首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the role of salicylic acid (SA) supplied with 5 approaches in alleviating chlorosis induced by iron (Fe) deficiency in peanut plants growing on calcareous soil, SA was supplied as soil incorporation, making slow-release particles, seed soaking, irrigation and foliar application. SA application, particularly, SA supplied by slow release particles, dramatically increased growth parameters, yield and quality of peanut, and increased Fe concentration in peanut grain. Meanwhile, SA application increased the H+-ATPase activity, reduced pH of soil, increased Fe3+-Chelate Reductase (FCR) activity in roots, and increased Fe concentration in roots. Furthermore, SA increased active Fe content and increased chlorophyll content. In addition, SA improved enzymes activities containing superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and protected Fe deficiency induced oxidative stress. Therefore, SA has a good effect on alleviating chlorosis induced by Fe deficiency on calcareous soil. However, in the 5 SA supplied approaches, foliar application and making slow release particles were more effective.  相似文献   

2.
Salicylic acid (SA) and nitric oxide (NO), which are known as important signaling molecules in plants, could be promising compounds for the reduction in stress sensitivity. The aim of the present work was to study the physiological changes in peanut (Arachis hypogaea L.) seedlings grown in growth medium that contained 0.1 mM SA, 0.25 mM sodium nitroprusside (SNP, a NO donor), or in full (SA+SNP) or half [1/2 (SA+SNP)] combined strengths under iron (Fe) deficiency. After 21 days of treatment, Fe deficiency significantly inhibited peanut plant growth, destroyed photosynthetic system, and caused oxidative damages. Addition of SA, SNP, and 1/2 (SA+SNP), especially SA+SNP, alleviated the stress, increased the contents of chlorophylls, and promoted plant growth. They improved Fe uptake, transport, and availability in peanut plants by increasing the activities of H+-ATPase and ferric chelate reductase (FCR), and promoting Fe translocation from cell wall to cell organelle and soluble fraction in leaves. Furthermore, they also effectively mitigated oxidative damages by increasing the activities of antioxidant enzymes in peanut leaves and roots. The results from the present study indicate that application of SA, SNP, or 1/2 (SA+SNP) can overcome the adverse effect of Fe deficiency, but the combined application of SA+SNP is more effective in alleviating Fe deficiency stress.  相似文献   

3.
This study was to investigate peanut response to application of nitric oxide (NO) at different growth stages and the effects of NO application on peanut yield and quality in calcareous soil. Sodium nitroprusside (SNP, a NO donor) solution was poured into calcareous soil at sowing, seedling, flowering, and podding stages, respectively, or at each aforesaid critical stage. Results showed that NO application increased the content of active Fe and leaf chlorophyll, which improved the photosynthesis of peanut; enhanced the ability of resistance to oxidative stress by decreased the accumulation of O2??, H2O2, and MDA and increased the activity of antioxidant enzymes. Nitric oxide increased the content of soil available Fe and root FCR activity, which can promote peanut absorb more Fe from the calcareous soil. What's more, peanut plants may pump a large amount of H+ from root cell membrane to consume in neutralization of HCO3?, and decrease the pH in apoplast, cytoplasm, and xylem, finally balance the mineral elements (Fe, Ca, Mg, Zn, and Cu) uptake and distribution. These results indicated that NO could improve peanut growth and development, increase peanut yield and quality. Furthermore, the application of NO at sowing or seedling stage did the most obvious effect on alleviating chlorosis of peanut in calcareous soil.  相似文献   

4.
The aim of this research was to study the role of nitric oxide (NO) in alleviating iron deficiency induced chlorosis of peanut (Arachis hypogaea L.). For this study, sodium nitroprusside (SNP) was used to supply NO for hydroponic peanut plants. After 18 days, the peanut seedlings growing without iron exhibited significant leaf interveinal chlorosis, and this iron-deficiency induced symptom was completely prevented by NO. An increased content of chlorophyll and active iron was observed in NO-treated young leaves, suggesting an improvement of iron availability in plants. In addition, the improved rhizosphere acidification and increased secretion of organic acids by root in NO-treated plants suggesting that NO is effective in modulating iron uptake and transport inside the peanut plants. Furthermore, NO treatment alleviated the increased accumulation of superoxide anion (O2??) and malondialdehyde (MDA), and modulated the antioxidant enzymes. However, the SNP with a prior sunlight treatment that does not release NO had no significant effect on the chlorophyll levels in iron-deficient plants. Therefore, these results support a physiological action of NO on the availability, uptake and transport of iron in the plant.  相似文献   

