首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Established renal function tests for the quantitative determination of the glomerular filtration rate (GFR) in small animals by means of an exogenous clearance marker like creatinine are based on the intravenous or subcutaneous administration of the marker. In order to simplify performing the test, the suitability of the peroral administration of the marker substance was tested. Exogenous creatinine was administered to 17 Beagle dogs successively by the peroral (dose: 4 g/m2 BSA) and the subcutaneous route (dose: 2 g/m2 BSA). Both routes were tested sequentially in fasted and fed animals. In addition to the peroral administration of creatinine, the absorption marker D-Xylose (dose: 0.5 g/kg body weight) was given per os. Pharmacokinetic parameters were calculated based on serum concentration--time data of both markers. Maximum serum concentrations of the exogenous creatinine (C(max) = 1284 +/- 173 micromol/l) were observed 92 +/- 19 min post-dose (t(max)) in fasted dogs after peroral administration of creatinine. C(max) (956 +/- 209 micromol/l) and t(max) (67 +/- 13 min) were statistically significantly reduced in fed animals. The exogenous plasma clearance of creatinine was about 1/3 lower in fasted animals (94 +/- 15 ml/min/m2) than in fed ones (134 +/- 28 ml/min/m2). The apparent terminal disposition half-life of the exogenous creatinine showed mean values of about 170 min (fasted) and 200 min (fed). After peroral administration of D-Xylose, fasted animals showed higher C(max) (3.9 +/- 0.99 mmol/l) and t(max) values (60 +/- 18 min) than fed dogs (C(max) = 2.2 +/- 0.55 mmol/l, t(max) = 40 +/- 15 min). C(max) and t(max) did not differ between fed and fasted dogs after subcutaneous administration of creatinine. Creatinine clearance was again higher in fed (124 +/- 12.8 ml/min/m2) than in fasted dogs (104 +/- 9.0 ml/min/m2) after subcutaneous administration of the marker. The terminal disposition half-live was, however, similar with about 130-140 min. The route of administration (peroral vs. subcutaneous) did not influence the calculated clearance (no statistical significance when p < 0.01 is required). Creatinine in a dose of 4 g/m2 BSA can be administered by the peroral route of administration for assessing the GFR. For the quantitative determination of GFR standardized condition are required, i.e. animals have to be fasted for > or = 6 hours.  相似文献   

2.
Glomerular filtration rate (GFR) was determined in 53 cats using an inulin single-injection method. Thirty healthy young adult cats were used to establish normal values. The procedure was also used in 23 cats that were either older than 10 years or had borderline serum creatinine levels. The total clearance was calculated from the decay of the serum inulin concentration after injection of 3000 mg/m(2)body surface area using a two-compartment model. Concomitant inulin and iohexol clearance in nine cats showed excellent correlation between the two methods. Calculated normal values for GFR in 30 healthy cats were 35.9-58.5 (median 46.0) ml/min/m(2)or 2.07-3.69 (median 2.72) ml/min/kg. A few cats with normal creatinine or blood urea nitrogen levels were detected as having reduced GFR and therefore being in a state of early renal dysfunction. The study indicates that single-injection inulin clearance is a valuable tool for routine GFR measurement in cats. An "inulin excretion test" using only one blood sample 3h after the administration of 3000 mg/m(2)body surface area could prove an attractive alternative for the assessment of renal function in daily practice.  相似文献   

