首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microearthquake data from a downhole seismometer network on the San Andreas fault appear to outline two aseismic asperities that may correspond to the locations of the foreshocks and main shocks of the Parkfield characteristic earthquakes. The source parameters of the microearthquakes show that a few of the earthquakes have significantly higher stress drops than most. Furthermore, the magnitude-frequency statistics suggest that at local magnitude 0.6, the cumulative number of small events begins to fall off the usual Gutenberg-Richter (b = -1) relation, in which the number of events increases exponentially with decreasing magnitude. The downhole seismometer data establish a baseline from which the evolution of the earthquake process at Parkfield can be monitored and suggest that different mechanical conditions than those that lead to the typical Gutenberg-Richter relation may be operating for the smallest of Parkfield microearthquakes.  相似文献   

2.
Deep fault slip information from characteristically repeating microearthquakes reveals previously unrecognized patterns of extensive, large-amplitude, long-duration, quasiperiodic repetition of aseismic events along much of a 175-kilometer segment of the central San Andreas fault. Pulsing occurs both in conjunction with and independent of transient slip from larger earthquakes. It extends to depths of approximately 10 to 11 kilometers but may be deeper, and it may be related to similar phenomena occurring in subduction zones. Over much of the study area, pulse onset periods also show a higher probability of larger earthquakes, which may provide useful information for earthquake forecasting.  相似文献   

3.
Stein RS  King GC  Lin J 《Science (New York, N.Y.)》1994,265(5177):1432-1435
A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M >/= 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-lnglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.  相似文献   

4.
Accelerated plate tectonics   总被引:2,自引:0,他引:2  
The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.  相似文献   

5.
Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.  相似文献   

6.
During the period 1973 to 1991 the interval between eruptions from a periodic geyser in Northern California exhibited precursory variations 1 to 3 days before the three largest earthquakes within a 250-kilometer radius of the geyser. These include the magnitude 7.1 Loma Prieta earthquake of 18 October 1989 for which a similar preseismic signal was recorded by a strainmeter located halfway between the geyser and the earthquake. These data show that at least some earthquakes possess observable precursors, one of the prerequisites for successful earthquake prediction. All three earthquakes were further than 130 kilometers from the geyser, suggesting that precursors might be more easily found around rather than within the ultimate rupture zone of large California earthquakes.  相似文献   

7.
Volcanic activity and great earthquakes at convergent plate margins   总被引:1,自引:0,他引:1  
Carr MJ 《Science (New York, N.Y.)》1977,197(4304):655-657
Volcanoes are unusually quiet for periods of a few years to a few decades prior to great shallow-thrust earthquakes. This is the most obvious part of an apparent pattern of volcanic activity related to the occurrence of great earthquakes at some convergent plate margins.  相似文献   

8.
Microearthquake activity at St. Augustine volcano, located at the mouth of Cook Inlet in the Aleutian Islands, has been monitored since August 1970. Both before and after minor eruptive activity on 7 October 1971, numerous shallow-foci microearthquake swarms were recorded. Plots of the hourly frequency of microearthquakes often show a diurnal peaking of activity. A cross correlation of this activity with the calculated magnitudes of tidal acceleration exhibited two prominent phase relationships. The first, and slightly more predominant, phase condition is a phase delay in the microearthquake activity of approximately 1 hour from the time of maximum tidal acceleration. This is thought to be a direct microearthquake-triggering effect caused by tidal stresses. The second is a phase delay in the microearthquake activity of approximately 5 hours, which correlates well with the time of maximum oceanic tidal loading. Correlation of the individual peaks of swarm activity with defined components of the tides suggests that it may be necessary for tidal stressing to have a preferential orientation in order to be an effective trigger of microearthquakes.  相似文献   

9.
Recent earthquake prediction research in Japan   总被引:1,自引:0,他引:1  
Mogi K 《Science (New York, N.Y.)》1986,233(4761):324-330
Japan has experienced many major earthquake disasters in the past. Early in this century research began that was aimed at predicting the occurrence of earthquakes, and in 1965 an earthquake prediction program was started as a national project. In 1978 a program for constant monitoring and assessment was formally inaugurated with the goal of forecasting the major earthquake that is expected to occur in the near future in the Tokai district of central Honshu Island. The issue of predicting the anticipated Tokai earthquake is discussed in this article as well as the results of research on major recent earthquakes in Japan-the Izu earthquakes (1978 and 1980) and the Japan Sea earthquake (1983).  相似文献   

10.
Earth tides can trigger shallow thrust fault earthquakes   总被引:6,自引:0,他引:6  
We show a correlation between the occurrence of shallow thrust earthquakes and the occurrence of the strongest tides. The rate of earthquakes varies from the background rate by a factor of 3 with the tidal stress. The highest correlation is found when we assume a coefficient of friction of mu = 0.4 for the crust, although we see good correlation for mu between 0.2 and 0.6. Our results quantify the effect of applied stress on earthquake triggering, a key factor in understanding earthquake nucleation and cascades whereby one earthquake triggers others.  相似文献   