5.
Cadmium(Cd) is highly toxic to plants, animals, and humans. Limited information is available on the role of nitric oxide(NO)and/or 24-epibrassinolide(EBR) in response of plants to Cd stress. In this study, a hydroponic experiment was performed to investigate the effects of NO and/or EBR on peanut plants subjected to Cd stress(200 μmol L~(-1)) with sodium nitroprusside(SNP, an exogenous NO donor)(250 μmol L~(-1)) and/or EBR(0.1 μmol L~(-1)) addition. The results showed that Cd exposure inhibited plant growth, and this stress was alleviated by exogenous NO or EBR, and especially the combination of the two. Treatment with Cd inhibited the growth of peanut seedlings, decreased chlorophyll content, and significantly increased the Cd concentration in plants. Furthermore, the concentration of reactive oxygen species(ROS) markedly increased in peanut seedlings under Cd stress, resulting in the accumulation of malondialdehyde(MDA) and proline in leaves and roots. Under Cd stress, applications of SNP, EBR, and especially the two in combination significantly reduced the translocation of Cd from roots to leaves, increased the chlorophyll content, decreased the concentrations of ROS, MDA, and proline, and significantly enhanced the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in peanut seedlings. Exogenous NO and/or EBR also stimulated the activities of nitrate reductase(NR)and nitric oxide synthase(NOS) and increased the contents of antioxidants, such as ascorbic acid(AsA) and reduced glutathione(GSH). Furthermore, exogenous NO and/or EBR enhanced Cd accumulation in the cell wall and thus decreased Cd distribution in the organelles in the roots. The concentrations of calcium(Ca), iron(Fe), magnesium(Mg), and zinc(Zn) were also regulated by exogenous NO or EBR, and especially by the two in combination. These results indicated that SNP and EBR, alone and particularly in combination, can mitigate the negative effects of Cd stress in peanut plants.  相似文献   

6.
Nitric oxide (NO) and salicylic acid (SA) are two important signaling molecules, which could alleviate chlorosis of peanut under iron (Fe) deficiency. Here, we further investigated the mechanism of different combinations of sodium nitroprusside (SNP, a nitric oxide donor) and SA supplying in alleviation Fe deficiency symptoms and selected which is the best combination. Thus, peanut was cultivated in hydroponic culture under iron limiting condition with different combinations of SNP and SA application. After 21 days, Fe deficiency significantly inhibited peanut growth, decreased soluble Fe concentration and chlorophyll contents, and disturbed ionic homeostasis. In addition, the content of reactive oxygen species (ROS) and malondialdehyde (MDA) concentration increased, which led the lipid peroxidation. Application of SNP and SA significantly changed Fe trafficking in cells and organs, which increased Fe uptake from nutrient solution, and transport from root to shoot, enhanced the activity of ferric-chelate reductase (FCR), that increased the available Fe in cell organelles, and the active Fe, chlorophyll contents in leaves. Furthermore, ameliorated the inhibition of calcium (Ca), magnesium (Mg) and zinc (Zn) uptake and promoted plant growth in Fe deficiency. At the same time, it increased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) to protect the plasmolemma from peroxidation. Results demonstrated that different combinations of SNP and SA application could alleviate the chlorosis of peanut in Fe deficiency by various mechanisms. Such as increased the available Fe and chlorophyll concentrations in leaves, improved the activities of antioxidant enzymes and modulated the mineral elements balance and so on. Foliar application of SNP and SA is the best to protect leaves while directly adding them into nutrient solution is the best to protect roots. These results also indicated that the effects of SNP and SA supplying together to leaves or roots are better than respectively adding to roots and spraying to leaves. The best combination is foliar application of SNP and SA.  相似文献   

7.
The effects of salicylic acid (SA) on iron (Fe) deficiency in peanut (Arachis hypogaea L.) were studied by adopting the hydroponic experiment. Iron deficiency caused serious chlorosis, inhibited plant growth and dramatically decreased the concentration of Fe in the roots. Furthermore, it decreased the active Fe content and chlorophyll content, and disturbed ionic homeostasis. In addition, Fe deficiency significantly increased the content of malondialdehyde (MDA) and the superoxide anion (O2??) generation rate. Addition of SA increased Fe concentration in the shoots and roots, active Fe content, chlorophyll content, the net photosynthetic rate, and transpiration rate. Moreover, SA supplementation alleviated the excess absorption of manganese (Mn), copper (Cu) and zinc (Zn) induced by Fe deficiency. In addition, the chlorosis symptom was alleviated and the plant growth was improved. Meanwhile, addition of SA increased the activities of catalase (CAT) and peroxidase (POD), and decreased the content of MDA and the O2?? generation rate. These results suggest that exogenous SA can alleviate Fe-deficiency induced chlorosis by promoting the plant growth, improving the efficiency of Fe uptake, translocation and utilization, protecting antioxidant enzymes system, and stimulating mineral element maintenance.  相似文献   