3.
Methods of renal clearance to measure glomerular filtration rate (GFR) were compared with plasma creatinine concentration in clinically normal and partially nephrectomized dogs. Glomerular filtration rate was measured by use of a simple 24-hour creatinine clearance method in 36 normal female Beagles. Mean values were 57.6 +/- 9.3 ml/minute/m2 of body surface or 3.7 +/- 0.77 ml/minute/kg of body weight. Variability of this measurement was considerable, as determined in 4 dogs studied on 4 consecutive days. Glomerular filtration rate was measured in the same 36 dogs while they were under anesthesia, using short clearance periods to compare inulin and endogenous creatinine clearance. Mean values for inulin were 41.8 +/- 13.9 ml/minute/m2 of body surface. A close agreement with creatinine clearance was found (correlation coefficient, 0.998). Mean plasma creatinine concentration was 0.82 (range, 0.5--1.0) mg/100 ml. The value of GFR measurement compared with plasma creatinine concentration was determined in 10 dogs after 75% nephrectomy. Sixty days after partial nephrectomy, GFR was reduced to 61% of normal. Mean plasma creatinine and blood urea nitrogen were 1.2 +/- 0.14 mg/100 ml and 20.4 +/- 7.1 mg/100 ml, respectively. Thus, the detection of reduced renal function may be uncertain when plasma creatinine or blood urea nitrogen are used as a means of evaluating renal function. It was concluded that a simple method of creatinine clearance is a sensitive and useful measurement to detect early or borderline reduction in glomerular function.  相似文献   

4.
Comparison of four methods of estimating glomerular filtration rate in cats   总被引:2,自引:0,他引:2  
Four methods of evaluating renal function were performed in 6 cats anesthetized with halothane in oxygen. Glomerular filtration rate (GFR) was measured simultaneously in each cat by exogenous creatinine clearance (ECC), bolus inulin clearance, and 99mTc(Sn)-diethylene-triaminepentaacetic acid (DTPA) clearance determined by 2 different methods. In the first DTPA clearance method (DTPA-1), we measured radioactivity in serial blood specimens to construct plasma disappearance curves for calculation of GFR. In the second DTPA clearance method (DTPA-2), we used serial external head counts of radioactivity and a single blood specimen to construct plasma disappearance curves for calculation of GFR. Bolus inulin clearance was calculated from plasma disappearance curves using a 1-compartment open pharmacokinetic model (IN-1) and a 2-compartment open pharmacokinetic model (IN-2). Glomerular filtration rates were measured over 3 hours, for creatinine and DTPA methods, and over 4 hours for the inulin methods. The GFR obtained with the reference method (ECC) was 2.56 +/- 0.61 ml/min/kg of body weight (mean +/- SD). Values for GFR determined by ECC and DTPA-1 were significantly correlated (r = 0.852; P less than or equal to 0.05). Correlation between ECC and DTPA 2 was not as good (r = 0.783; P less than or equal to 0.10), but the 2 DTPA methods significantly correlated with one another (r = 0.897; P less than or equal to 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The goals of this study were to determine if the glomerular filtration rate (GFR) in dogs could be estimated by plasma inulin clearance and/or infusion inulin clearance analyses without urine collection, and to compare these results with GFR values obtained by urinary inulin clearance analysis. The dogs included in this study were healthy 20 beagles. Inulin clearance values were obtained by urinary inulin clearance, infusion inulin clearance, and plasma inulin clearance techniques. Urinary inulin clearance was 4.09±0.52 ml min(-1) kg(-1) (body weight); infusion inulin clearance, 4.01±0.49 ml min(-1) kg(-1); and plasma inulin clearance, 4.14±0.66 ml min(-1) kg(-1). The urinary inulin clearance was strongly correlated with infusion inulin clearance and weakly correlated with plasma inulin clearance. The GFR for dogs can be estimated by infusion and plasma inulin clearance analyses by blood sampling alone, without urine collection.  相似文献   

6.
Excretion of creatinine, sodium sulfanilate (SS), and phenolsulfonphthalein (PSP) was studied in healthy goats. In conscious goats, mean (+/- SEM) inulin clearance was 2.26 +/- 0.08 ml/min/kg of body weight. Endogenous creatinine clearance, 1.97 +/- 0.09 ml/min/kg, underestimated inulin clearance (P less than 0.01), probably because of the presence of noncreatinine chromogens in caprine plasma. The estimated renal clearance of PSP was 6.88 +/- 0.39 ml/min/kg, whereas the estimated renal clearance of SS was 3.71 +/- 0.39 ml/min/kg. Both exceeded inulin clearance (P less than 0.01), confirming renal tubular secretion of both compounds. In 6 anesthetized goats, exogenous creatinine clearance and SS clearance exceeded inulin clearance (P less than 0.05). Results of stop-flow experiments documented secretion of creatinine and SS by the proximal portion of the caprine nephron. Plasma half-life of PSP in uninephrectomized goats exceeded that in intact goats (20.2 +/- 1.5 min vs 11.9 +/- 0.7 min; P less than 0.01). Similarly, plasma half-life of SS was greater in goats after uninephrectomy (58.2 +/- 6.2 min vs 30.4 +/- 1.2 min; P less than 0.01).  相似文献   

