首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Subsurface drainage induces systematic spatial variability in soil properties which may be reflected in the abundance and distribution of soil organisms. We compared the population density of the deep burrowing earthworm Lumbricus terrestris L. above and between tile subdrains in 41 sample pairs on an eight hectare grass field. Above the drains the median number of  individuals was twice as high and their total fresh mass five times as high as between the drains (4.5 vs. 2.1 individuals m-2  and 9.6 vs. 1.9 g m-2, respectively). The mean difference (above drain – between drains) was 2.5 individuals m-2  (95% CI = 1.0 to 4.0) and 6.6 grams m-2 (95% CI = 3.6 to 9.6). The relatively larger difference in fresh mass was due to a high proportion of adult individuals above drains. One likely explanation for the pattern of abundance is that the lowered water table level near the drains provides an environment beneficial for the population growth of L. terrestris. Due to the role of L. terrestris burrows as flow paths of percolating water the observations may have implications on subdrain function.  相似文献   

3.
Allolobophora carpathica is an earthworm species found in the Eastern Carpathian mountain region, but little information is available on its ecology. Field sampling in beech woodland of the Bieszczady National Park, SE Poland, found this species in soils with a pH of less than 5.0 and C:N ratios of 12 to 13. From sampling over 2 years, at 4 sites with differing sub-vegetation, a mean density of A. carpathica of 6.75 individuals m-2 with a biomass of 8.65 g.m-2 was recorded. The largest mature adults were in excess of 14.0 g but there were significant differences (p < 0.01) between sampling sites. Seasonal patterns of abundance were observed.To obtain more data on the growth and breeding biology of this species, specimens were collected from the field, taken to laboratories and maintained in mesocosms under controlled environmental conditions. Cocoon production was 0.88 cocoons per earthworm per month at 15oC, but under fluctuating temperature conditions (16 - 24oC) no cocoon production occurred. The mean cocoon biomass was 83 mg  (n = 104) and incubation took 178 days at 15oC (n = 14), although hatchability was low (22%) under these conditions. Growth from the hatchling stage, (mean mass 86 mg; n = 18), to maturity (c. 8.5 g) took 8 - 12 months at 12oC.  相似文献   

4.
The diversity of Paenibacillus polymyxa populations associated with the rhizosphere of durum wheat was investigated in Algerian soils sampled in regions where wheat had been cultivated for 5 and 26 years (Hamiz, H5 and Z26), 70 years (Algiers, D70), and more than 2 000 years (Tiaret, T2000 and K2000). A total of 111 strains were isolated by immunotrapping and identified as P. polymyxa using an API50CHB kit and restriction analysis of the amplified 16S rDNA gene. The phenotypic characteristics of the P. polymyxa populations were compared and the strains found not to cluster according to their origin. The longer the history of wheat cultivation, the lower the phenotypic diversity and the higher the frequency of nitrogen-fixing strains. Population genetic diversity, evaluated by ERIC-PCR, showed the same trends as phenotypic diversity. The distribution of ERIC genotypes among the different populations studied were compared using Pearson’s Chi-squared test. The strains isolated in D70, Z26, and H5 derived from soil populations sharing the same genetic structure, but those isolated in T2000 and K2000 each stemmed from a population with a specific genetic structure. These data suggest that the genetic structure of P. polymyxa populations has been affected by long-term wheat cultivation.  相似文献   

5.
Saltmarshes, functionally important habitats in the marine–terrestrial ecotone that are regularly affected by tidal inundation, are mainly detritus-based in terms of fluxes of nutrients and energy. With respect to the mediating influence of saltmarsh detritivores on microbial colonisation of detritus and on decomposition processes, we tested whether the “intermediate disturbance hypothesis” (IDH) is also applicable to the effects of stress in this stressful environment. Decomposition experiments with litter of the cordgrass, Spartina anglica, and with terrestrial [Porcellio scaber (Isopoda)] and marine/semi-terrestrial [Orchestia gammarellus (Amphipoda)] detritivores as well as animal-free controls were carried out in an artificial saltmarsh system. Different daily flooding regimes served as experimental levels of stress. Both litter mass loss and microbial respiration were mostly higher under aquatic than under terrestrial conditions, no matter whether detritivores were present or not. Considering the intertidal zone, low to intermediate daily inundation rates resulted in increased microbial respiration and an increased influence of detritivores on litter mass loss in early stages of cordgrass decomposition with high rates of detritus mass loss, and intermediate tidal stress led to higher microbial cell counts throughout the entire experiment. Summarised over 3 months, regression analyses suggested that microbial activity and detritus mass loss show a trend towards highest values at low inundation rates and under permanent inundation, although microbial density was higher under longer daily inundation. Access to detritus by detritivores enhanced both litter mass loss and microbial respiration, especially in later decomposition stages, whereas microbial density was reduced by detritivores. In conclusion, we predict that overall the decomposition of cordgrass detritus in saltmarshes is promoted in the intermediate to high area of the intertidal zone with daily inundation of ca. 4–10 hours where both marine and terrestrial detritivores have access to promote decomposition processes through feeding and mediating microbial activity.  相似文献   

