首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Three silages were prepared from herbage treated with either an inoculant (Ecosyl, Imperial Chemical Industries plc) at 3.21 t?1, formic acid (850 g kg?1, Add F BP Chemicals International Ltd) at 2·3 1 t?1, or no additive (control). The herbage used was the first regrowth from perennial ryegrass swards. It was ensiled unwilted, and had mean dry matter and water soluble carbohydrate concentrations at ensiling of 154 and 24·1 g kg?1 respectively. Time course studies showed only minor effects of additive treatment on fermentation patterns within the silo and all three silages had good fermentations. Over an 88 d feeding period, commencing on day 7 of lactation, forty-eight British Friesian cows were used to evaluate the silages in a three-treatment, randomized-block design experiment. The animals were stalled individually, offered the silages ad libitum, and in addition received 5 kg d?1 of a supplement containing 196 g kg?1 crude protein. On the basis of the data recorded during the final 28 d on treatment the animals receiving the inoculant-treated silage consumed 12 and 10% more silage dry matter and produced 2·1 and 2·3 kg d?1 more milk than those given the control and formic acid-treated silages respectively. Over the total experimental period the milk yields were 1957, 1894 and 2094 (±41·3) kg for animals receiving the control, formic acid- and inoculant-treated silages respectively. Animals offered the formic acid treated silage produced milk of significantly higher fat concentration than those given the other two silages. Total ration digestibility studies, conducted with three cows per treatment, indicated no significant differences in digestibility coefficients, nitrogen utilization or metabolizable energy concentrations of the three treatment diets. It is concluded that the higher milk yield recorded with the inoculant-treated silage, and the higher milk fat concentration with the formic acid-treated silage, over that obtained with the control silage, were due to the increases in ME intake of 5 and 16 MJ d?1 for the formic acid and inoculant-treated silages respectively.  相似文献   

2.
Herbage from the first regrowth of perennial ryegrass-based swards was directly ensiled after treatment with a bacterial inoculant/enzyme preparation (SIL-ALL, Alltech UK) at 3·0 1 t?1, formic acid (850 g kg?1) at 2·59 1 t?1 or no additive (Control). The mean dry matter (DM) and water-soluble carbohydrate concentrations of the grass were 185 and 24·0 g kg?1 (fresh basis) respectively. Lactic acid concentrations after ensiling increased at a lower rate in formic acid-treated herbage than with the other treatments. All silages were well preserved and formic acid-treated silage had a lower ultimate concentration of lactic acid and higher concentration of water-soluble carbohydrate. Effluent output was increased on a proportional basis by ?0·06 with formic treatment, whereas the inoculant reduced effluent output by 0·05 in comparison with the mean effluent production of the control silage. The in vivo digestibilities of the silages were determined using sheep. The digestibilities of DM, organic matter and energy were significantly higher with inoculant-treated silage than with formic acid treatment, whereas values for the control silage were intermediate. The three silages were offered ad libitum to forty dairy cows with individual recording of daily intakes for a 10-week period in a randomized block experiment with four treatments. Sixteen animals were offered the control silage with half of these offered 3 kg concentrates per day (C3) and the other half offered 7 kg concentrates per day (C7). Twelve animals were allocated to each of the additive-treated silages, with concentrates offered at 5 kg d?1. Treatment effects on animal performance were measured in weeks 7–10. To compare animal performance for the treated silages with the control, an estimate of performance at 5 kg concentrates per day was obtained by regression using values obtained at 3 and 7 kg concentrates. In comparison with estimated silage intake for the control silage with 5 kg d?1 concentrates, inoculant and formic acid treatment of the silages increased dry matter intake by 0·04 (P > 0·05) and 0·13 (P > 0·01) respectively. In comparison with estimated milk production and yield of fat plus protein for the control treatment with 5 kg d?1 concentrates, neither inoculant treatment nor formic acid treatment produced any significant differences.  相似文献   

