首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A set of 105 European wheat cultivars, comprising 68 cultivars with known seedling resistance genes and 37 cultivars that had not been tested previously, was tested for resistance to selected Australian pathotypes of P. triticina in seedling greenhouse tests and adult plant field tests. Only 4% of the cultivars were susceptible at all growth stages. Twelve cultivars lacked detectable seedling resistance to leaf rust, and among the remaining cultivars, 10 designated genes were present either singly or in combination. Lr13 was the most frequently detected gene, present in 67 cultivars, followed by the rye-derived gene Lr26, present in 19 cultivars. Other genes present were Lr1, Lr3a, Lr3ka, Lr10, Lr14a, Lr17b, Lr20 and Lr37. There was evidence for unidentified seedling resistance in addition to known resistance genes in 11 cultivars. Field tests with known pathotypes of P. triticina demonstrated that 57% of the cultivars carried adult plant resistance (APR) to P. triticina. The genetic identity of the APR is largely unknown. Genetic studies on selected cultivars with unidentified seedling resistances as well as all of those identified to carry APR are required to determine the number and inheritance of the genes involved, to determine their relationships with previously designated rust resistance genes, and to assess their potential value in breeding for resistance to leaf rust.  相似文献   

2.
Summary Seven genes, viz. Sr5, Sr6, Sr7a, Sr8a, Sr9b, Sr12 and Sr17 were associated with seedling resistance to Puccinia graminis tritici in Kenya Plume wheat. The predominant field cultures were avirulent on seedlings with Sr7a, but possessed virulence for the other six genes. However, Sr7a did not confer adult-plant resistance when present on its own. Adult-plant resistance was attributed to Sr2 and possibly also to the interaction of Sr7a and Sr12.Two genes, Lr13 and Lr14a, were identified in seedling tests with various cultures of Puccinia recondita tritici. Lr13 conferred adult-plant resistance to the predominant field strains. Genetic recombination between Lr13 and Sr9b was estimated at 17.6±3.1%.  相似文献   

3.
Adult plant resistance against Indian leaf rust race 77 and five of its highly virulent variants have been identified from 111 bread wheat cultivars originating from 12 countries. The adult plant resistance of only 16 of these cultivars is due to hypersensitive seedling or adult plant resistance genes. All others expressed nonhypersensitive type of resistance characteristic of the genes Lr34 and Lr46.Forty five of the 111 cultivars showed tip necrosis on flag leaves, a trait linked to the gene Lr34. Therefore, the nonhypersensilive type of resistance of these 45 cultivars is attributed to Lr34. The nonhypersensitive resistance of the remaining cultivars is likely to be due to the gene(s) different than Lr34. The reaction pattern of these 111 cultivars to six races suggests the presence of at least six to seven new hypersensitive adult plant resistance genes and at least three new hypersensitive seedling resistance genes. The known genes Lr10, Lr23 and Lr26 were detected frequently but these genes did not contribute towards the adult plant resistance of any of the 111 cultivars. Based on the presence of new genes for hypersensitive and nonhypersensitive type of resistance, the 111 cultivars have been classified into 31 diverse resistance groups. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Langdon durum D-genome disomic substitution lines were used to study the chromosome locations of adult-plant leaf rust resistance genes identified from tetraploid wheat accessions. The accessions are 104 (Triticum turgidum subsp. dicoccum var. arras) and 127 (T. turgidum subsp. durum var. aestivum). The complete sets of the substitution lines were crossed as female parents with the accessions and F1 double monosomic individuals selected at metaphase I. Segregating F2 individuals were inoculated during the flag leaf stage with pathotype UVPrt2 of Puccinia triticina. The substitution analysis involving accession 104 showed that the gene for leaf rust resistance is located on chromosome 6B. The analysis with accession 127 indicated that chromosome 4A carries a gene for leaf rust resistance. The two novel genes are temporarily designated as Lrac104 and Lrac127, respectively from accessions 104 and 127.  相似文献   

5.
J. A. Kolmer 《Euphytica》1992,61(2):123-130
Summary Leaf rust resistance gene Lr13 is present in many North American hard red spring wheat cultivars that have shown durable resistance to leaf rust. Fifteen pair-wise combinations of Lr13 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests, homozygous paired combinations of specific resistance genes with Lr13 had enhanced resistance relative to either parent to rust isolates that had intermediate avirulent infection types to the additional genes. In field tests, homozygous lines were more resistant than either parent if the additional leaf rust gene conditioned an effective level of resistance when present singly.  相似文献   