7.
The effectiveness of technetium 99m-labeled diethylenetriaminepentaacetic acid (99mTc DTPA) to assess renal function in 13 dogs with suspected renal disease was evaluated. Glomerular filtration rates (actual GFR) were determined on the basis of endogenous creatinine clearance. Predicted GFR were determined by using 99mTc DTPA within 72 hours after the determination of creatinine clearance. The percentage of an IV administered dose of 99mTc DTPA in the kidneys (percentage dose) was determined. Two equations were used to calculate predicted GFR, which were derived from previously reported linear regression analysis of inulin (In) and creatinine (Cr) GFR vs percentage dose 99mTc DTPA in dog kidneys. The correlations of actual GFR vs predicted GFR (In) and actual GFR vs predicted GFR (Cr) were both r = 0.92. The dogs' mean actual GFR was 1.73 +/- 1.35 ml/min/kg. Their mean predicted GFR (In) and predicted GFR (Cr) were 1.92 +/- 1.42 ml/min/kg and 1.85 +/- 1.27 ml/min/kg, respectively. Therefore, 99mTc DTPA can be used with high accuracy as an agent to predict GFR in dogs with suspected renal disease. The procedure for determining GFR by use of nuclear medicine was rapid and noninvasive and appeared to induce little stress in the animals evaluated.  相似文献   

8.
Glomerular filtration rate (GFR) was measured in 12 clinically normal horses, using the standard inulin clearance method, and values were compared with values for 2 methods, using a single rapid IV injection of 99mTc-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA). The first 99mTc-DTPA method used a 2-compartment model to calculate GFR blood clearance of the tracer. The second method used sequential digital gamma camera images of the kidneys to determine fractional accumulation of the total dose of the tracer in the kidneys (percentage of injected dose, gamma camera) from 0 to 10 minutes after radionuclide administration. Linear correlation among the 3 methods was determined. Mean (+/- SD) GFR, using the inulin clearance method, was 154.67 +/- 42.28 ml/min/100 kg of body weight. Mean GFR, using the 2-compartment blood clearance curve, was 146.92 +/- 27.49 ml/min/100 kg. Mean GFR, using percentage of injected dose (gamma camera method) was 154.7 +/- 22.00 ml/min/100 kg. The percentage of injected dose (gamma camera method) did not correlate significantly to the inulin clearance results. However, a significant (r = 0.666, P less than 0.018) correlation was observed between the inulin method and the 99mTc-DTPA blood clearance method. Significant (P less than 0.0001) difference also was observed in the split function of the equine kidneys, with GFR of the right kidney contributing 60.1 +/- 9.12% of the total function, as determined by 99mTc-DTPA gamma camera imaging. Because the 99mTc-DTPA blood clearance method does not require urine collection, it may be a more practical procedure to measure GFR in the horse.  相似文献   