6.
Strains belonging to Paenibacillus durus isolated from the rhizosphere of various grasses and from bulk soil were previously divided into five phenotypic groups (A1–A5) based on the fermentation pattern of six carbohydrates (A1: sorbitol (+), A2: dulcitol and tagatose (+), A3: starch and glycogen (+), A4: starch, glycogen and d-arabitol (+) and A5: negative for these carbohydrates). This study aimed to assess whether plant types select for specific P. durus phenotypic groups. For that purpose, polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA (ARDRA) and DNA gyrase subunit B (gyrB-RFLP) were used to produce genetic fingerprints. ARDRA and gyrB-RFLP data were clustered together to generate a dendrogram and two main clusters were observed. Cluster I showed a predominance of strains isolated from wheat, maize and sugarcane rhizospheres. Strains isolated from maize were distributed among the five patterns of carbohydrate metabolism, while strains isolated from sugarcane showed to be predominantly able to metabolize starch and glycogen. Neither sorbitol- nor arabitol-metabolizing strains were found in cluster II, which consisted of strains isolated from soil and from all plant species used. Our results suggest that the plants influenced the diversity of P. durus in their rhizospheres.  相似文献   

7.
The myrmecophilous Platyarthrus schoblii Budde-Lund, 1885 is widely distributed and native in the Mediterranean region. In Hungary it was first found at Budapest, in 2001, in a colony of Lasius neglectus van Loon, Boomsma and Andrásfalvy, 1990 (Hymenoptera: Formicidae). This invasive and polygynous ant species is dispersing in an antropochorous way throughout Europe. There are 16 known colonies of L. neglectus in Hungary. Fourteen of them have been surveyed for the isopod, which was detected in eight cases (57%). In addition to L. neglectus, the isopod has been recently found with other native ant species [Lasius niger (Linnaeus, 1758), Lasius emarginatus (Olivier, 1791) and Tetramorium caespitum (Linnaeus, 1758)] in the country. We have also found the joint occurrence of P. hoffmannseggii Brandt, 1833 and P. schoblii. The co-occurrence and joint expansion of the ranges of L. neglectus and P. schoblii indicates their co-habitation and antropochorous dispersal while the appearance with L. emarginatus, L. niger and T. caespitum supports our hypothesis about possible adoption by different ant species.  相似文献   

8.
Summary Rye-grass (Lolium perenne) is known to be a strong competitor to red clover (Trifolium pratense) for soil K+ under conditions of low K availability in the soil. The objective of this study was to clarify whether this competitive behaviour of the two species can be explained by root morphology. Total K+ uptake ofL. perenne andT. pratense was studied under field conditions in relation to root fresh weight, root density, root cation exchange capacity, root surface and root length. The soil was an Alfisol, Udalf. All root parameters, when calculated per unit soil surface (M2), were higher inL. perenne than inT. pratense. In addition,L. perenne had longer root hairs and a denser root hair system thanT. pratense. The greatest difference in root morphology between species was root length, withL. perenne roots averaging 4–6 times longer than those ofT. pratense.Significant correlations were found between the total K+ uptake and all root parameters examined, with highest correlationsforroot fresh weight (r,0.92***T. pratense; 0.94***L. perenne) and root length (r, 0.91***T. pratense;r, 0.93***L. perenne). Potassium uptake per unit root fresh weight, root surface and root length were all significantly higher forT. pratense than for L. perenne. Differences in the rate of K+ uptake between species were particularly high when expressed per unit root length. Because of its greater root length and surface area,L. perenne can take up more soil K+ thanT. pratense, particularly where there is a low K supply in the soil. Under such conditionsL. perenne will be a particularly strong competitor toT. pratense.  相似文献   