3.
An experiment involving forty-five British Friesian cows in mid-late lactation was carried out to evaluate the effects of ensiling on herbage digestibility, dry-matter intake and milk production. The herbage from the primary growth of a predominantly perennial ryegrass sward that had received 123 kg N ha?1 was zero grazed (ZG) from 27 April to 24 May 1992. Before going onto the experimental diets all animals were offered a common silage as the sole diet and dry-matter intakes and milk yields were recorded. The herbage was mown, picked-up with a precision-chop harvester and offered as the sole diet, twice daily, 10 fifteen cows that were on average 176 days into lactation. On May 20 herbage from the same sward was harvested identically to the ZG herbage and ensiled, alternative loads being untreated (UT) or treated with formic acid (2.4 l?1) (FA). For silages UT and FA respectively, pH values were 3.94 and 3.92 and ammonia nitrogen concentrations were 95 and 75 [g(kg total N?1)]. Forty-two days after ensiling, the silages were fed twice daily as the sole diet to thirty cows which were on average 166 days into lactation. The feeding interval was 28 days and the last 7 days was the main recording period for each treatment. For diets ZG, UT and FA, dry-matter intakes (DMI) (kg d?1), milk yields (kg d?1), fat plus protein yields (kg d?1). milk fat concentration (g kg?1), milk protein concentration (g kg?1)and fat plus protein yields [kg (kg DMI)?1] were 12.70, 11.51 and 12.07 (Av s.e.d. = 0.458); 12.79, 10.01 and 10.18 (Av s.e.d. = 0.346); 0.900, 0.649 and 0.682 (Av s.e.d. = 0.026); 39.8, 33.7 and 36.7 (Av s.e.d. = 0.174); 32.9, 29.9 and 30.0 (Av s.e.d. = 0.83); 0.073, 0.055 and 0.055 (Av s.e.d. = 0.003). UT treatment significantly increased dry matter (DM), organic matter (OM). energy and crude fibre digestibilities and the digestible OM concentration. UT and FA compared with ZG altered rumen fermentation patterns, significantly decreasing butyrate and increasing valerate concentrations. FA treatment significantly decreased the non-glucogenic ratio. It is concluded that ensiling using formic acid had no effect on forage DMI relative to the parent fresh herbage. Ensiling either untreated or with formic acid significantly decreased milk yield and milk fat plus protein yield, resulting in a lower efficiency of conversion of DMI to milk fat plus protein.  相似文献   

4.
A randomized block experiment involving thirty-six lactating dairy cattle was carried out to evaluate a bacterial inoculant (Grazyme Grobac, Agritech), containing bacteria, enzymes and a rumen enhancer, as a silage additive. Herbage from the primary regrowth of predominantly perennial ryegrass swards was ensiled unwilted and precision-chopped after a 51-d growth interval on 4 and 5 August. Alternate loads of herbage were ensiled either untreated (C) or treated with formic acid at a rate of 2.65 1 (t herbage)?1 (F) or the inoculant at a rate of 0.64 kg (t grass)?1 (I). The treatments were harvested using the same harvester in the rotation of I, F and C treatments. Mean dry-matter (DM), water-soluble carbohydrate and nitrate nitrogen (N) concentrations and buffering capacity of the C herbages at ensiling were 198 g kg?1, 18 2 g kg?1, 290 mg (1 juice)?1 and 379 mequiv. (kg DM)?1 respectively. For silages C, F and I pH values were 3.7, 3.8 and 3.8 and ammonia N concentrations 61, 43 and 58 g (kg total N)?1 respectively. Inoculant treatment did not alter aerobic stability of the silages, whereas formic acid treatment increased it. The silages were offered ad libitum and supplemented with 5 kg of concentrates per head daily. For treatments C, F and I silage DM intakes were 10.8, 11.2 and 10.8 (s.e. 0–33) kg d?1, milk yields 21.3, 20.9 and 20.7 (s.e. 0.52) kg d?1, fat concentrations 38.3, 40.3 and 37.2 (s.e. 0.83) g kg?1 and protein concentrations 30.8, 32.6 and 32.6 (s.e. 0.49) g kg?1 respectively. Inoculant treatment did not alter (P0.05) the digestibility coefficients of the total diets, whereas formic acid treatment decreased DM (P0.05), organic matter (P0.05), neutral detergent fibre (P0.01) and hemicellulose (P0.01) digestibilities. Formic acid treatment altered rumen fermentation patterns, whereas inoculant treatment had no effect. It is concluded that, relative to a well-preserved untreated silage, additive treatment did not alter DM intake, milk yield or fat plus protein yield. However, both additive treatments increased milk protein concentrations and formic acid treatment increased milk fat concentration relative to the well-preserved, untreated silage.  相似文献   

5.
Two silages were made from perennial ryegrass ensiled without wilting in 2-t capacity silos with the application of either formic acid or an enzyme mixture of cellulases and hemicellulases. Effluent losses were monitored over the ensiling period. Subsequent silage analysis showed that the enzyme-treated silage had higher concentrations of residual water soluble carbohydrate, lactic acid and acetic acid, and lower concentrations of cellulose, ADF and NDF. Effluent production was higher with the enzyme silage (formic acid, 211 1 t?1; enzyme, 2671 t?1). The silages were either offered as the sole diet or supplemented with rapeseed meal at two levels (60 or 120 g fresh weight kg?1 silage DM offered) to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole tract digestibilities for DM, OM, N, ADF and NDF were similar for all diets although nitrogen retention (g d?1) was increased with supplementation of both silages (formic acid, 21·1; formic acid + 60 g, 23·5; formic acid+ 120 g, 28·5; enzyme, 22·6; enzyme + 60 g, 25·8; enzyme+ 120 g, 31·6). Rumen pH, ammonia and total volatile fatty acids patterns were similar. Supplementation increased the amount of organic matter apparently digested in the rumen (ADOMR) with formic acid-treated silage but not with enzyme-treated silage. Liveweight gains were similar for both unsupplemented silages (0·49 kg d?1). These increased to 0·55 and 0·65 kg d?1 for formic + 60 and formic + 120 respectively. Liveweight gains for the corresponding enzyme-treated supplemented diets were 0·81 and 0·91 kg d?1 respectively. Liveweight gains on supplemented enzyme-treated diets were significantly (P < 0·05) greater than those on formic acid-treated diets.  相似文献   