9.
Greyhounds have significantly higher serum creatinine (SCr) concentration than do non-Greyhound dogs that may be attributable to differences in glomerular filtration rate (GFR). By means of plasma clearance of technetium Tc 99m diethylenetriaminepentaacetic acid, GFR was measured in 10 Greyhounds and 10 non-Greyhound dogs with normal findings of physical examination, CBC, serum biochemical analysis, and urinalysis. Dogs were fed the same diet for a minimum of 6 weeks before GFR data collection. Greyhounds had significantly higher mean +/- SD GFR (3.0 +/- 0.1 vs 2.5 +/- 0.2 ml/min/ kg; P = .01) and SCr concentration (1.8 +/- 0.1 vs 1.5 +/- 0.1 mg/dL; P = .03) than did non-Greyhound dogs, but the serum urea nitrogen (SUN) concentration was not significantly different (18 +/- 1 vs 18 +/- 2 mg/dL; P = .8). Therefore, the higher SCr concentration in Greyhounds is not attributable to decreased GFR, and may be associated with the high muscle mass in the breed. Healthy Greyhounds have higher GFR than do non-Greyhound dogs.  相似文献   

10.
Simultaneous measurement of the renal clearance of endogenous creatinine and exogenous inulin in eight sheep showed similar mean +/- SD (n = 32) values of 13.8 +/- 1.3 and 13.2 +/- 2.0 ml min-1 (10 kg)-1 bodyweight respectively. These results demonstrate that the renal clearance of endogenous creatinine is a satisfactory measure of glomerular filtration rate (GFR) in sheep. The plasma concentrations of endogenous creatinine and urea were significantly higher because of haemoconcentration during summer, resulting in lower GFR than in winter. Besides glomerular filtration and back diffusion, the renal handling of urea in sheep seems to involve mechanisms analogous to active tubular secretion.  相似文献   

11.
Renal mass was surgically reduced in 78 dogs by uninephrectomy or by combined renal infarction and uninephrectomy. Renal clearance of inulin and renal clearance of exogenous creatinine were determined simultaneously, and the creatinine to inulin clearance (C/I) ratio was calculated. Clearance procedures were performed 2 to 3 months after reduction of renal mass, and were repeated at intervals thereafter. Overall, the C/I ratio was 1.008 +/- 0.007 for 192 determinations, with a highly significant correlation (R2 = 0.994, P less than 0.0001) between creatinine clearance and inulin clearance. There was no significant effect of gender of dogs, time after partial renal ablation, or dietary protein intake on C/I ratios. Degree of renal ablation did not affect C/I ratios. The results indicated that exogenous creatinine clearance is a valid measure of glomerular filtration rate in both male and female dogs with reduced renal mass.  相似文献   

12.
A double-isotope single-injection method without urine collection for the estimation of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) in dogs and cats was evaluated. The GFR was determined, using 14C-inulin and ERPF was determined, using [3H]tetraethylammonium bromide. Using a modified single exponential, 1-compartment mathematical model, the renal clearance of these solutes was estimated with a plasma radioactivity disappearance curve constructed from samples collected over a 150-minute time period. In 25 dogs, GFR, ERPF, and filtration fraction were 3.55 +/- 0.14 ml/kg/min, 10.51 +/- 0.72 ml/kg/min, and 0.34 +/- 0.02, respectively. In 25 cats, GFR, ERPF, and filtration fraction were 3.24 +/- 0.14 ml/kg/min, 8.14 +/- 0.53 ml/kg/min, and 0.39 +/- 0.02, respectively. This time-efficient and reliable method, using beta-emitting isotopes, yielded renal functional values well within the normal ranges reported by a variety of other isotopic and nonisotopic procedures. The advantages of the present procedure over previous double-isotope single-injection methods include the use of less costly, lower energy-using, and less penetrating beta emittors, as well as a shortened blood sampling schedule.  相似文献   