9.
Global change scenarios predict an increasing frequency and duration of summer drought periods in Central Europe especially for higher elevation areas. Our current knowledge about the effects of soil drought on nitrogen trace gas fluxes from temperate forest soils is scarce. In this study, the effects of experimentally induced drought on soil N2O and NO emissions were investigated in a mature Norway spruce forest in the Fichtelgebirge (northeastern Bavaria, Germany) in two consecutive years. Drought was induced by roof constructions over a period of 46 days. The experiment was run in three replicates and three non-manipulated plots served as controls. Additionally to the N2O and NO flux measurements in weekly to monthly intervals, soil gas samples from six different soil depths were analysed in time series for N2O concentration as well as isotope abundances to investigate N2O dynamics within the soil. N2O fluxes from soil to the atmosphere at the experimental plots decreased gradually during the drought period from 0.2 to −0.0 μmol m−2 h−1, respectively, and mean cumulative N2O emissions from the manipulated plots were reduced by 43% during experimental drought compared to the controls in 2007. N2O concentration as well as isotope abundance analysis along the soil profiles revealed that a major part of the soil acted as a net sink for N2O, even during drought. This N2O sink, together with diminished N2O production in the organic layers, resulted in successively decreased N2O fluxes during drought, and may even turn this forest soil into a net sink of atmospheric N2O as observed in the first year of the experiment. Enhanced N2O fluxes observed after rewetting up to 0.1 μmol m−2 h−1 were not able to compensate for the preceding drought effect. During the experiment in 2006, with soil matric potentials in 20 cm depth down to −630 hPa, cumulative NO emissions from the throughfall exclusion plots were reduced by 69% compared to the controls, whereas cumulative NO emissions from the experimental plots in 2007, with minimum soil matric potentials of −210 hPa, were 180% of those of the controls. Following wetting, the soil of the throughfall exclusion plots showed significantly larger NO fluxes compared to the controls (up to 9 μmol m−2 h−1 versus 2 μmol m−2 h−1). These fluxes were responsible for 44% of the total emission of NO throughout the whole course of the experiment. NO emissions from this forest soil usually exceeded N2O emissions by one order of magnitude or more except during wintertime.  相似文献   

10.
在盆栽条件下试验研究了5种葫芦科(Cucurbitaceae)蔬菜对2种丛枝菌根(Arbuscular Mycorrhiza,AM)真菌的依赖性。结果表明,AM真菌Glomus mosseae(G.m)和Gigaspora rosea(Gi.r)均能有效地促进葫芦科蔬菜的生长,显著增加叶面积和植株干物质量,提高叶片的光合速率,降低气孔阻力。供试葫芦科蔬菜对菌根的依赖程度顺序为黄瓜>西瓜>苦瓜>葫芦>南瓜。5种葫芦科蔬菜对AM的依赖性与AM真菌对根系的浸染率呈正相关关系,符合直线回归方程:y=117.19+0.7468x。  相似文献   

11.
Soil moisture and gaseous N-flux (N2O, N2) dynamics in Costa Rican coffee plantations were successively simulated using a mechanistic model (PASTIS) and two process-based models (NGAS and NOE). Two fertilized (250 kg N ha−1 y−1) coffee plantations were considered, namely a monoculture and a system shaded by the N2 fixing legume species Inga densiflora. In situ N2O fluxes were previously measured in these plantations. NGAS and NOE used specific microbial activities for the soils. To parameterize NGAS, we estimated N mineralization via in situ incubations and the contribution of heterotrophic soil respiration to total soil respiration. Potential denitrification rates and the proportion of denitrified N emitted as N2O were measured in the laboratory to define the values of NOE parameters, as well as nitrification rates and related N2O production rates for parameterizing both models. Soil moisture and both NGAS and NOE N2O fluxes were best modelled on an hourly time step. Soil moisture dynamics were satisfactorily simulated by PASTIS. Simulated N2O fluxes by both NGAS and NOE (3.2 and 2.1 kg N ha−1 y−1 for NGAS; 7.1 and 3.7 kg N ha−1 y−1 for NOE, for the monoculture and shaded plantations respectively) were within a factor of about 2 of the observed annual fluxes (4.3 and 5.8 kg N ha−1 y−1, for the monoculture and shaded plantations respectively). Statistical indicators of association and coincidence between simulated and measured values were satisfactory for both models. Nevertheless, the two models differed greatly in describing the nitrification and denitrification processes. Some of the algorithms in the model NGAS were apparently not applicable to these tropical acidic Andosols. Therefore, more detailed information about microbial processes in different agroecosystems would be needed, notably if process-oriented models were to be used for testing strategies for mitigating N2O emissions.  相似文献   