6.
An Italian ryegrass and hybrid ryegrass sward was harvested on 11 May 1994. The mean dry‐matter (DM) content of the herbage was 197 g kg–1 fresh matter (FM), and mean nitrogen and water‐soluble carbohydrate contents were 20 and 272 g kg–1 DM respectively. Approximately 72% of total nitrogen (TN) was in the form of protein‐nitrogen. The herbage was treated with either no additive, formic acid (3·3 l t–1) (Add‐F, BP) or inoculant (2·3 l t–1) (Live‐system, Genus) and ensiled in 100 t silos. Changes in effluent composition with time showed that silage fermentation and protein breakdown were delayed by treatment with formic acid. Formic acid and inoculant treatments also inhibited amino acid catabolism during ensilage. All silages were well fermented at opening with pH values < 4·0 and ammonia‐N concentrations of ≤ 50 g kg–1 TN after 120 d ensilage. Treatment had an effect on protein breakdown as measured by free amino acid concentration, with values of 21·5, 18·2 and 13·2 mol kg–1 N at opening (191 d) for untreated, formic acid‐treated and inoculated silages respectively. Amino acid catabolism occurred to the greatest extent in untreated silages with significant decreases in glutamic acid, lysine and arginine, and increases in gamma amino butyric acid and ornithine. The silages were offered ad libitum without concentrate supplementation to thirty‐six Charolais beef steers for a period of 69 d (mean live weight 401 kg). Silage dry‐matter intakes and liveweight gains were significantly (P < 0·05) higher on the treated silages. Silage dry‐matter intakes were 7·42, 8·41 and 8·23 kg d–1 (s.e.d. 0·27) with liveweight gains of 0·66, 0·94 and 0·89 kg d–1 (s.e.d. 0·058) for untreated, formic acid‐treated and inoculated silage‐fed cattle respectively. In conclusion, additives increased the intake of silage and liveweight gain by the beef steers, and it is suggested that this may be caused in part by the amino acid balance in these silages.  相似文献   

7.
This experiment evaluated a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive. Three silages were harvested on 8 September 1989 from the second regrowth of a perennial ryegrass sward, which had received 167 kg N, 28 kg P2O5 and 45 kg K2O ha?1. Mean dry matter (DM) and water soluble carbohydrate concentrations of the herbages at ensiling were 148 g kg?1 and 78 g.(kg DM)?1 respectively. Herbages were treated with either no additive (C), formic acid (3·0 1 t?1) (F) or the inoculant (3·0 1 t?1) (I) and were ensiled in three 80-t capacity silos. For silages C, F and I respectively, pH values were 4·70, 3·77 and 4·47, ammonia-N concentrations were 192, 111 and 182 g (kg total N)?1 and butyrate concentrations were 6·8, 1·8 and 7·1 g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·0 kg concentrates per head daily to thirty-six heifers (mean initial live weight 442 kg). For silages C, F and I, silage DM intakes were 12·7, 14·4 and 14·1 (s.e. 0·42) g (kg live weight)?1, metabolizable energy intakes were 155, 166 and 172 (s.e. 5·1) kJ (kg live weight)?1, and estimated carcass gains were 456, 519 and 518 (s.e. 28·1) g d?1 respectively. A further 18 similar cattle were used in studies on the digestibility of the silages, and rumen degradation of each was estimated with three mature cattle. Inoculant treatment significantly increased crude fibre (P <0·01), neutral detergent fibre (P <0·01), modified acid detergent fibre (P <0·01), hemicellulose (P <0·05) and N digestibilities (P <0·05) and tended to increase N retention from the total diet. It is concluded that although treatment of herbage that was difficult to ensile with the inoculant did not improve silage fermentation, it significantly increased digestibility, especially of the fibre fractions, and silage DM intake and tended to increase animal performance to levels similar to those achieved with a well preserved formic acid-treated silage. Increases in silage DM and metabolizable energy intakes are likely to have been attributable to the effects of the inoculant on digestibility, especially of the fibre fractions.  相似文献   