11.
An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.  相似文献   

12.
Far too few moderate earthquakes have occurred within the Los Angeles, California, metropolitan region during the 200-year-long historic period to account for observed strain accumulation, indicating that the historic era represents either a lull between clusters of moderate earthquakes or part of a centuries-long interseismic period between much larger (moment magnitude, M(w), 7.2 to 7.6) events. Geologic slip rates and relations between moment magnitude, average coseismic slip, and rupture area show that either of these hypotheses is possible, but that the latter is the more plausible of the two. The average time between M(w) 7.2 to 7.6 earthquakes from a combination of six fault systems within the metropolitan area was estimated to be about 140 years.  相似文献   

13.
Wyss M  Wiemer S 《Science (New York, N.Y.)》2000,290(5495):1334-1338
The Landers earthquake in June 1992 redistributed stress in southern California, shutting off the production of small earthquakes in some regions while increasing the seismicity in neighboring regions, up to the present. This earthquake also changed the ratio of small to large events in favor of more small earthquakes within about 100 kilometers of the epicenter. This implies that the probabilistic estimate for future earthquakes in southern California changed because of the Landers earthquake. The location of the strongest increase in probability for large earthquakes in southern California was the volume that subsequently produced the largest slip in the magnitude 7.1 Hector Mine earthquake of October 1999.  相似文献   

14.
Structure and in vitro transcription of human globin genes   总被引:44,自引:0,他引:44  
  相似文献   

15.
Chen WP  Yang Z 《Science (New York, N.Y.)》2004,304(5679):1949-1952
Eleven intracontinental earthquakes, with magnitudes ranging from 4.9 to 6, occurred in the mantle beneath the western Himalayan syntaxis, the western Kunlun Mountains, and southern Tibet (near Xigaze) between 1963 and 1999. High-resolution seismic waveforms show that some focal depths exceeded 100 kilometers, indicating that these earthquakes occurred in the mantle portion of the lithosphere, even though the crust has been thickened there. The occurrence of earthquakes in the mantle beneath continental regions where the subduction of oceanic lithosphere ceased tens of millions years ago indicates that the mantle lithosphere is sufficiently strong to accumulate elastic strain.  相似文献   

16.
Residuals for P-wave traveltimes at a seismnograph station near Bear Valley, California, for small, precisely located local earthquakes at distances of 20 to 70 kilometers show a sharp increase of nearly 0.3 second about 2 months before a magnitude 5.0 earthquake that occurred within a few kilometers of the station. This indicates that velocity changes observed elsewhere premonitory to earthquakes, possibly related to dilatancy, occur along the central section of the San Andreas fault system.  相似文献   

17.
"Helium spots," where a significant amount of helium is present in the soil [up to 350 parts per million with a high (3)He to (4)He ratio of (8.90 +/- 0.31) x 10(-6)], have been found along the fault zone formed by the 1966 Matsushiro swarm earthquakes. The formation of the "helium spots" and the occurrence of the earthquakes are interpreted as the results of a diapiric uprise of a magma approximately 1 kilometer in diameter.  相似文献   

18.
Borehole data from young sediments folded above the Puente Hills blind thrust fault beneath Los Angeles reveal that the folding extends to the surface as a discrete zone (相似文献   

19.
Slow deformation and lower seismic hazard at the new madrid seismic zone   总被引:1,自引:0,他引:1  
Global Positioning System (GPS) measurements across the New Madrid seismic zone (NMSZ) in the central United States show little, if any, motion. These data are consistent with platewide continuous GPS data away from the NMSZ, which show no motion within uncertainties. Both these data and the frequency-magnitude relation for seismicity imply that had the largest shocks in the series of earthquakes that occurred in 1811 and 1812 been magnitude 8, their recurrence interval should well exceed 2500 years, longer than has been assumed. Alternatively, the largest 1811 and 1812 earthquakes and those in the paleoseismic record may have been much smaller than typically assumed. Hence, the hazard posed by great earthquakes in the NMSZ appears to be overestimated.  相似文献   

20.
Atomic clusters containing from two to several hundred atoms offer the possibility of studying the transition from molecules to crystalline solids. The covalent group IV elements carbon, silicon, and germanium are now being examined with this long-range objective. These elements are particularly interesting because of the very different character of their crystalline solids and because they are intermediate between metals and insulators in the nature of their bonding. Small mass-selected atom cluster ions are formed by pulsed laser techniques and identified by time-of-flight methods. Laser photoexcitation is used to study the relative stability of these clusters and their modes of fragmentation. These modes for C(n)(+) clusters, which tend to fragment with a characteristic loss of a neutral C(3), are found to be different from the modes for Si(n)(+) and Ge(n)(+) clusters, which tend to fragment to "magic" clusters such as Si(4)(+), Si(6)(+) and Si(10)(+). These experimental results can be accounted for by recent theoretical calculations of the ground-state structure and stability of small silicon and carbon clusters. Several theoretical approaches give consistent results, showing that small silicon clusters are compact and different from small fragments of the bulk crystal. Calculations show that carbon clusters change from linear structures toward cyclic structures as the cluster size increases, but with significant odd-even differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号