12.
茄二十八星瓢虫对雷公藤和曼陀罗提取物的敏感性   总被引:1,自引:0,他引:1  
为研究寄主植物对茄二十八星瓢虫药剂敏感性及体内酶活力的影响,采用浸渍法分别测定了取食茄子、马铃薯、番茄和龙葵的茄二十八星瓢虫幼虫(以下简称幼虫)对雷公藤和曼陀罗提取物的敏感性,用生化方法测定了雷公藤和曼陀罗提取物对幼虫体内乙酰胆碱酯酶(AChE)和主要解毒酶活性的影响。结果表明,雷公藤提取物对取食茄子、马铃薯、番茄和龙葵的幼虫LC50值分别为1.407 9 mg.L-1、1.595 8 mg.L-1、1.464 7 mg.L-1和1.109 7 mg.L-1,相对毒力指数为78.82、69.54、75.76和100;曼陀罗提取物对取食茄子、马铃薯、番茄和龙葵的幼虫LC50值分别为0.641 7 mg.L-1、0.610 3 mg.L-1、0.758 0 mg.L-1和0.488 3 mg.L-1,相对毒力指数为76.09、80.01、64.42和100;取食龙葵的幼虫对2种植物提取物的敏感性显著高于取食茄子、马铃薯和番茄的幼虫。取食4种寄主植物的幼虫体内靶标酶AChE和主要解毒酶谷胱甘肽-S-转移酶(GST)、羧酸酯酶(CarE)、多功能氧化酶(MFO)活力顺序均为茄子>马铃薯>番茄>龙葵。其中,取食番茄和龙葵的幼虫体内AChE和GST活力显著低于取食茄子和马铃薯的幼虫,取食马铃薯、番茄和龙葵的幼虫CarE活力显著低于取食茄子的幼虫,取食4种寄主植物的幼虫MFO活力差异达极显著水平。雷公藤和曼陀罗提取物对幼虫体内AChE和GST、CarE和MFO活性均有抑制作用。其中,对取食马铃薯幼虫的AChE活力抑制作用最强,其次为取食茄子和番茄的幼虫,对取食龙葵的幼虫抑制作用最低。雷公藤和曼陀罗提取物对取食龙葵幼虫CarE活力的抑制作用最强,而对取食马铃薯的幼虫MFO活力的抑制作用最强。寄主植物中的次生物质对解毒酶的诱导或抑制可能是引起药剂敏感性差异的主要原因。  相似文献   

13.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

14.
Agricultural research increasingly is expected to provide precise, quantitative information with an explicit geographic coverage. Limited availability of daily meteorological records often constrains efforts to provide such information through use of simulation models, spatial analysis, and related decision support tools. The Prediction Of Worldwide Energy Resources (NASA/POWER) project at the NASA Langley Research Center provides daily data globally for maximum and minimum temperatures and other weather variables on a 1° latitude–longitude grid. The data are assembled from a range of products derived from satellite imagery, ground observations, windsondes, modeling and data assimilation. Daily temperature data from NASA/POWER for 1983 to 2004 for the continental US were compared with data of 855 individual ground stations from the National Weather Service Cooperative Observer Program (COOP). Additionally, a wheat (Triticum aestivum L.) simulation model was used to compare predicted time to anthesis using the two data sources. Comparisons of daily maximum temperatures (Tmax) gave an r2-value of 0.88 (P < 0.001) and root-mean-squared error (RMSE) of 4.1 °C. For minimum temperature (Tmin), the r2-value was 0.88 (P < 0.001) and RMSE, 3.7 °C. Mean values of Tmax, and Tmin from NASA/POWER were, respectively, 2.4 °C cooler and 1.1 °C warmer than the COOP data. Differences in temperature were least during summer months. When data were aggregated over periods of 8 days or more, the RMSE values declined to below 2.7 °C for Tmax and Tmin. Simulations of time to anthesis with the two data sources were also strongly correlated (r2 = 0.92, P < 0.001, RMSE = 14.5 d). Anthesis dates of winter wheat regions showed better agreement than southern, winter-grown spring wheat regions. The differences between the data sources were associated with differences in elevation, which in large part resulted from NASA/POWER data being based on mean elevations over a 1° grid cells vs. COOP data corresponding to the elevation of specific stations. Additional sources of variation might include proximity to coastlines and differences in observation time, although these factors were not quantified. Overall, if mountainous and coastal regions are excluded, the NASA/POWER data appeared promising as a source of continuous daily temperature data for the USA for research and management applications concerned with scales appropriate to the 1° coordinate grid. It further appeared that the POWER data could be improved by adjusting for elevation (lapse rate) effects, reducing seasonal bias, and refining estimation of actual maximum and minimum temperatures in diurnal cycles.  相似文献   