8.
Four silages were prepared from grass treated with additives designed to produce different extents of fermentation in the silo. The additive treatments were: formic acid at 5 l t?1; a bacterial inoculant (Ecosyl, ICI plc); the inoculant plus molasses at 20 kg t?1; and a noadditive control. All silages were well preserved. Formic acid severely restricted the extent of fermentation, the concentration of lactic acid being only 50% of that seen for the other treatments, all of which were similar in lactic acid concentrations. The silages were offered ad libitum, either as the sole component of the diet or together with three supplement treatments to 16 British Friesian cows, in four 4 treatment × 4 period Latin squares with periods of 28 d duration. The supplements were: a barley-based mixture at 5 kg d?1 (B); a high-fat, high-protein product at 2 kg d?1 (FPI) and at 3 kg d ?1 (FP2); both FP treatments were given with 1 kg d?1 of molassed sugarbeet pulp. A preliminary experiment, using three lactating, rumen-cannulated cows in a 3×3 Latin square design with 28-d periods, provided information on rumen digestion when the supplements were given with a separate, non-experimental silage. In the preliminary experiment, neither of the FP treatments influenced the molar proportion of the major rumen volatile fatty acids compared with treatment B; nor were there any depressive effects of the FP treatments on silage intake compared with treatment B. In the main experiment, the intake of silage with the inoculant treatment was less than that with the other treatments, the effect being generally significant (at least P<0·05) for all three supplements. When the silages were given unsupplemented, there were differences in the concentration (P<0·001) and yield (P<0·01) of milk fat, both of which were lowest for the no-additive control and highest for the formic acid silage. When supplement B was given, the concentration and yield of milk fat were lowest for the no-additive control and the concentration and yield of milk protein were highest for the formic acid silage. For all silages both FP treatments tended to depress silage intake and reduce the concentration of fat and protein in milk compared with treatment B. Although there were clear indications of differences in nutritional characteristics between the silages, there was little evidence that the differences between silages influenced the responses to changes in the composition of the supplements.  相似文献   

9.
Effects of formic acid, formaldehyde and two levels of tannic acid on changes in the distribution of nitrogen (N) and plant enzymatic activity during ensilage of lucerne (Medicago sativa) were studied. Lucerne [300 g dry matter (DM) kg?1 forage] silages were prepared untreated (control) and with formic acid (4 g kg?1 DM), formaldehyde (1 g kg?1 DM) and two levels of tannic acid (20 and 50 g kg?1 DM) as additives. Inhibition of proteolysis by formic acid was more effective than the other additives during the first 7 d of ensiling. Tannic acid was as effective at inhibiting production of non‐protein‐N, ammonia‐N and free amino acid‐N as formic acid and formaldehyde. However, increased concentrations of non‐protein‐N and free amino acid‐N in silage from day 1 to 35 of ensiling were less with the higher level of tannic acid than that in the control and other additive‐treated silages. Carboxypeptidase lost its activity slowly with increasing time of ensiling. At day 2, it still had 0·79 of the original activity in the control silage. After 21 d of ensiling, high levels of carboxypeptidase activity, proportionately 0·41, 0·49, 0·10, 0·35 and 0·30 of the original activity, remained in the control silage, and silages made with formic acid, formaldehyde, and low and high levels of tannic acid respectively. There were higher levels of activity of acid proteinase in formic acid‐treated silage than in the control silage until day 2 of ensilage indicating that the reduction of proteolysis by formic acid was probably due to acidifying the forage below the pH optima of plant protease. Aminopeptidase activity in all silages declined rapidly after ensiling.  相似文献   

10.
In a two-year experiment, three silages were prepared from herbage treated either with an inoculant at 1·25 × 105 organisms (g fresh material (FM))−1. formic acid (850 g kg−1) at 4 1 (t FM)−1, or no additive (untreated). In Experiment 1, unwilted and in Experiment 2, wilted silages were investigated and had mean dry matter (DM) and water soluble carbohydrate (WSC) concentrations at ensiling of 171 g kg−1 and 17·6 g (kg FM)−1 and 263 g kg−1 and 25·1 g (kg FM)−1, respectively. In Experiment 1, 45 and in Experiment 2, 54 individually fed cows were used to evaluate the silages in three-treatment, randomized-block design experiments. During weeks 4-12 of lactation the cows were offered silages ad libitum and during weeks 15-26 a constant amount of silage was fed. There were few major differences in chemical composition of the resulting silages. Formic acid had no effect on silage digestibility. Inoculant treatment increased digestibility when the grass had been wilted. The use of formic acid resulted in increased silage DM intake of 9% during weeks 4-12 of lactation in Experiment 1 but not in Experiment 2. The inoculant gave no increase in silage DM intake over the control in Experiment 1 but increased silage DM intake by 7% in Experiment 2. There was no significant response in milk yield to formic acid. In Experiment 2 the response in milk yield to inoculant treatment was significant both in weeks 4-12 of lactation (4%) and in weeks 15-26 of lactation (5%). It is concluded that the response in milk yield to the use of a specific inoculant appears to be mediated through increased intake of metabolizable energy (ME).  相似文献   