6.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

7.
Resistance to stripe rust (caused by Puccinia striiformis Westend.) of 34 Triticum turgidum L. var.durum, 278 T. tauschii, and 267 synthetic hexaploid wheats (T. turgidum x T. tauschii) was evaluated at the seedling stage in the greenhouse and at the adult-plant stage at two field locations. Mexican pathotype 14E14 was used in all studies. Seedling resistance, expressed as low infection type, was present in all three species. One hundred and twenty-eight (46%) accessions of T. tauschii, 8 (23%) of T. turgidum and 31 (12%) of synthetic hexaploid wheats were highly resistant as seedlings. In the field tests, resistance was evaluated by estimating area under disease progress curve (AUDPC). Synthetic hexaploid wheats showed a wide range of variability for disease responses in both greenhouse and field tests, indicating the presence of a number of genes for resistance. In general, genotypes with seedling resistance were also found to be resistant as adult plants. Genotypes, which were susceptible or intermediate as seedlings but resistant as adult plants, were present in both T. turgidum and the synthetic hexaploids. Resistances from either T. turgidum or T. tauschii or both were identified in the synthetic hexaploids in this study. These new sources of resistance could be incorporated into cultivated hexaploid wheats to increase the existing gene pool of resistance to stripe rust.  相似文献   

8.
Fifty-five spring bread wheat (Triticum aestivum L.) cultivars, mostly released between 1975 and 1991 in eight leaf rust-prone spring wheat growing regions of the former USSR, were tested in the seedling growth stage for reaction to 15 Mexican pathotypes of Puccinia recondita f. sp. tritici. In total, seven known and at least two unknown genes were identified, either singly or in combinations: Lr3 (7 cultivars), Lr10 (14), Lr13 (5), Lr14a (1), Lr16 (1), Lr23 (3); the unknown genes were identified in 14 cultivars. The first unknown gene could be either Lr9, Lr19, or Lr25; however, the second unknown gene in 9 cultivars was different from any named gene. Twelve of the 15 pathotypes are virulent for this gene, hence its use in breeding for resistance will be limited. The cultivars were also evaluated at two field locations in Mexico with two pathotypes in separate experiments. The area under the disease progress curve and the final disease rating of the cultivars indicated genetic diversity for genes conferring adult plant resistance. based on the symptoms of the leaf tip necrosis in adult plants, resistance gene Lr34 could be present in at least 20 cultivars. More than half of the cultivars carry high to moderate levels of adult plant resistance and were distributed in each region.  相似文献   

9.
Summary The leaf rust responses of wheat lines carrying the complementary genes Lr27 and Lr31 and the same genes in a Chinese Spring background which contains Lr34, indicate that Lr34 interacts with the complementary genes to give enhanced levels of field resistance to leaf rust. Lr34, particularly in combination with other genes, is considered to be an important gene for imparting a high degree of durable resistance to leaf rust. Its similarity to Sr2, an adult plant gene for resistance to stem rust and its association with adult plant resistances to stem and stripe rusts are discussed.  相似文献   

10.
Three recombinant inbred line populations from the crosses RL6071/Thatcher, RL6071/RL6058 (Thatcher Lr34), and Thatcher/RL6058, were used to study the genetics of stem rust resistance in Thatcher and TcLr34. Segregation of stem rust response in each population was used to determine the number of genes conferring resistance, as well as the effect of the leaf rust resistance gene Lr34 on stem rust resistance. The relationship between resistance in seedling and adult plants was also examined, and an attempt was made to identify microsatellite markers linked to genes that were effective in adult plants. In field plot tests at least three additive resistance genes segregated in the RL6071/RL6058 population, whereas two resistance genes segregated in the RL6071/Thatcher population. The presence of the gene Lr34 permitted the expression of additional stem rust resistance in Thatcher-derived lines both at the seedling and adult plant stages. Seedling resistance to races TPMK and RKQQ was significantly associated with resistance in adult plants, whereas seedling resistance to races QCCD and QCCB may have made a minor contribution. The seedling resistance genes Sr16 and Sr12 may have contributed to resistance in adult plants. A molecular marker linked to resistance in adult plants was identified on chromosome 2BL.  相似文献   