15.
Variability studies were carried out among different accessions of Argyrolobium roseum for 12 metric traits under natural and cultivated conditions. Almost all characters showed higher values in cultivated than natural population. Leaf breadth recorded highest CV (30.59%). Highest percentage of vitexin and D-pinitol (0.208 and 0.773% dwb) was observed in RAR-7 and RAR-6, respectively, under cultivated conditions. Phenotypic coefficient was higher than genotypic coefficient of variation. The association analysis revealed that root yield had positive significant correlation with 100 seed weight (r=0.839) biomass yield (r=0.601), where biomass yield had a positive significant correlation with leaf length, single pod weight. High heritability (97.4–99.8%) coupled with moderate genetic advance ranged between (49–67%) as a percent of mean was observed for leaf breadth, pod length, total foliage biomass yield and total root yield/plant. This suggests that direct selection for these traits is suitable for the improvement of this crop.  相似文献   

16.
Effects of the broad-spectrum insecticide fipronil were investigated on a non-target insect living in the soil, the springtail Folsomia candida Willem. Fipronil induced a significant reduction in juvenile production (PNEC = 250 μg kg−1 dry soil), which seemed to be linked with an impact on the first stages of springtail development: juveniles and 7-day-old adults. These young organisms have a thinner integument, a smaller mass body and a weaker detoxification efficiency and were more sensitive than adults (14 days old) to fipronil and phenylpyrazole derivatives. Contact toxicity for juveniles was measured (LC50(96 h)) giving the following values: fipronil, 450 μg l−1; sulfone-fipronil, 430 μg l−1; sulfide-fipronil, 160 μg l−1. F. candida organisms were able to avoid contaminated food because phenylpyrazoles decreased food appetency. However, F. candida could bioaccumulate fipronil through trans-tegumental penetration (BAF96 h = 160) and its high biotransformation rate inside springtail bodies (1 ng fipronil metabolized day−1 individual−1) was suspected to increase this process. Under natural conditions, phenylpyrazoles risk assessment on springtails seems to be weak due to their capacity of avoiding high contaminated zones and their biochemical tolerance to this class of insecticides.  相似文献   

17.
Jatropha (Jatropha curcas L.) is a non-edible oil-seed plant with adaptability to marginal semi-arid lands and wastelands. The Indian Government is promoting jatropha to reduce dependence on the crude oil and to achieve energy independence by the year 2012, under the National Biodiesel Mission. Selected strains of Bacillus spp., either supplemented with or without chitin, were tested for their ability to promote growth of jatropha seedlings in pot culture studies. The strains supported growth of jatropha seedlings up to 42 days after sowing. Among all strains, Bacillus pumilus (IM-3) supplemented with chitin showed over all plant growth promotion effect resulting in enhanced shoot length (113%), dry shoot mass (360%), dry root mass (467%), dry total plant mass (346%), leaf area (256%), and chlorophyll content (74%) over control. Treating seeds with strain IM-3 without chitin resulted in enhanced dry shoot mass (473%), dry total plant mass (407%), and chlorophyll content (82%). However, Bacillus polymyxa (KRU-22) with chitin supported maximum root length (143%). Either strain IM-3 alone or in combination with other promising strains could be promoted further for enhanced initial seedling growth of jatropha.  相似文献   

18.
The effects of di-(2-ethylhexyl) phthalate (DEHP) at five different doses from 10 to 1000 mg kg−1 soil on biological properties were investigated over a period of 56 days. Meanwhile, the dissipation of DEHP was also monitored. The results indicated that the microbial biomass C (Cmic) fluctuated at around 70 mg kg−1 soil for the control, whereas the Cmic varied significantly for the soil samples contaminated by DEHP. The catalase activities in all five treatments were stimulated at most time, and the activities of phosphatase in the soils treated by DEHP with 500 mg kg−1 or 1000 mg kg−1 were significantly higher than the other treatments from the 20th day. Urease was more sensitive and inhibited significantly during the initial period of incubation. Additionally, the dose–response relationship of invertase was presented in the later phase of incubation. The activities of urease and invertase might indicate soil perturbations caused by the introduction of DEHP. The dissipation of DEHP was found to follow the pseudo first-order kinetics behavior.  相似文献   