11.
Five experiments were carried out in the years 1980-1983 and 1986 to study the effect of treating grass at ensiling with sulphuric acid (850 g kg?1) and formic acid (850 g kg?1) additives alone, and in mixtures with or without formalin on the preservation of grass, in vivo digestibility in sheep, in-silo loss, intake and performance of finishing cattle. Primary growth grass was ensiled in experiments 1 (3–4 June 1980), 2 (12-15 June 1981) and 3 (31 May-2 June 1982), primary regrowth grass in experiment 4 (1-2 August 1983) and secondary regrowth grass in experiment 5 (7-10 October 1986). During the ensiling period within each experiment, approximately 60 t of unwilted, double-chopped, additive-treated or untreated grass was packed into covered concrete-walled 60-t capacity silos. The dry matter (DM) contents of the ensiled grass in experiments 1, 2 and 5 ranged from 155-180 g kg?1 and were lower than those recorded in experiments 3 and 4 (214 g kg?1). With the exception of grass ensiled in experiment 2, where water-soluble carbohydrate (WSC) contents were low, at 104 g kg?1 DM, grass in all other experiments contained relatively high WSC contents ranging from 140-154 g kg?1 DM. In experiments 1, 3 and 4 all silages were well-preserved. However, in experiment 2 the 450 g kg?1 sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, buffering capacity (Bc) and ammonia nitrogen contents than the untreated silage. In experiment 5, the sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, Bc, ammonia nitrogen, butyrate and volatile fatty acid (VFA) contents than the untreated silage. Each of the silages was offered daily with various levels of a supplementary concentrate for approximately 70-d periods to twelve animals of mixed breed in experiments 1, 3, 4 and 5 and to fifteen animals in experiment 2. All animals weighed between 380-470 kg at the start of the experiments. In experiments 1, 2 and 3 there were no significant differences between silages for any of the intake or animal performance parameters. In experiment 4, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes and daily liveweight gains than those fed the sulphuric acid-treated and untreated silages; in experiment 5, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes than those fed the untreated silage. It was concluded that formic acid was a more effective silage additive than sulphuric acid. Increasing the level of supplementation significantly decreased silage DM intakes in cattle in experiments 3 and 4, and significantly increased daily liveweight gains and daily carcass in cattle in experiments 1, 3 and 4.  相似文献   

12.
A changeover design experiment involving thirty-six 3-month-old Friesian male calves (mean initial live weight 127 kg) was carried out to evaluate a bacterial inoculant based on a single strain of Lactobacillus plantarum (Ecosyl, ICI) as a silage additive. On 25–31 August 1988, nine silages were harvested using double-chop forage harvesters from the second regrowth of three swards, namely permanent pasture which had received 100 kg N ha?1 and perennial ryegrass which had received either 100 or 150 kg N ha?1. Herbages (mean DM and WSC concentrations 144 and 11·2 g kg?1 respectively) from each sward were treated with either no additive, formic acid (2·4 1 t?1) or the inoculant (3·3·1 t?1) and were ensiled in 126 silos of 0·8 t capacity. The only effects of the inoculant on chemical composition of the silages were a decrease in modified acid detergent fibre and an increase in endotoxin and crude and true protein concentrations. Silages were offered ad libitum and supplemented with 1·0 kg of concentrates per head daily for three periods each of 3 weeks in a partially balanced changeover design experiment. Digestibilities of the total diets were determined at the end of the experiment. For the untreated, formic acid-treated and inoculant-treated silages, silage dry matter intakes were respectively 3·58, 3·66 and 3·67 (s.e. 0·044) kg d?1, estimated metabolizable energy (ME) intakes were 46·1, 46·7 and 47·1 (s.e. 0·44) MJ d?1, energy digestibilities were 0·727, 0·727 and 0·738 (s.e. 0·0046) and organic matter digestibilities were 0·770, 0·771 and 0·788 (s.e. 0·0042). Rumen degradabilities of the silages were determined using two rumen-fistulated cows. Mean dry matter and nitrogen degradabilities for the control, formic acid-treated and inoculant-treated silages, assuming an outflow rate of 0·05 h?1, were 10·508, 0·49, 0·491 and 0·702, 0·676 and 0·729. It is concluded that the inoculant significantly increased the digestibility of the silages but did not affect dry matter or ME intake.  相似文献   