8.
《Journal of plant nutrition》2013,36(10-11):1997-2007
Abstract

Two tomato (Lycopersicon esculentum Mill., cvs. Pakmor and Target) genotypes differing in resistance to iron (Fe) deficiency were grown in nutrient solution under controlled environmental conditions over 50 days to study the relationships between severity of leaf chlorosis, total concentration of Fe, and activities of Fe‐containing enzymes in leaves. The activities of Fe‐containing enzymes ascorbate peroxidase, catalase, and guaiacol peroxidase, and additionaly the activity of glutathione reductase, an enzyme that does not contain Fe, were measured. Plants were supplied with 2 × 10?7 M (Fe deficient) and 10?4 M (Fe sufficient) FeEDTA, respectively. Leaf chlorosis appeared more rapidly and severely in Target (Fe deficiency senstive genotype) than Pakmor (Fe deficiency resistant genotype). On day 50, Pakmor had 2‐fold more chlorophyll than Target under Fe deficiency, while at adequate supply of Fe the two genotypes were very similar in chlorophyll concentration. Despite distinct differences in development of leaf chlorosis and chlorophyll concentrations, Pakmor and Target were very similar in concentrations of total Fe under Fe deficiency. In contrast to Fe concentration, activities of Fe‐containing enzymes were closely related to the severity of leaf chlorosis. The Fe‐containing enzymes studied, especially catalase, showed a close relationship with the concentration of chlorophyll and thus differential sensitivity of tomato genotypes to Fe deficiency. Glutathione reductase did not show relationship between Fe deficiency chlorosis and enzyme activity. The results confirm that measurement of Fe‐containing enzymes in leaves is more reliable than the total concentration of Fe for characterization of Fe nutritional status of plants and for assessing genotypical differences in resistance to Fe deficiency. It appears that Fe deficiency‐resistant genotype contains more physiologically available Fe in tissues than the genotype with high sensitivity to Fe deficiency.  相似文献   

9.
Abstract

Peanut (Arachis hypogaea L.) is susceptible to iron (Fe) chlorosis, however, plant analysis diagnostic criteria are lacking for determining the intensity of chlorosis in this crop. As total Fe content is a misleading index of Fe nutritional status of plants, determination of physiologically active Fe fraction (Fe2+) is suggested for the purpose. In a nutrient indexing survey of the chlorosis‐affected peanut crop grown in the rainfed Potohar plateau of Pakistan, o‐phenanthroline extractable Fe2+ concentration in plants decreased with increasing severity of chlorosis and thus proved an effective technique for determining the intensity of Fe chlorosis. Green plants contained 40.1 to 67.3 mg Fe2+/kg, mildly chlorotic 32.1 to 40.0 mg Fe2+/kg, moderately chlorotic 28.0 to 32.0 mg Fe2+/kg, and severely chlorotic <28.0 mg Fe2+/kg. The minimum Fe2+ requirement in green plants was estimated to be 40 mg/kg on dry weight basis. In rainfed field experiments on a calcareous Typic Hapludalfs soil, foliar sprays of 1% solution of sequestrene (NaFeEDDHA) proved superior to the foliar sprays of 0.5% FeSO4.7H2O in correcting Fe chlorosis in two cultivars of peanut. Maximum increase in pod yield with sequestrene was 42% in cv. BARD‐92 and 27% in cv. BARD‐699 over the respective control yields. Ferrous concentration in plants increased with both the Fe sources, however, a substantial increase was recorded only with sequestrene. As peanut is a low‐input high‐risk rainfed crop, correction of Fe chlorosis by using sequestrene may not be economically feasible. Thus, development and/or screening of peanut varieties tolerant to Fe chlorosis is suggested by employing Fe2+ analysis technique.  相似文献   

