首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A full quantum dynamical study of the reactions of a hydrogen atom with water, on an accurate ab initio potential energy surface, is reported. The theoretical results are compared with available experimental data for the exchange and abstraction reactions in H + D2O and H + H2O. Clear agreement between theory and experiment is revealed for available thermal rate coefficients and the effects of vibrational excitation of the reactants. The excellent agreement between experiment and theory on integral cross sections for the exchange reaction is unprecedented beyond atom-diatom reactions. However, the experimental cross sections for abstraction are larger than the theoretical values by more than a factor of 10. Further experiments are required to resolve this.  相似文献   

2.
Liu X  Lin JJ  Harich S  Schatz GC  Yang X 《Science (New York, N.Y.)》2000,289(5484):1536-1538
The O((1)D) + H(2) --> OH + H reaction, which proceeds mainly as an insertion reaction at a collisional energy of 1.3 kilocalories per mole, has been investigated with the high-resolution H atom Rydberg "tagging" time-of-flight technique and the quasiclassical trajectory (QCT) method. Quantum state-resolved differential cross sections were measured for this prototype reaction. Different rotationally-vibrationally excited OH products have markedly different angular distributions, whereas the total reaction products are roughly forward and backward symmetric. Theoretical results obtained from QCT calculations indicate that this reaction is dominated by the insertion mechanism, with a small contribution from the collinear abstraction mechanism through quantum tunneling.  相似文献   

3.
Experiments, employing crossed molecular beams, with vibrational state resolution have been performed on the simplest four-atom reaction, OH + D2 --> HOD + D. In good agreement with the most recent quantum scattering predictions, mode-specific reaction dynamics is observed, with vibration in the newly formed oxygen-deuterium bond preferentially excited to v = 2. This demonstrates that quantum theoretical calculations, which in the past decade have achieved remarkable accuracy for three-atom reactions involving three dimensions, have progressed to the point where it is now possible to accurately predict energy disposal in four-atom reactions involving six dimensions.  相似文献   

4.
A fully quantal wavepacket approach to reactive scattering in which the best available H(3) potential energy surface was used enabled a comparison with experimentally determined rates for the D + H(2)(v = 1, j = 1) --> HD(v' = 0, 1, 2; j') + H reaction at significantly higher total energies (1.4 to 2.25 electron volts) than previously possible. The theoretical results are obtained over a sufficient range of conditions that a detailed simulation of the experiment was possible, thus making this a definitive comparison of experiment and theory. Good to excellent agreement is found for the vibrational branching ratios and for the rotational distributions within each product vibrational level. However, the calculated rotational distributions are slightly hotter than the experimentally measured ones. This small discrepancy is more marked for products for which a larger fraction of the total energy appears in translation. The most likely explanation for this behavior is that refinements are needed in the potential energy surface.  相似文献   

5.
The reaction of F with H2 and its isotopomers is the paradigm for an exothermic triatomic abstraction reaction. In a crossed-beam scattering experiment, we determined relative integral and differential cross sections for reaction of the ground F(2P(3/2)) and excited F*(2P(1/2)) spin-orbit states with D2 for collision energies of 0.25 to 1.2 kilocalorie/mole. At the lowest collision energy, F* is approximately 1.6 times more reactive than F, although reaction of F* is forbidden within the Born-Oppenheimer (BO) approximation. As the collision energy increases, the BO-allowed reaction rapidly dominates. We found excellent agreement between multistate, quantum reactive scattering calculations and both the measured energy dependence of the F*/F reactivity ratio and the differential cross sections. This agreement confirms the fundamental understanding of the factors controlling electronic nonadiabaticity in abstraction reactions.  相似文献   

6.
The transition state region of the F + H(2) reaction has been studied by photoelectron spectroscopy of FH(2)(-). New para and normal FH(2)(-)photoelectron spectra have been measured in refined experiments and are compared here with exact three-dimensional quantum reactive scattering simulations that use an accurate new ab initio potential energy surface for F + H(2). The detailed agreement that is obtained between this fully ab initio theory and experiment is unprecedented for the F + H(2) reaction and suggests that the transition state region of the F + H(2) potential energy surface has finally been understood quantitatively.  相似文献   