13.
Two silages were produced by harvesting grass either unwilted, using a direct cutting flail forage harvester (flail-direct), or wilted following precut-ting and being picked up using a meter-chop harvester (precision-wilted). Formic acid was applied at the rates of 2·45 and 2·9 1 t-1 for the flail-direct and precision-wilted silages, respectively. Weather conditions were difficult, both before and during harvesting with a total of 27 mm rainfall falling on the wilted herbage before ensiling. The in-silo dry matter losses were 199 and 68 g kg-1 for the flail-direct and precision-wilted silages, respectively. The resulting silages had mean particle lengths of 49 and 24 mm, dry matter contents of 186 and 276 g kg--1 and D-values of 068 and 062 for the flail-direct and precision-wilted silages, respectively. During a 141-day feeding period commencing on 19 November, the two silages were offered to 88 British Friesian cows with a mean calving date of 21 January and divided into four groups in a 2×2 factorial design experiment. The silos were divided longitudinally and two groups of cows were self-fed the silages in situ, one for each silage type, while the other two groups were easy-fed the same silages along a feed fence. There were no significant interactions between system of silage harvesting and feeding on any of the measurements of animal performance. Animals on the flail-direct silage consumed 16% less silage dry matter and produced 10% more milk per cow than those on the precision-wilted silage treatment. The overall effect was a 12% greater milk output for each unit of grass dry matter ensiled with the flail-direct than with the precision-wilted harvesting system. System of silage feeding did not significantly influence silage intake or milk output, with the mean milk yields during the final 21 days of the study being 234 and 236 kg d-1 (±0.30) for the self- and easy-feed systems, respectively. The effects of the treatments on milk composition, liveweight change, body condition score and total ration digestibility are also reported.  相似文献   

14.
The effect of offering a total mixed ration of silage and concentrate (proportionately 0·44 silage) system [indoor feeding system (IF)] was compared with grazing at a high daily herbage allowance with a low level of concentrate supplementation [early grazing system (EG)] in early spring on the performance of spring‐calving dairy cows in Ireland. Sixty‐four spring‐calving Holstein–Friesian dairy cows (mean calving date, 2 February) were allocated to one of two systems between 16 February and 4 April 2004. An equal number of primiparous and multiparous cows were assigned to each system. The dairy cows on the IF system were housed for a 7‐week period and offered a diet of 10·9 kg DM cow?1 d?1 (s.d. 2·3) of concentrate, the remainder of the diet was 8·6 kg DM cow?1 d?1 (s.d. 1·9) of grass silage. The dairy cows on the EG system were offered a mean daily herbage allowance of 15·1 kg DM cow?1 d?1 (s.d. 3·7) and were supplemented with 3·0 kg DM cow?1 d?1 (s.d. 1·0) of concentrate. There was no difference in milk yield between the two systems but the cows in the EG system had a higher milk protein concentration (2·9 g kg?1) and a higher milk protein yield than in the IF system. Milk fat concentration was higher for cows in the IF than EG system (3·0 g kg?1). There was no difference in total daily dry‐matter intake between the systems, measured in week 6 of the study. Mean live weight of the cows in the IF system was greater than in the EG system. The results of the study suggest that a slightly greater performance can be achieved by a system offering a high daily herbage allowance to spring‐calving dairy cows in early lactation compared with a system offering a total mixed ration containing a high proportion of concentrate with grass silage.  相似文献   

15.
Three studies were undertaken with the aim of examining in-silo losses associated with ensiling mixtures of beet pulp and herbage. In Experiment 1, first-regrowth perennial ryegrass was ensiled untreated or mixed with either 40 or 120 kg unmolassed beet pulp t?1 fresh grass prior to ensiling. In each of Experiments 2 and 3, second-regrowth ryegrass was ensiled untreated or mixed with either 40, 80 or 120 kg unmolassed beet pulp t?1 fresh grass prior to ensiling. Dry-matter concentrations of herbage ensiled in Experiments 1, 2 and 3 were 141, 157 and 139 g kg?1 respectively. Time-course studies indicated a more rapid fermentation with the untreated silages. Ensiling beet pulp with herbage resulted in significant improvements in silage fermentation, reflected in reductions in silage pH and ammonia nitrogen concentrations, with these effects being pronounced at beet pulp inclusion in excess of 80kg t?1. Beet pulp inclusion increased the dry-matter concentrations of the resulting silages while reducing crude protein, modified acid detergent fibre and gross energy concentrations. In Experiment 1 beet pulp retained 1·62 and 1·641 effluent kg?1 at the 40 and 120kg t?1 application rates respectively. In Experiments 2 and 3, effluent retentions were 1·40, 1·29 and 0·93 1 kg?1 and 2·87, 2·19 and 1·781 kg?1 at the 40, 80 and 120kg t?1 beet pulp inclusion rates respectively. In each of Experiments 1 and 3, in-silo losses were reduced with increasing level of beet pulp inclusion, while in Experiment 2 in-silo losses were relatively unaffected by treatment. Nutrient losses in effluent were reduced by the inclusion of beet pulp in all three experiments, while nutrient losses in surface waste and invisible nutrient losses tended to increase with higher levels of beet pulp inclusion. It is concluded that the inclusion of beet pulp with herbage at ensiling can result in an improved silage fermentation and a reduction in in-silo losses, while at the same time retaining considerable quantities of effluent within the silo. However, with herbage dry-matter concentrations below 160gkg?1, beet pulp inclusion in excess of 120 kg t?1 herbage would be required to eliminate effluent production totally.  相似文献   