13.
The objective of this study was to determine if plasma iohexol clearance, computed by a 1-compartment model defined by 3 plasma samples. was an accurate measure of glomerular filtration rate (GFR) in dogs. Twenty-two adult Beagle dogs of both genders were studied. Ten dogs had intact kidneys, and 12 dogs had surgically reduced renal mass. A bolus injection of iohexol was made, and blood was obtained for plasma iohexol assay after 120, 180, and 240 minutes. Plasma was analyzed for iohexol concentration by means of 3 assay methods: chemical, high-performance liquid chromatography (HPLC), and inductively coupled plasma emission spectroscopy (ICP). Urinary clearance of exogenous creatinine was used to measure GFR for three 30-minute periods occurring between 150 and 240 minutes after iohexol injection. Plasma clearance of iohexol and renal clearance of creatinine were compared by linear regression analysis and by limits of agreement techniques. Plasma iohexol clearance and urinary exogenous creatinine clearance were significantly correlated (chemical R2 = .90; HPLC R2 = .96; and ICP R2 = .96). The 1-compartment iohexol clearance:exogenous creatinine clearance ratios were 1.04 +/- 0.17, 1.05 +/- 0.14, and 1.10 +/- 0.15 for the chemical, HPLC, and ICP methods of assay, respectively, indicating that plasma iohexol clearance slightly overestimated GFR. Assuming a +/- 2 standard deviation interval for error, corrected plasma iohexol clearance measured GFR with +/-34% accuracy for the chemical, +/-26% accuracy for the HPLC, and +/-27% accuracy for the ICP method. These results indicate that plasma iohexol clearance should have utility for detection of renal dysfunction earlier in the course of progressive renal disease than is possible with measurement of plasma creatinine or urea concentrations.  相似文献   

14.
The effect of renal insufficiency was studied on the pharmacokinetics (PK) and pharmacodynamics (PD) of the angiotensin-converting enzyme (ACE) inhibitor benazepril in cats. The active metabolite of benazepril, benazeprilat, is eliminated principally ( approximately 85%) via biliary excretion in cats. A total of 20 control animals and 32 cats with moderate renal insufficiency induced by partial nephrectomy were used. Assessments were made at steady state after treatment with placebo or benazepril (0.25-2 mg/kg) once daily for a minimum of 10 days. The PK endpoint was the AUC (0-->24 h) of total plasma benazeprilat. The PD endpoints were systolic, diastolic and mean blood pressures (respectively SBP, DBP and MBP) measured by telemetry, and plasma ACE activity, assessed by an ex vivo assay. Renal function was assessed by glomerular filtration rate (GFR), measured by inulin clearance, and plasma creatinine concentrations (1/PCr). As compared with control animals, the renal insufficient cats had a 78% reduction in GFR (0.57 +/- 0.41 mL/min kg), increased plasma creatinine (2.7 +/- 1.0 mg/dL), urea (44.0 +/- 11.9 mg/dL) and ACE activity, and moderately increased blood pressure (SBP 171.8 +/- 5.1 mmHg) (all parameters P < 0.05). Renal insufficient cats receiving benazepril had significantly (P < 0.05) lower SBP, DBP, MBP and ACE, and higher GFR values as compared with placebo-treated animals. There were no significant differences in SBP, DBP, MBP, benazeprilat or ACE values according to the degree of renal insufficiency in cats receiving benazepril. It is concluded that no dose adjustment of benazepril is necessary in cats with moderate renal insufficiency.  相似文献   

15.
Glomerular filtration rate (GFR), renal plasma flow (RPF), and the endogenous creatinine clearance (CCr) rate were determined in 13 captive cheetahs, Acinonyx jubatus jubatus (seven females and six males, 1.5-7.5 yr of age, x = 5.02 yr), during general anesthesia with Telazol and isoflurane by measuring the urinary clearances of inulin, para-aminohipppuric acid, and endogenous creatinine, respectively. Methods to determine GFR, RPF, and endogenous CCr in captive cheetahs were evaluated, and the relationship between GFR and CCr for this species was determined. The GFR and the RPF were stable during the procedure, with mean values of 1.59+/-0.17 ml/min/kg body weight and 5.12+/-1.15 ml/min/kg body weight, respectively. Although the mean value for CCr (1.47+/-0.20 ml/min/kg body weight) was significantly less than the corresponding value for GFR, the mean difference (0.11+/-0.02 ml/min/kg weight) between the two measurements was slight, and the values were highly correlated (R2 = 0.928; P < 0.0001). The measurement of CCr in cheetahs should provide a reliable estimate of GFR, facilitating the early detection of renal disease in this species.  相似文献   