10.
This study examined the effects of exogenous nitric oxide (NO) on physiological characteristics of peanut (Arachis hypogaea L.) growing on calcareous soil. Sodium nitroprusside (SNP) was added into slow-release fertilizer (SRF) or sprayed on leaves to supply NO for iron-deficient peanut. The results showed that root application of SNP at 5.63 mg/g and foliar spray of SNP at 1.0 mmol L?1 significantly enhanced the peanut growth, pod yield, and quality. The soil pH was reduced, and available iron content and iron (Fe3+) reductase activity in root were increased, indicating NO application improved the availability of iron in the soil. Additionally, NO increased the chlorophyll and active iron content in young leaves, implying NO enhanced the availability of iron within the plant. Nitric oxide also inhibited the malondialdehyde (MDA) accumulation in leaves and increased the activity of antioxidant enzymes, which protected peanut against iron-deficiency-induced oxidative stress. It was concluded that NO might be employed for ameliorating iron-deficient chlorosis of peanut on calcareous soil when added into SRF or sprayed on leaves.  相似文献   

11.
Iron (Fe) deficiency has been a widespread problem in peanut (Arachis hypogaea L.) grown on calcareous soils of northern China and has resulted in significant yield losses. Field observations showed considerable variability in visual chlorosis symptoms among peanut cultivars in the same soil. The objective of this study was to confirm the genetic differences in resistance to Fe-deficiency chlorosis in peanut and to identify feasible indicators for screening Fe-efficient genotypes. Resistance to Fe chlorosis of sixteen peanut cultivars grown on calcareous soil was evaluated in the field and physiological responses to Fe-deficiency stress were studied in nutrient solution. There were significant differences in resistance to Fe-deficiency chlorosis among the sixteen peanut cultivars tested, which was identified with SPAD readings, active Fe concentrations in young leaves in the early growth stages, and the pod yield. For Fe-resistant peanut cultivars, Fe-reduction capacity and quality of releasing hydrogen ions from roots increased under Fe-deficiency stress. Highly correlated relationships were observed between the summation of root Fe reduction and field chlorosis scores for sixteen cultivars (r2 = 0.79). It was concluded that Fe-reduction capacity was a better physiological indicator for screening Fe-efficient peanut genotypes of the mechanisms measured.  相似文献   

12.
Abstract

Iron (Fe) deficiency is a nutritional disorder in plants. Poncirus trifoliata is susceptible to Fe deficiency, but symptoms of Fe deficiency are rare in Ceratonia siliqua, a slow-growing species. Specimens of the two species were grown in nutrient solutions containing three Fe concentrations: without Fe (0?µM), 1?µM Fe, and either 10?µM Fe (for Ceratonia) or 40?µM Fe (for P. trifoliata). Growth, the degree of chlorosis, the plant mineral composition, and the activity of the root ferric chelate-reductase (FCR) were assessed. Ceratonia plants exposed to 1?µM Fe were efficient at using Fe in the synthesis of chlorophyll. The activity of FCR was enhanced in the total absence of Fe. In Poncirus a low activity of the FCR was observed in plants with no Fe. The balance between micronutrients in the Ceratonia roots was not affected with 1?µM Fe compared with the higher Fe concentration treatments.  相似文献   

13.
《Journal of plant nutrition》2013,36(8):1381-1393
Abstract

Root and leaf ferric chelate reductase (FCR) activity in Annona glabra L. (pond apple), native to subtropical wetland habitats and Annona muricata L. (soursop), native to nonwetland tropical habitats, was determined under iron (Fe)-sufficient and Fe-deficient conditions. One-year-old seedlings of each species were grown with 2, 22.5, or 45 µM Fe in a nutrient solution. The degree of tolerance of Fe deficiency was evaluated by determining root and leaf FCR activity, leaf chlorophyll index, Fe concentration in recently mature leaves, and plant growth. Root FCR activity was generally lower in soursop than in pond apple. Eighty days after plants were put in nutrient solutions, leaf FCR activity of each species was lower in plants grown with low Fe concentrations (2 µM) than in plants grown with high (22.5 or 45 µM) Fe concentrations in the nutrient solution. Leaves of pond apple grown without Fe became chlorotic within 6 weeks. The Fe level in the nutrient solution had no effect on fresh and dry weights of soursop. Lack of Fe decreased the leaf chlorophyll index and Fe concentration in recently matured leaves less in soursop than in pond apple. The rapid development of leaf chlorosis in low Fe conditions and low root and leaf FCR activities of pond apple are probably related to its native origin in wetland areas, where there is sufficient soluble Fe for adequate plant growth and development. The higher leaf FCR activity and slower growth rate of soursop compared to pond apple may explain why soursop did not exhibit leaf chlorosis even under low Fe conditions.  相似文献   