16.
Three grass silages made in early June from S23 perennial ryegrass were compared in a 16-week feeding experiment with twelve Ayrshire cows. The silages were made from uniform herbage which received either formic acid (‘Add-F’) at the rate of 201 t?1, or a formalin-sulphuric acid mixture (‘Syiade’) at rates of 2.0 and 4.4 1 t?1. The silages were offered ad libitum either alone or supplemented with a cube containing 38% CP in the DM at the rate of 1.4 kg per 10 kg milk. The daily intakes of silage DM were not significantly different on the three silage treatments, and averaged 10.7, 11.0 and 11.0 kg per cow on the formic acid and the 2.0 and 44 1 t?1 formalin-acid treatments respectively. The mean daily yields of milk were 15.1, 13.3 and 13.7 kg per cow in the unsupplemented treatments, and 18.2, 18.1 and 18.0 kg per cow in the supplemented treatments on the formic acid and the 2.0 and 44 1 t?1 formalin-acid treatments respectively. On the basis of total animal production expressed in terms of metabolizable energy requirements, it was concluded that the differences between the three silages were small.  相似文献   

17.
Forty‐eight high‐yielding dairy cows of the Swedish Red breed were used to examine the effects of providing pea–oat silage (P), grass–clover silage (G) and a 0·50:0·50 mixture of the silages (M) ad libitum in diets with two concentrate levels (7 or 10 kg d?1). A 9‐week experiment, including a 2‐week pre‐experimental period in which the cows were all fed the same diet, and an in vivo apparent digestibility study were conducted comparing the six dietary treatments (M7, M10, P7, P10, G7, G10). Intake and digestibility of the diets and milk production and live weight of the cows were measured. The G silage [11·3 MJ ME kg?1 dry matter (DM)] was first‐cut grass herbage wilted for 24 h prior to addition of an additive, containing formic acid, propionic acid and ammonia, at 4 L t?1 fresh matter (FM). The P forage was cut when the peas were at pod fill and ensiled directly with 6 L t?1 FM of the same additive. The main hypothesis tested, that cows fed the M silage would produce more milk than the cows fed either the P or the G silages, was confirmed. The cows fed the M7 dietary treatment had similar milk yield and milk composition to cows offered the M10, G10 and P10 dietary treatments, and cows offered the G7 and P7 dietary treatments had lower milk and milk protein yields. This suggested that a mixed ration of pea–oat bi‐crop and grass–clover silage has a concentrate‐sparing effect, and that the use of pea–oat bi‐crop and grass–clover silage as a mixed ration for high‐yielding dairy cows can be recommended.  相似文献   

18.
A randomized block design experiment involving thirty beef cattle (mean initial live weight 462 kg) was carried out to evaluate a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive and to provide further information in relation to its mode of action. Three herbages were harvested on 10 August 1989 using three double-chop forage harvesters from the first regrowth of a perennial ryegrass sward which had received 170 kg N, 25 kg P2O5, and 42 kg K2O ha?1. They received either no additive (silage C), formic acid at 2·91 (t grass)?1(silage F) or the inoculant at 3·21 (t grass)?1 (silage I). Mean dry-matter (DM), water-soluble carbohydrate and crude protein concentrations in the untreated herbages were 158g kg?1, 88 g (kg DM)? and 183g (kg DM)?1 respectively. For silages C, F and I respectively, pH values were 4·01, 3·57 and 3·62; ammonia N concentrations 117, 55 and 77 g (kg total N)?1; and butyrate concentrations 2·18, 0·50 and l·24g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·5 kg concentrates per head daily for 77 days. For treatments C, F and I, silage DM intakes were 6·59, 7·25 and 6·80 (s.e. 0·074)kg d?1; metabolizable energy (ME) intakes 86,99 and 94 (s.e. 0·8) MJ d?1; liveweight gains 0·90, 0·97 and 1·02(s.e.0·066) kg d?1; carcass gains 541,656 and 680 (s.e. 34·0) g d?1. Inoculant treatment increased DM (P < 0·01), organic matter (P < 0·01), crude fibre (P < 0·05), neutral detergent fibre (NDF) (P < 0·05) and energy (P < 0·05) digestibilities, the digestible organic matter concentration (P < 0·01) and the ME concentration (P < 0·05) of the total diets. Additive treatment altered rumen fermentation patterns but had little effect on the rumen degradability of silage DM, modified acid detergent (MAD) fibre, NDF or hemicellulose. It is concluded that treatment with the inoculant improved silage fermentation and increased digestibility, had little effect on silage DM intake but significantly increased carcass gain to a level similar to that sustained by a well-preserved formic acid-treated silage  相似文献   