11.
D. Singh  R.F. Park  R.A. McIntosh 《Euphytica》2001,120(2):205-218
Multi-pathotype tests on 70 U.K. wheat cultivars permitted postulation of eight known seedling genes for resistance to Puccinia recondita f. sp.tritici either singly or in combinations. The most commonly detected gene was Lr13 (present in approximately 57% of cultivars), followed by Lr26 (22%), Lr37 (20%), Lr10 (17%), Lr17b (LrH) (10%), Lr1 (7%), Lr3a (6%) and Lr20(4%). This information permitted assessments of adult plant resistance (APR) in some cultivars, in field nurseries inoculated with pathotypes of P. recondita f. sp. tritici of known pathogenicities for characterized seedling resistance genes. APR was identified in eleven cultivars, including Avalon and Maris Ranger, which lacked detectable seedling resistance genes. The results provided a better understanding of specific resistances in the cultivars tested than was available from previous reports. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The genetic bases of leaf rust resistance in wheat (Triticum aestivum L.) line CSP44, selected from the Australian cultivar Condor, and Indian cultivar VL404, were studied. The reaction patterns of CSP44 and VL404 against Indian races 12, 77, 77-1, 77-2, 77-3, 77-4, 77-5 and 108 were different from reaction patterns shown by near-isogenic lines with known adult plant resistance (APR) genes, viz. Lr12, Lr13, Lr22b and Lr34. Although the reaction patterns of CSP44 and VL404 were similar to the near-isogenic line Tc+Lr22a, tests of allelism indicated absence of Lr22a in both CSP44 and VL404. On the basis of genetic studies, their resistances in field tests against race 77-5, the most virulent race from the Indian sub-continent, were each ascribed to two genes. One of the two genes in each wheat was identified to be the non-hypersensitive APR gene Lr34. The second APR genes in CSP44 and VL404 gave hypersensitive reaction types and were recessive and dominant, respectively. The gene in CSP44 was designated Lr48and the gene in VL404, Lr49. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Summary An Agropyron elongatum-derived leaf rust resistance gene Lr24 located on chromosome 3DL of wheat was tagged with six random amplified polymorphic DNA (RAPD) markers which co-segregated with the gene. The markers were identified in homozygous resistant F2 plants taken from a population segregating for leaf rust resistance generated from a cross between two near-isogenic lines (NILs) differing only for Lr24. Phenotyping was done by inoculating the plants with pathotype 77-5 of Puccinia triticina. To enable gene-specific selection, three RAPD markers (S1302609, S1326615 and OPAB-1388) were successfully converted to polymorphic sequence characterized amplified region (SCAR) markers, amplifying only the critical DNA fragments co-segregating with Lr24. The SCAR markers were validated for specificity to the gene Lr24 in wheat NILs possessing Lr24 in 10 additional genetic backgrounds including the Thatcher NIL, but not to 43 Thatcher NILs possessing designated leaf rust resistance genes other than Lr24. This indicated the potential usefulness of these SCAR markers in marker assisted selection (MAS) and for pyramiding leaf rust resistance genes in wheat.  相似文献   

14.
Bruchid beetles or seed weevils are the most devastating stored pests of grain legumes causing considerable loss to mungbean (Vigna radiata (L.) Wilczek). Breeding for bruchid resistance is a major goal in mungbean improvement. Few sources of resistance in cultivated genepool were identified and characterized, however, there has been no study on the genetic control of the resistance. In this study, we investigated the inheritance of seed resistance to Callosobruchus chinensis (L.) and C. maculatus (F.) in two landrace mungbean accessions, V2709BG and V2802BG. The F1, F2 and BC generations were developed from crosses between the resistant and susceptible accessions and evaluated for resistance to the insects. It was found that resistance to bruchids in seeds is controlled by maternal plant genotype. All F1 plants derived from both direct and reciprocal crosses exhibited resistance to the bruchids. Segregation pattern of reaction to the beetles in the F2 and backcross populations showed that the resistance is controlled by a major gene, with resistance is dominant at varying degrees of expressivity. Although the presence of modifiers was also observed. The gene is likely the same locus in both V2709BG and V2802BG. The resistant gene is considered very useful in breeding for seed resistance to bruchids in mungbean.  相似文献   