7.
The collision-energy dependence of the state-resolved differential cross section at a specific backward-scattering angle for the reaction H + D2 --> D + HD is measured with the D-atom Rydberg "tagging" time-of-flight technique. The reaction was modeled theoretically with converged quantum scattering calculations that provided physical interpretation of the observations. Oscillations in the differential cross sections in the backward-scattering direction are clearly observed and are attributed to the transition-state structures that originate from the interferences of different quantized transition-state pathways.  相似文献   

8.
Xiao C  Xu X  Liu S  Wang T  Dong W  Yang T  Sun Z  Dai D  Xu X  Zhang DH  Yang X 《Science (New York, N.Y.)》2011,333(6041):440-442
Quantum dynamical theories have progressed to the stage in which state-to-state differential cross sections can now be routinely computed with high accuracy for three-atom systems since the first such calculation was carried out more than 30 years ago for the H + H(2) system. For reactions beyond three atoms, however, highly accurate quantum dynamical calculations of differential cross sections have not been feasible. We have recently developed a quantum wave packet method to compute full-dimensional differential cross sections for four-atom reactions. Here, we report benchmark calculations carried out for the prototypical HD + OH → H(2)O + D reaction on an accurate potential energy surface that yield differential cross sections in excellent agreement with those from a high-resolution, crossed-molecular beam experiment.  相似文献   

9.
The differential cross section for the H + D(2) --> HD + D reaction has been measured using a technique called reaction product imaging. In this experiment, a photolytically produced beam of hydrogen (H) atoms crossed a beam of cold deuterium (D(2)) molecules. Product D atoms were ionized at the intersection of the two particle beams and accelerated toward a position-sensitive detector. The ion images appearing on the detector are two-dimensional projections of the three-dimensional velocity distribution of the D atom products. The reaction was studied at nominal center-of-mass collision energies of 0.54 and 1.29 electron volts. At the lower collision energy, the measured differential cross section for D atom production, summed over all final states of the HD(v,J) product, is in good agreement with recent quasi-classical trajectory calculations. At the higher collision energy, the agreement between the theoretical predictions and experimental results is less favorable.  相似文献   

10.
An improved quantum Monte Carlo method has been used to calculate the classical barrier height for the hydrogen exchange reaction H + H(2) --> H(2) + H with accuracies greater than previously attained. The method is exact in that, except for the easily estimated Monte Carlo statistical or sampling error, it requires no mathematical approximations or physical approximations beyond those of the Schr?dinger equation. The minimum in the barrier, occurring for the collinear nuclear configuration with the protons separated by 1.757 bohrs, was found to be 9.61 +/- 0.01 kilocalories per mole above H + H(2).  相似文献   

11.
The neutral muonic helium atom may be regarded as the heaviest isotope of the hydrogen atom, with a mass of ~4.1 atomic mass units ((4.1)H), because the negative muon almost perfectly screens one proton charge. We report the reaction rate of (4.1)H with (1)H(2) to produce (4.1)H(1)H + (1)H at 295 to 500 kelvin. The experimental rate constants are compared with the predictions of accurate quantum-mechanical dynamics calculations carried out on an accurate Born-Huang potential energy surface and with previously measured rate constants of (0.11)H (where (0.11)H is shorthand for muonium). Kinetic isotope effects can be compared for the unprecedentedly large mass ratio of 36. The agreement with accurate quantum dynamics is quantitative at 500 kelvin, and variational transition-state theory is used to interpret the extremely low (large inverse) kinetic isotope effects in the 10(-4) to 10(-2) range.  相似文献   

12.
More than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N((4)S) + OH((2)Π) → H((2)S) + NO((2)Π) reaction in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds.  相似文献   

13.
Theoretical rate constants for two isotopic modifications of the simplest possible chemical reaction, namely, H + D(2) --> HD + D and D + H(2) --> HD + H, are presented. Experimental results, which have previously been obtained in the higher temperature regime by a shock tube technique, are combined with lower temperature results to give an experimental determination of the rate behavior over the large temperature range approximately 200 to 2000 K. It is now possible to assess the accuracy of ab initio potential energy surface calculations and to judge theoretical chemical kinetic methods.  相似文献   