19.
Eighty winter‐calving dairy cows of mixed parity were managed in four grassland‐based systems of milk production (F‐F, F‐C, C‐F and C‐C) over a full lactation (year 1) and during the winter period of the subsequent lactation (year 2). During the winter periods cows on systems F‐F and F‐C were offered silages of high feeding value, supplemented with 6·0 kg d?1 of concentrate [crude protein (CP), 307 g kg?1 dry matter (DM)] through an out‐of‐parlour feeding system, while cows on systems C‐F and C‐C were offered silages of medium feeding value, supplemented with c. 12·8 kg d?1 of concentrate (CP, 204 g kg?1 DM), in the form of a complete diet. After 25 February in year 1, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, achieving full turnout on 17 April. Thereafter, until 21 October, these cows were offered a high daily allowance of herbage within a flexible grazing system (23·0 kg DM per cow, measured above a height of 4·0 cm), supplemented with 0·5 kg d?1 of a ‘high magnesium’ concentrate. Cows on systems F‐C and C‐C (year 1) commenced grazing on 1 April, achieving full turnout on 17 April. Thereafter, until 20 October, these cows were managed on a restricted allowance of herbage in a rotational paddock grazing system, with concentrates (average allocation, 3·9 kg d?1) being offered according to yield. In year 2, cows on systems F‐F and C‐F were given access to grazing for periods of increasing duration, from 11 March to 8 April, at which point the study was terminated. With systems F‐F, F‐C, C‐F and C‐C, mean feed inputs and milk outputs (per animal) during year 1 of the study were as follows: total concentrate DM intakes [881, 1272, 1729 and 2171 kg (s.e.m. 96·1)]; total silage DM intakes [1722, 1713, 1047 and 1154 kg (s.e.m. 70·7)], total grass DM intakes (3245, 2479, 3057 and 2481 kg) and total milk outputs [7541, 7527, 7459 and 7825 kg (s.e.m. 305·8)] respectively. Stocking rates associated with each of the four systems were 2·2, 2·5, 2·6 and 2·9 cows per hectare respectively. Performance of dairy cows on the systems during the winter of year 2 was similar to that recorded during year 1. The results of this study indicate that similar levels of milk output, DM intakes, tissue changes and plasma metabolite profiles can be achieved from grassland‐based systems involving very different combinations of grass silage, grazed grass and concentrate feeds.  相似文献   

20.
Twenty early-lactation British Friesian dairy cows were used in a five-treatment, partially balanced change-over design experiment, consisting of four periods each of 4 weeks' duration. Three treatments consisted of offering ensiled blends of silage and sugar-beet pulp produced by mixing 40 (S40), 80 (S80) and 120 (S120)kg beet pulp t?1 herbage at ensiling. In two further treatments, an untreated silage was supplemented with 5 kg of beet pulp daily, either mixed with the silage prior to feeding (SM) or offered in two equal feeds each day (ST). Silage was offered ad libitum in all treatments, while in addition all cows received 1 kg d?1 of a concentrate supplement containing 470 g crude protein kg?1 fresh weight. Dry-matter intakes and milk fat + protein yields increased with increasing level of beet pulp inclusion in the diet, irrespective of whether it was offered in the form of an ensiled blend or as a supplement to an untreated silage. With the exception of D-value (digestible organic matter in the dry matter), which was significantly higher with treatments SM and ST than with the ensiled blend treatment (S80), no significant differences were identified in total ration digestibility or in the efficiency of nitrogen or energy utilization between methods of beet pulp inclusion in the diet. However, offering beet pulp in the form of an ensiled blend reduced the acetate/propionate ratio in rumen fluid compared with offering best pulp as a supplement to an untreated silage. When account is taken of differences in the efficiency of recovery of edible silage dry matter between ensilage systems and of differences in dry-matter intakes between treatments, total milk fat + protein outputs per 10000 kg herbage dry matter ensiled were 55 (s.e. 50·9) and 78 (s.e. 47·5) kg lower when equal quantities of beet pulp were offered as part of an ensiled blend rather than as a supplement to an untreated silage, as in treatments SM and ST respectively. However, these differences were non-significant. Alternatively, in order to produce an equal milk output from ensiling a given quantity of herbage, 12·5 and 16·2% more beet pulp would have been required if the beet pulp had been mixed with the herbage at ensiling, rather than offered as a supplement, as in treatments SM and ST respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号