19.
In order to identify key adaptive traits which affect productivity in Mediterranean grain and forage legumes and simultaneously determine the agricultural potential of a wide range of Vicia species, germplasm collected from the wild throughout the eastern Mediterranean was grown under semi-arid conditions in Tel Hadya, Syria (313 mm growing season rainfall). These included species currently in use in Mediterranean agriculture, such as V. sativa L., as well as those more widely used in the past-such as V. ervilia L., but also a broad selection from Section Narbonensis (B. Fedtsch. ex Radzhi) Maxted, including V. narbonensis L, V. johannis Tamamsch., V. hyaeniscyamus Mout., V. serratifolia Jacq., and V. kalakhensis Khattab et al. V. faba, a near relative of the taxa in Section Narbonensis, was included as a domesticated control. Where applicable, a representative range of subspecies was used. Accessions were chosen from a wide range of habitats in terms of latitude (31.02–40.72 decimalo), longitude (27.1–43.17 decimalo), altitude (20–1510 m), rainfall (180–1700 mm/yr) and soil depth (5–50 cm) in order to maximise diversity within species. Agricultural potential was determined by measuring seed, hay and biological yield, as well as agronomic traits such as harvest index, standing crop height, and seed size. The comparative influence of phenology and key agronomic traits such as plant habit and seed size on productivity varied tremendously between species, depending on their reproductive strategies. In V. sativa and V. ervilia, the smaller seed species which rely on long vegetative phases and growing seasons to accumulate sufficient biomass to set seed, and in which there was comparatively little agronomic variation, phenology had a large impact on yield. In early emerging taxa such as V. ervilia and V. s. subsp. sativa, with built-in long vegetative phases and growing seasons, seed yield was negatively correlated with flower ing (r = –0.86 to –0.88), whereas the opposite was the case for later emerging taxa such as V. s. subsp. nigra (L.) Ehrh. (r = 0.95). Within V. narbonensis and relatives, the larger seeded Vicia species which rely on more conservative reproductive strategies where high seedling vigour associated with large seeds enables the species to enter reproductive phases relatively early, phenology had a much smaller impact on yield than did variation of key traits such as seed weight, plant habit and pod shattering. Among the undomesticated germplasm harvest indices ranged from 0.09–0.31, hay yields from 0.1–3.4 t/ha, seed yield from 0–2.0 t/ha, and dry matter at maturity from 1.6–6.5 t/ha. Sub-specific taxonomy was crucial in determining agronomic potential. V. narbonensis var. aegyptiaca Kornhuber ex Asch. et Schweinf. showed the most potential, combining an upright habit, large seeds (212 mg) and tendency to retain intact pods after maturity, with the highest yield, harvest index and crop height of all the wild Vicia species. V. sativa subsp. sativa, V. ervilia and V. narbonensis var. narbonensis were less productive, but still showed agricultural potential. The smaller seeded V. narbonensis, var. affinis, var. jordanica H. Schäf. and var. salmonea (Mout.) H. Schäf., and their close relatives V. johannis, V. hyaeniscyamus, V. serratifolia and V. kalakhensis have little to offer Mediterranean agriculture on the basis of poor agronomy.  相似文献   

20.
Since the introduction of Terrestrial Laser Scanning (TLS) instruments, there now exists a means of rapidly digitizing intricate structural details of vegetation canopies using Light Detection and Ranging (LiDAR) technology. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns at olive (Olea europaea L.) plantations in Córdoba, Spain. In addition to conventional tripod-mounted ILRIS-3D scans, the unit was mounted on a platform (12 m above ground) to provide nadir (top-down) observations of the olive crowns. 24 structurally variable olive trees were selected for in-depth analysis. From the observed 3D laser pulse returns, quantitative retrievals of tree crown structure and foliage assemblage were obtained. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21 m), crown width (r2 = 0.97, rmse = 0.13 m), crown height (r2 = 0.86, rmse = 0.14 m), crown volume (r2 = 0.99, rmse = 2.6 m3), and Plant Area Index (PAI) (r2 = 0.76, rmse = 0.26 m2/m2). With the development of such LiDAR-based methodologies to describe vegetation architecture, the forestry, agriculture, and remote sensing communities are now faced with the possibility of replacing current labour-intensive inventory practices with, modern TLS systems. This research demonstrates that TLS systems can potentially be the new observational tool and benchmark for precise characterization of vegetation architecture for improved agricultural monitoring and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号