15.
Leaf rust, caused by Puccinia triticina, is considered one of the most important diseases of wheat. In South Africa the genes Lr29, Lr34, Lr35 and Lr37 confer effective resistance to leaf rust, qualifying them for use in cultivar improvement. To study possible secondary effects of these genes, a collection of BC6 lines containing each of the genes singly, was evaluated for breadmaking quality. The recurrent parent Karee, and Thatcher NILs used as resistance donors in the primary crosses, as well as Thatcher, were included as checks. The presence of Lr29, Lr34, Lr35 and Lr37 caused a significant increase in flour protein and water absorption. For most of the other characteristics the NILs performed statistically similar to the recurrent parent. Some sib lines performed significantly better than others, emphasising the value of selecting for improved quality among backcross lines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Pathogenicity data from surveys of Puccinia triticina (formerly P. recondita f. sp. tritici) conducted in western Europe in 1995 were analysed to compare the structure of regional populations of the pathogen. Many of the populations differed in phenotypic diversity and pathotypic composition, even though they occurred within a single epidemiological unit, suggesting that local factors may influence the establishment and propagation of individual pathotypes in the regional populations. Neighbouring regions were more similar than distant regions, and all regions shared at least one pathotype, except populations in northern Italy and Scotland. A high degree of similarity was found between populations in northern France and Great Britain, providing strong evidence of free movement of inoculum between these regions. Resistance genes were postulated for a selection of 91 wheat cultivars, representing those most commonly grown in western Europe in 1995. Thirteen cultivars lacked detectable seedling resistance genes and the remaining 78 possessed from one to three resistance genes; those detected were Lr1, Lr3a, Lr10, Lr13, Lr14a, Lr17b, Lr20, Lr26 and Lr37. The most commonly detected resistance gene was Lr13, which was present singly or in combination with other resistance genes in 48 cultivars (53%). The gene Lr14a was detected in 18 cultivars, Lr26 was present in 16 cultivars. The role of host selection in the composition of the regional populations of P. triticina in western Europe in 1995 was difficult to assess on the basis of the results obtained, since virulence data were not available for Lr13 and Lr14a. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Characterisation of new oat germplasm for resistance to powdery mildew   总被引:2,自引:0,他引:2  
Summary Wild oat accessions from the Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben were selected as potential sources of resistance to powdery mildew (Erysiphe graminis f.sp. avenae). The Avena strigosa accessions AVE 128, AVE 488 and AVE 264, along with A. occidentalis accession CAV 3889 showed high levels of mildew resistance in tests at early and late growth stages over two years; the latter is a particularly useful source because it is a hexaploid species. Moderate levels of resistance were also found in A. fatua accession AVE 1981, AVE 2032 and A.sterilis accession AVE 1373 but this could be due to the later maturity of these genotypes.  相似文献   

18.
The stripe (yellow) rust resistance gene Yr27 was located in wheat (Triticum aestivum L.) chromosome 2B and shown to be closely linked to the leaf (brown) rust resistance genes Lr13 and Lr23 in the proximal region of the short arm. Gene Yr27 was genetically independent of Lr16, which is distally located in the same arm. While Yr27 was often difficult to score in segregating seedling populations, it is apparently quite effective in conferring resistance to avirulent cultures under field conditions. The occurrence of Yr27 in Mexican wheat germplasm and the current over-dependence on Yr27 for crop protection in Asia are discussed.  相似文献   

19.
A species level germplasm collection representing 76% of known taxa in the genus Vigna subgenus Ceratotropis was evaluated for resistance to two species of bruchid beetles, Callosobruchus chinensis and C. maculatus. Seven taxa consisting of 29 accessions were found to be resistant to C. chinensis and 4 taxa consisting of 24 accessions were found to be resistant to C. maculatus. This compared with no resistant accessions being found in several hundred landrace accessions of mungbean, V. radiata var. radiata, in the same subgenus. Sometimes resistance was found in all accessions of a particular taxon, such as complete resistance to both C. chinensis and C. macualtus in V. umbellata. Other taxa showed intra taxon variation for resistance such as V. reflexo-pilosa andV. minima. The levels and patterns of resistance among taxa were diverse. The results suggest that various factors cause resistance to bruchid in the subgenus Ceratotropis. While the number of eggs laid on seeds generally reflected seed size, one small seeded cultivar of V. mungo var. mungo, black gram, had an unusually high number of eggs laid per seed. No correlation was found between seed size and levels of resistance. The species level germplasm collection, which reflects the core collection concept in trying to maximize genetic diversity in a limited number of accessions, has enabled a large number of potentially useful sources of resistance to bruchid beetles to be found efficiently. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
56个小麦品种(系)的苗期和成株抗叶锈鉴定   总被引:1,自引:1,他引:0  
为了研究中国小麦品种中所携带的抗叶锈基因,对56个小麦品种(系)进行苗期接种推导其中所含有的抗叶锈基因,同时连续2年对供试材料进行田间成株抗叶锈鉴定。通过苗期基因推导结合分子标记辅助检测,结果表明,在36个小麦品种中共鉴定出Lr26、Lr34、Lr1、Lr2a、Lr11、Lr20、Lr30、Lr33和Lr44等9个抗叶锈基因,其中28个品种含有Lr26,Lr1和Lr20分别存在于6个品种中,4个品种含有Lr30,Lr11和Lr44各存在于2个品种中,Lr2a、Lr33和Lr34各自在1个品种中出现。经过2年的田间抗叶锈鉴定共筛选出46个慢锈品种。筛选到的这些苗期和成株抗病品种均可用于小麦持久抗叶锈品种的培育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号