16.
Plasma clearance of creatinine was evaluated for assessment of glomerular filtration rate (GFR) in dogs. In 6 healthy dogs (Experiment 1), we determined 24-hour urine clearance of endogenous creatinine, plasma, and urine clearances of exogenous creatinine administered at 40, 80, and 160 mg/kg in a crossover design (linearity study), plasma iothalamate clearance, and plasma and urine clearances of 14C-inulin. In Experiment 2, plasma creatinine and iothalamate clearances were compared, and a linearity study was performed as for Experiment 1 in 6 dogs with surgically induced renal impairment. Experiment 3 compared plasma creatinine clearance with plasma iothalamate clearance before and 3 weeks after induction of moderate renal impairment in 6 dogs. Plasma creatinine clearances were calculated by both noncompartmental and compartmental analyses. In Experiment 1, plasma inulin clearance was higher (P < .001) than other clearance values. Plasma creatinine clearances at the 3 dose rates did not differ from urine inulin clearance and each other. In Experiment 2, plasma creatinine clearances were about 14% lower than plasma iothalamate clearance (P < .05). In Experiment 3, decreases in GFR assessed by plasma clearances of iothalamate and creatinine were similar. Renal failure decreased the daily endogenous input rate of creatinine by 25%. Limiting sampling strategies for optimizing GFR calculation were proposed, allowing an error lower than 6.5% with 4 blood samples. These results suggest that determination of plasma creatinine clearance by a noncompartmental approach offers a reliable, inexpensive, rapid, and convenient means of estimating GFR in routine practice.  相似文献   

17.
BACKGROUND: Glomerular filtration rate (GFR) measurement is an indicator of kidney function. However, its usefulness in dogs at early stages of spontaneous chronic kidney disease (CKD) of glomerular origin, where routine laboratory techniques are not sufficiently sensitive, remains unproved. HYPOTHESIS: That GFR is reduced in proteinuric nonazotemic or mildly azotemic dogs with CKD secondary to leishmaniasis. ANIMALS: Twenty-six dogs with CKD secondary to leishmaniasis and 10 healthy dogs (control group). METHODS: CBC, serum biochemistry, and urinalysis (microalbuminuria and urine protein/creatinine ratio [UPC]) were performed in all dogs. GFR was calculated by measuring exogenous creatinine clearance. Based on degree of proteinuria and serum creatinine concentration (SCr), dogs were classified as group A (control; n = 10): UPC < 0.2, SCr < 1.4 mg/dL; group B (n = 8): UPC, 0.2-0.5, SCr < 1.4 mg/dL; group C (n = 10): UPC > 0.5, SCr < 1.4 mg/dL; group D (n = 5): SCr, 1.4-2 mg/dL; group E (n = 3): SCr > 2 mg/dL. Results: GFR (mL/kg/min) was 3.9 +/- 0.29, 4.4 +/- 0.74, 4.5 +/- 1.44, 2.8 +/- 0.97, and 1.5 +/- 0.43 for groups A, B, C, D, and E, respectively. Eleven dogs (1 from group B, 3 from group C, 4 from group D, and all 3 dogs from group E) had an abnormally low GFR. Four dogs from group B and 5 dogs from group C had a GFR above the upper reference range (>4.5 mL/min/kg). CONCLUSION AND CLINICAL RELEVANCE: Some proteinuric nonazotemic or mildly azotemic dogs with leishmaniasis have low GFR, but glomerular hyperfiltration occurs in other dogs.  相似文献   