14.
靛酚蓝-分光光度法测定胃肠道内容物中氨态氮含量研究   总被引:1,自引:0,他引:1  
对靛酚蓝-分光光度法检测胃肠道内容物中氮含量的试验条件进行了筛选,结果表明:催化剂质量浓度25 mg/L,在640 nm的波长下,40℃水溶显色20 min为最佳检测试验条件;氨态氮标准曲线相关系数为0.999 1,线性范围为0~5.0μg,摩尔吸光系数ε640=1.26×103 L/(mol.cm),最低检出限为0.127μg;该方法与比色法的测定结果间无显著性差异,可用于胃肠道内容物中氨态氮含量的检测.  相似文献   

15.
杉木种源地理位置的数学模型   总被引:13,自引:2,他引:11  
<正>杉木种源研究始于一九五七年。20多年来,不少专家致力于杉木种源的研究工作。地理种源试验的重要目的之一:通过种源试验来合理区划种源区域和种子调拨界限,但是由于种源试验规模和数量总是有限的。为了达到上述地理种源试验的目的,就必须研究种源与地理位置的关系。在研究杉木种源与地理位置之间的关系过程中,早期的研究多以定性的方式描述其间关系,而近几年来,多用各种数学模型定量地描述其间关  相似文献   

16.
The degree of electronic and nuclear coupling in the Cl + H2 reaction has become a vexing problem in chemical dynamics. We report slow electron velocity-map imaging (SEVI) spectra of ClH2- and ClD2-. These spectra probe the reactant valley of the neutral reaction potential energy surface, where nonadiabatic transitions responsible for reactivity of the Cl excited spin-orbit state with H2 would occur. The SEVI spectra reveal progressions in low-frequency Cl.H2 bending and stretching modes, and are compared to simulations with and without nonadiabatic couplings between the Cl spin-orbit states. Although nonadiabatic effects are small, their inclusion improves agreement with experiment. This comparison validates the theoretical treatment, especially of the nonadiabatic effects, in this critical region of the Cl + H2 reaction, and suggests strongly that these effects are minor.  相似文献   

17.
Reaction resonances, or transiently stabilized transition-state structures, have proven highly challenging to capture experimentally. Here, we used the highly sensitive H atom Rydberg tagging time-of-flight method to conduct a crossed molecular beam scattering study of the F + H2 --> HF + H reaction with full quantum-state resolution. Pronounced forward-scattered HF products in the v' = 2 vibrational state were clearly observed at a collision energy of 0.52 kcal/mol; this was attributed to both the ground and the first excited Feshbach resonances trapped in the peculiar HF(v' = 3)-H' vibrationally adiabatic potential, with substantial enhancement by constructive interference between the two resonances.  相似文献   

18.
Measurements of the melting temperature of lead, carried out to pressures of 1 megabar (10(11) pascal) and temperatures near 4000 kelvin by means of a laser-heated diamond cell, are in excellent agreement with the results of previous shock-wave experiments. The data are analyzed by means of first principles quantum mechanical calculations, and the agreement documents the reliability of current experimental and theoretical techniques for studies of melting at ultrahigh pressures. These studies have potentially wide-ranging applications, from planetary science to condensed matter physics.  相似文献   

19.
DC Clary 《Science (New York, N.Y.)》1998,279(5358):1879-1882
It is now possible to use rigorous quantum scattering theory to perform accurate calculations on the detailed state-to-state dynamics of chemical reactions in the gas phase. Calculations on simple reactions, such as H + D2 --> HD + D and F + H2 --> HF + H, compete with experiment in their accuracy. Recent advances in theory promise to extend such accurate predictions to more complicated reactions, such as OH + H2 --> H2O + H, and even to reactions of molecules on solid surfaces. New experimental techniques for probing reaction transition states, such as negative-ion photodetachment spectroscopy and pump-probe femtosecond spectroscopy, are stimulating the development of new theories.  相似文献   

20.
When a hydrogen (H) atom approaches a deuterium (D(2)) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D(2) → HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号