14.
Iron (Fe)-deficiency chlorosis causes considerable yield losses in chickpea (Cicer arietinum L.) when susceptible genotypes are grown in calcareous soils with high pH. The most feasible method for alleviating Fe deficiency is the selection of suitable cultivars resistant to Fe deficiency chlorosis. ICC 6119 (desi type), which is Fe-deficient chlorosis, was crossed with CA 2969 and Sierra (kabuli types), resistant to Fe deficiency chlorosis. Inheritance of resistance to Fe deficiency in chickpea revealed that the resistance was controlled by a single dominant gene in these genotypes crossed. A negative selection for resistance to Fe deficiency chlorosis will be effective after segregating generations.  相似文献   

15.
Results of a field experiment designed to assess the effects of phosphate carriers, iron (Fe), and indoleacetic acid (IAA) on the Fe nutrition of peanut grown on a calcareous soil showed that single superphosphate (SSP) was more effective than diammonium phosphate (DAP) in improving Fe nutrition and chlorophyll synthesis. Increased phosphorus (P) and Fe contents of chlorotic leaves showing symptoms of Fe deficiency suggested that Fe, despite absorption and uptake, was subjected to inactivation, and that the Fe content per se was not the cause of the observed chlorosis. Better amelioration of chlorosis with the SSP treatment as compared with DAP indicated a role of sulphur (S) in preventing inactivation of Fe, possibly caused by excessive P accumulation. A foliar spray of Fe‐EDDHA corrected the chlorosis, but a ferric citrate foliar treatment did not. This further suggested that the mobility of Fe was impaired in chlorotic plants. An IAA foliar spray only also tended to improve Fe nutrition. Significant increase in peanut productivity was observed following improvement in Fe nutrition both with soil and foliar treatments.  相似文献   

16.
ABSTRACT

Biochemical responses to direct or bicarbonate-induced iron (Fe) deficiency were compared in two Tunisian native grapevine varieties, Khamri (tolerant) and Balta4 (sensitive), and a tolerant rootstock, 140Ru. Woody cuttings of each genotype were irrigated with a nutrient solution containing one of the following: 20 μM Fe (control), 1 μM Fe (direct Fe-deficiency), or 20 μM Fe + 10 mM HCO3 ? (indirect bicarbonate-induced Fe-deficiency). Under direct Fe-deficient conditions, lower leaf chlorosis score and higher chlorophyll and leaf Fe contents were found in Khamri and 140Ru compared with Balta4. Moreover, indirect Fe deficiency caused similar effects on these parameters, which were more pronounced in Balta4. Both tolerant genotypes, Khamri and 140Ru, showed higher roots-acidification capacity and phenol release under the direct Fe deficiency compared with the bicarbonate-induced condition. In the sensitive variety, Balta4, no significant changes were found between the control and Fe-deficient plants. Root Fe(III)-reductase activity was strongly stimulated by both types of Fe deficiency in Khamri and 140Ru, and displayed no significant changes in Balta4. In the three genotypes, root and leaf activities of two Fe-containing enzymes, catalase and guaiacol peroxidase, were significantly affected under Fe deficiency (either direct or induced), though to a greater extent in the sensitive variety, Balta4. The latter also displayed higher leaf malonyldialdehyde (MDA) content, traducing an important membrane lipid peroxidation.  相似文献   

17.
《Journal of plant nutrition》2013,36(10-11):2093-2110
Abstract

Field observations have indicated that Fe deficiency chlorosis symptoms in peanut are more severe and widespread in monoculture than intercropped with maize in calcareous soils of northern China. Here we report a pot experiment that investigated the mechanisms underlying the marked improvement in Fe nutrition of peanut grown in mixture with maize. Iron deficiency chlorosis occurred in the young leaves of peanut in monoculture and was particularly obvious at the flowering stage, while the young leaves of peanut grown in mixture with maize remained green throughout the experiment. The chlorophyll and HCl‐extractable Fe concentrations in young leaves of peanut grown in mixture were much higher than those in monoculture, indicating that maize may have markedly improved the peanut Fe nutrition. Growth in mixture was associated with greatly altered root morphology and microbial populations in the rhizosphere of peanut. Visual observation of peanut roots in monoculture showed that they were larger in diameter and shorter than those in mixture. Moreover, peanut roots in mixture with maize produced more lateral roots and had increased root length compared with plants in monoculture. Peanut grown together with maize showed obvious rhizodermal transfer cells in the subapical root zone, but cells with cell wall ingrowths were poorly developed in peanut in monoculture. Mixed culture resulted in a significantly decreased abundance of bacteria in the rhizosphere of peanut compared with monoculture, and electron microscope observations indicated that this was associated with a thicker mucigel layer on the root surface of peanut in mixture with maize. Several root morphological and rhizosphere microbial factors may thus have contributed to the improvement in Fe nutrition of peanut in mixed culture.  相似文献   