18.
The suitability of 99mTc-diethylenetriaminepentaacetic acid (99mTc-DTPA) as an agent to assess glomerular filtration rate (GFR) in dogs was evaluated. Glomerular filtration rates of 12 healthy dogs were determined on the basis of creatinine and/or inulin clearance. Glomerular filtration rates also were determined in 7 dogs after induction of acute renal failure by administration of amphotericin B. The healthy dogs and the amphotericin B-treated dogs were given 99mTc-DTPA (1 to 2 mCi) IV. The percentage of the 99mTc-DTPA dose in the kidneys (percentage dose) was determined, with background activity subtracted from total activity at 15-s intervals 0 to 6 minutes after 99mTc-DTPA infusion. Linear regression analyses (LRA) were performed to determine whether the percentage dose at various time intervals after injection correlated with GFR calculated on the basis of creatinine and inulin clearance data. One to 3 minutes after 99mTc-DTPA administration appeared to be the best period for analysis of the data. The percentage dose of 99mTc-DTPA (corrected for kidney depth differences) was determined and LRA against GFR were performed. The percentage dose correlated better with inulin clearance (r = 0.94) than with endogenous creatinine clearance (r = 0.83). Only inulin clearance correlations improved with kidney depth correction. The LRA was used to derive an equation that could be used to calculate GFR on the basis of the percentage dose. The equation derived from inulin regression was: GFR (milliliter/minute/kilogram of body weight) = 0.194 (depth-corrected percentage dose)--0.37; the equation derived from the creatinine regression was: GFR (milliliter/minute/kilogram) = 0.171 (depth-corrected percentage dose)-0.15.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of this study was to investigate the effects of methimazole on renal function in cats with hyperthyroidism. Twelve cats with naturally occurring hyperthyroidism and 10 clinically normal (i.e., control) cats were included in this study. All cats initially were evaluated with a history, physical examination, complete blood count, serum biochemistry profile, basal serum total thyroxine concentration, complete urinalysis, and urine bacterial culture. Glomerular filtration rate (GFR) was estimated by a plasma iohexol clearance (PIC) test. After initial evaluation, hyperthyroid cats were treated with methimazole until euthyroidism was achieved. Both groups of cats were then reevaluated by repeating the initial tests four to six weeks later. The mean (+/-standard deviation) pretreatment estimated GFR for the hyperthyroid cats was significantly higher (3.83+/-1.82 ml/kg per min) than that of the control cats (1.83+/-0.56 ml/kg per min). Control of the hyperthyroidism resulted in a significantly decreased mean GFR of 2.02+/-0.81 ml/kg per minute when compared to pretreatment values. In the hyperthyroid group, the mean increases in serum urea nitrogen (SUN) and creatinine concentrations and the mean decrease in the urine specific gravity after treatment were not statistically significant when compared to pretreatment values. Two of the 12 hyperthyroid cats developed abnormally high serum creatinine concentrations following treatment. These results provide evidence that cats with hyperthyroidism have increased GFR compared to normal cats, and that treatment of feline hyperthyroidism with methimazole results in decreased GFR.  相似文献   

20.
The glomerular filtration rate (GFR) was estimated in eight full-term neonatal foals by the single injection inulin plasma clearance method at two days of age, the continuous infusion plasma and urinary clearance methods at three days of age, and the 12-hour endogenous creatinine clearance method at four days of age. The effective renal plasma flow (ERPF) was estimated simultaneously by the single injection para-aminohippuric acid (PAH) plasma clearance method in the eight two-day old foals and the continuous PAH infusion plasma and urinary clearance method in the eight three-day old foals. The GFR (+/- 1 SEM), as determined from the single injection plasma clearance method, was 2.30 +/- 0.34 mL/kg/min; by continuous infusion plasma clearance 2.56 +/- 0.30 mL/kg/min; by continuous infusion urinary clearance 2.82 +/- 0.32 mL/kg/min; and by 12-hour endogenous creatinine clearance 2.81 +/- 0.55 mL/kg/min. Effective renal plasma flow (+/- 1 SEM) measured by the single injection plasma clearance method was 15.22 +/- 1.5 mL/kg/min, by continuous infusion plasma clearance was 18.21 +/- 2.0 mL/kg/min. and by continuous infusion urinary clearance it was 11.95 +/- 1.9 mL/kg/min. The results of these methods were not statistically different. On a per kilogram body weight basis, the full-term neonatal foal's GFR and ERPF was determined to be comparable with adult equine GFR and ERPF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号