
为研究玉米出籽率、籽粒深度、百粒重的遗传机制,以豫82×沈137组配的229个F2:3家系为试验材料,采用复合区间作图法进行QTL定位分析。在3个环境下共检测到10个QTL。其中,控制出籽率、籽粒深度、百粒重相关QTL分别为3个、3个和4个,它们的联合贡献率分别为35.5%、28.1%和39.0%。位于第1染色体上介于标记umc1335与umc2236之间控制出籽率的QTL qKR1b和位于第9染色体上介于标记bnlg1209–umc2095之间控制百粒重QTL q100-KW9b,分别解释18.9%和11.7%的表型变异,且作用方式为加性效应,分析表明这些区域可能包含调控玉米籽粒性状关键基因,对剖析玉米产量形成机制具有重要的参考价值。  相似文献   

14.
It is generally believed that grain yield per unit area of modern maize hybrids is related to their adaptability to high plant population density. In this study, the effects of two different plant densities (52,500 and 90,000 plants/hm2) on 12 traits associated with yield were evaluated using a set of 231 F2:3 families derived from two elite inbred lines, Zheng58 and Chang7-2. Evaluation of the phenotypes expressed under the two plant density conditions showed that high plant density condition could decrease the value of 10 measured yield component traits, while the final grain yield per hectare and the rate of kernel production were increased. Twenty-seven quantitative trait loci (QTLs) for 10 traits were detected in both high and low plant density conditions; among them, some QTLs were shown to locate in five clusters. Thirty QTLs were only detected under high plant density. These results suggest that some of the yield component traits perhaps were controlled by a common set of genes, and that kernel number per row, ear length, row number per ear, cob diameter, cob weight, and ear diameter may be influenced by additional genetic mechanisms when grown under high plant density. The QTLs identified in this study provide useful information for marker-assisted selection of varieties targeting increased plant density.  相似文献   

15.
Increasing sugar content in silage maize stalk improves its forage quality and palatability. The genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement, yet little information on QTL for stalk sugar content in maize has been reported. To this end, we investigated QTLs associated with stalk sugar traits including Brix, plant height (PHT), three ear leaves area (TELA), and days to silking (DTS) in two environments using a population of 202 recombinant inbred lines from a cross between YXD053, which has a high stalk sugar content, and Y6-1, which has a low stalk sugar content. A genetic map with 180 SSR and 10 AFLP markers was constructed, which spanned 1,648.6 cM of the maize genome with an average marker distance of 8.68 cM, and QTLs were detected using composite interval mapping. Seven QTLs controlling Brix were mapped on chromosomes 1, 2, 6 and 9 in the combined environments. These QTLs could explain 2.69–13.08 % of the phenotypic variance. One major QTL for Brix on chromosome 2 located between the markers bnlg1909 and umc1635 explained 13.08 % of the phenotypic variance. Y6-1 also contributed QTL allele for increased Brix on chromosome 6. One major QTLs controlling PHT on chromosome 1 and TELA on chromosome 4 were also identified and accounted for 13.68 and 12.49 % of the phenotypic variance, respectively. QTL alleles for increased DTS were located on chromosomes 1 and 5 of YXD053. Significant epistatic effects were identified in four traits, but no significant QTL × environment interactions were observed. The information presented here may be valuable for stalk sugar content improvement via marker-assisted selection in silage maize breeding programs.  相似文献   

16.
To provide theoretical and applied references for acid phosphatase (APase) activity of maize, this study was to identify quantitative trait locus (QTL) for APase activity in root and rhizosphere soil of maize under low phosphorus (p) stress. The correlation and the QTL of APase activity in root (APR) and APase activity in rhizosphere soil (APS) were studied for the F2:3 population derived from the cross 082×Ye107 under low P stress in two sites. Analysis for each environment and joint analysis across two environments were used to identify QTL for the F2:3 population. A significant difference in APR and APS was found between 082 (P efficient genotype) and Ye107 (P deficient genotype). A large genetic variation and transgressive segregation of the F2:3 population were observed in Beibei and Hechuan. One stable QTL for APR was detected in different environments, which was located in the interval bnlg1350 to bnlg1449 on chromosome 3. Two stable QTLs for APS were detected, which were located in the interval umc2083 to umc1972 on chromosome 1 and in the interval umc2111 to dupssr10 on chromosome 5. The stable QTLs can be used in MAS breeding and theoretical study of maize.  相似文献   

17.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

18.
Quantitative trait loci (QTLs) with additive (a), additive × additive (aa) epistatic effects, and their treatmental interactions (at and aat) were studied under salt stress and normal conditions at seedling stage of wheat (Triticum aestivum L.). A set of 182 recombinant inbred lines (RILs) derived from cross Xiaoyan 54 × Jing 411 were used. A total of 29 additive QTLs and 17 epistasis were detected for 12 traits examined, among which eight and seven, respectively, were identified to have QTL × treatment effects. Physiological traits rather than biomass traits were more likely to be involved in QTL × treatment interactions. Ten intervals on chromosomes 1A, 1D, 2A (two), 2D, 3B, 4B, 5A, 5B and 7D showed overlapping QTLs for different traits; some of them represent a single locus affecting different traits and/or the same trait under both treatments. Eleven pairs of QTLs were detected on seemingly homoeologous positions of six chromosome groups of wheat, showing synteny among the A, B and D genomes. Ten pairs were detected in which each pair was contributed by the same parent, indicating a strong genetic plasticity of the QTLs. The results are helpful for understanding the genetic basis of salt tolerance in wheat and provide useful information for genetic improvement of salt tolerance in wheat by marker-assisted selection.  相似文献   

19.
玉米产量及产量相关性状QTL的图谱整合   总被引:10,自引:1,他引:9  
王帮太  吴建宇  丁俊强  席章营 《作物学报》2009,35(10):1836-1843
利用生物信息学方法,借助高密度分子标记遗传图谱IBM2 2008 neighbors,利用图谱映射和元分析的方法,对不同试验中定位的400个玉米产量及产量相关性状QTL进行了图谱整合,构建了玉米产量及产量相关性状QTL的综合图谱和一致性图谱。结果表明,玉米产量及产量相关性状QTL在10条染色体上呈非均匀分布,第1染色体上最多,第10染色体上最少;发掘出96个玉米产量及产量相关性状的“一致性”QTL;关联性较强的产量性状的QTL常集中在相同或相近的座位上。  相似文献   

20.
Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.)   总被引:13,自引:0,他引:13  
Summary Grain yield in the maize (Zea mays L) plant is sensitive to drought in the period three weeks either side of flowering. Maize is well-adapted to the use of restriction fragment length polymorphisms (RFLPs) to identify a tight linkage between gene(s) controlling the quantitative trait and a molecular marker. We have determined the chromosomal locations of quantitative trait loci (QTLs) affecting grain yield under drought, anthesis-silking interval, and number of ears per plant. The F3 families derived from the cross SD34(tolerant) × SD35 (intolerant) were evaluated for these traits in a two replicated experiment. RFLP analysis of the maize genome included non-radioactive DNA-DNA hybridization detection using chemiluminescence. To identify QTLs underlying tolerance to drought, the mean phenotypic performances of F3 families were compared based on genotypic classification at each of 70 RFLP marker loci. The genetic linkage map assembled from these markers was in good agreement with previously published maps. The phenotypic correlations between yield and other traits were highly significant. In the combined analyses, genomic regions significantly affecting tolerance to drought were found on chromosomes 1,3,5,6, and 8. For yield, a total of 50% of the phenotypic variance could be explained by five putative QTLs. Different types of gene action were found for the putative QTLs for the three traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号