18.
Iron (Fe) chlorosis reduces the concentration of photosynthetic pigments, photosynthates, and crop yield. The effect of Fe chlorosis on leaf composition and cell structure was evaluated in Mexican lime (Citrus aurantifolia) with different degrees of Fe chlorosis. Iron chlorosis significantly reduced concentrations of chlorophylls a, b, and a + b, and caused thickening of leaves, due to the increase in palisade and spongy parenchyma cells. The chloroplasts of the chlorotic and albino leaves showed a disorganized ultrastructure; they had an elongated shape with disarrayed thylakoids, underdeveloped grana, scarce starch granules, and hole-like folds in the thylakoid membranes. The accumulation of calcium oxalate crystals in the upper and lower sides of the epidermis, crystal length, and total crystal content increased with Fe chlorosis severity. The green leaves, in contrast, had chloroplasts with typical ultrastructure. The degree of Fe chlorosis in the leaves significantly affected the concentrations of potassium (K); Fe, manganese (Mn), Fe2+, and the phosphorus (P)/Fe and K/calcium (Ca) ratios.  相似文献   

19.
A typical symptom of iron (Fe) deficiency in plants is yellowing or chlorosis of leaves. Heavy metal toxicity, including that of zinc (Zn), is often also expressed by chlorosis and may be called Fe chlorosis. Iron deficiency and Zn toxicity were evaluated in soybean (Glycine max [L.] Merr.) at two levels each of Zn (0.8 and 40 μM), Fe (0 and 20 μM), and sulfur (S) (0.02 and 20 mM). Reduction in dry matter yield and leaf chlorosis were observed in plants grown under the high level of Zn (toxic level), as well as in the absence of Fe. Zinc toxicity, lack of Fe, and the combination of these conditions reduced dry matter yield to the same extent when compared to the yield of the control plants. The symptoms of Zn toxicity were chlorosis in the trifoliate leaves and a lack of change in the orientation of unifoliate leaves when exposed to light. The main symptoms of Fe deficiency were chlorosis in the whole shoot and brown spots and flaccid areas in the leaves. The latter symptom did not appear in plants grown with Fe but under Zn toxicity. It seems that Fe deficiency is a major factor impairing the growth of plants exposed to high levels of Zn. Under Zn toxicity, Fe and Zn translocation from roots to shoots increased as the S supply to the plants was increased.  相似文献   

20.
A greenhouse pot experiment was conducted with peanuts (Arachis hypogaea L., Fabceae) to evaluate iron compound fertilizers for improving within-plant iron content and correcting chlorosis caused by iron deficiency. Peanuts were planted in containers with calcareous soil fertilized with three different granular iron nitrogen, phosphorus and potassium (NPK) fertilizers (ferrous sulphate (FeSO4)–NPK, Fe–ethylendiamine di (o-hydroxyphenylacetic) (EDDHA)–NPK and Fe–citrate–NPK). Iron nutrition, plant biomass, seed yield and quality of peanuts were significantly affected by the application of Fe–citrate–NPK and Fe–EDDHA–NPK to the soil. Iron concentrations in tissues were significantly greater for plants grown with Fe–citrate–NPK and Fe–EDDHA–NPK. The active iron concentration in the youngest leaves of peanuts was linearly related to the leaf chlorophyll (via soil and plant analyzer development measurements) recorded 50 and 80 days after planting. However, no significant differences between Fe–citrate–NPK and Fe–EDDHA–NPK were observed. Despite the large amount of total iron bound and dry matter, FeSO4–NPK was less effective than Fe–citrate–NPK and Fe–EDDHA–NPK to improve iron uptake. The results showed that application of Fe–citrate–NPK was as effective as application of Fe–EDDHA–NPK in remediating leaf iron chlorosis in peanut pot-grown in calcareous soil. The study suggested that Fe–citrate–NPK should be considered as a potential tool for correcting peanut iron deficiency in calcareous soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号