首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-four beagles were randomly allocated into four groups of six and housed in separate cages. Each dog was infested with 25 Ctenocephalides canis and 25 Ctenocephalides felis felis and two days later (day 0) the dogs in groups 1, 2 and 3 received a spot-on application of selamectin (6 mg/kg), imidacloprid (10 mg/kg), or fipronil (6-7 mg/kg), respectively, while the dogs in group 4 were not treated. The dogs were combed 48 hours later, the fleas were removed, counted and their species were determined. All the dogs were reinfested with the same number of the two species of fleas on days 7, 14, 21, 28 and 35, and the efficacy of the treatments was calculated 48 hours after each infestation. The mean numbers of fleas on the control dogs were 19.8 C. canis and 14.7 C. felis felis. The three treatments were effective for the full 35 days of the trial; over the first 28 days, the efficacy of selamectin ranged from 81 to 100 and 92 to 99 per cent against C. felis felis and C canis, respectively, the efficacy of imidacloprid ranged from 98 to 100 per cent and the efficacy of fipronil was 100 per cent against both species. There were no significant differences between the three treatments.  相似文献   

2.
A novel spot-on formulation containing metaflumizone (ProMeris for Cats, Fort Dodge Animal Health, Overland Park, KS) was evaluated in five laboratory studies to determine the duration of residual efficacy in cats against fleas after a single spot treatment. In each study, eight domestic shorthair cats were randomly allocated to each treatment group and individually housed. One group in each study remained non-treated. In one study, an additional group of eight cats was treated with a placebo formulation. Cats were treated topically with metaflumizone formulation to provide a dose of at least 40mg metaflumizone/kg. Cats were infested with 100 cat fleas (Ctenocephalides felis felis) once per week for approximately 8 weeks. Cats were comb counted 48h after treatment and each infestation to determine the number of viable fleas present. There were no significant differences in flea counts between the non-treated control and the placebo-treated control (P>0.05) other than a 26% reduction at week 1, demonstrating that the formulation excipients had no activity. Metaflumizone treatment resulted in significantly lower flea numbers relative to non-treated controls on all post-treatment count days (P<0.05). Metaflumizone provided >90% control of flea infestations up to 7 weeks following a single treatment.  相似文献   

3.
OBJECTIVE: To evaluate efficacy of monthly administration of selamectin, fipronil, and imidacloprid against Ctenocephalides felis in dogs. DESIGN: Randomized controlled trial. ANIMALS: 44 healthy dogs. PROCEDURE: Dogs known to be free of fleas were infested with 100 unfed adult fleas on days -28 and -21. On days 0, 30, 60, 90, and 120, dogs (12/group) were treated by topical administration of selamectin (6 mg/kg [2.7 mg/lb] of body weight), fipronil (7.5 mg/kg [3.4 mg/lb]), or imidacloprid (10 mg/kg [4.5 mg/lb]); 8 untreated dogs were used as controls. On day -6 and every 2 weeks after initial treatment, comb counts of viable adult fleas were made, and fleas (< or =50/dog) were replaced onto the dog from which they were removed. On day 89, fleas were not replaced. On day 91 and every 7 days until the end of the study, dogs were challenged with 20 adult fleas. RESULTS: 14 days after initial treatment, geometric mean flea counts were reduced by 97.5 to 99.1 % for all treatments, compared with pretreatment counts on day -6. Selamectin, fipronil, and imidacloprid reduced geometric mean flea counts by 99.7 to 100% from day 29 to the end of the study. CONCLUSIONS AND CLINICAL RELEVANCE: Selamectin is as effective as fipronil and imidacloprid in reducing C felis infestation in dogs housed for 3 months in a flea-infested environment under conditions known to support the flea life cycle, and in protecting against subsequent weekly challenges with C felis for an additional 2 months.  相似文献   

4.
OBJECTIVE: To evaluate efficacy of monthly administration of selamectin and fipronil against Ctenocephalides felis in cats. DESIGN: Randomized controlled trial. ANIMALS: 36 healthy cats. PROCEDURE: Cats known to be free of fleas were infested with 100 unfed adult fleas on days -28 and -21. On days 0, 30, 60, 90, and 120, sixteen cats (8 pairs/treatment group) were treated by topical administration of selamectin (6 mg/kg [2.7 mg/lb] of body weight) or fipronil (7.5 mg/kg [3.4 mg/lb]). Four control cats (2 pairs) were not treated. On day -6 and every 2 weeks after initial treatment, comb counts were performed to detect fleas. Flea counts were recorded, and fleas (< or =50) that had been removed were replaced onto the cat. On day 89, fleas were not replaced. On day 91 and every 7 days until the end of the study (day 150), cats were challenged with 20 adult fleas. Flea counts were compared between and within treatments. RESULTS: 14 days after treatment, geometric mean flea counts were reduced by 71.2% by fipronil treatment and 35.3% by selamectin treatment. Both treatments resulted in 97 to 98% reduction in flea counts on day 29 and 99.8 to 100% reduction from day 44 to the end of the study. CONCLUSIONS AND CLINICAL Relevance: Selamectin is as effective as fipronil in treating infestation in cats housed for 3 months in a flea-infested environment under conditions known to support the flea life cycle and in protecting against subsequent weekly challenges with C felis for an additional 2 months.  相似文献   

5.
Selamectin was evaluated in eight controlled studies (4 in dogs, 4 in cats) to determine the efficacy of a single topical unit dose providing the recommended minimum dosage of 6mgkg(-1) against Ctenocephalides felis felis and Ctenocephalides canis fleas on dogs and against C. felis on cats. In addition, the effect of bathing on the efficacy of selamectin against C. felis was evaluated. Identical studies were performed in Beagles and domestic shorthaired cats. For each study, animals were allocated randomly to treatments of 8-12 animals each. All studies (dog studies A, B, C, and D and cat studies A, B, C, and D) evaluated the efficacy of selamectin without bathing. In addition, study C in both dogs and cats evaluated efficacy with a shampoo bath at 24h after dosing, and study D evaluated the efficacy of selamectin with water soaking at 2h after dosing or with a shampoo bath at 2-6h after dosing. Dog study B evaluated efficacy against C. canis, whereas all other studies used C. felis. In each study, selamectin was administered on day 0 as a topical dose that was applied directly to the skin in a single spot at the base of the neck in front of the scapulae. Dogs and cats were infested with approximately 100 viable unfed C. felis or C. canis on days 4, 11, 18, and 27. On days 7, 14, 21, and 30, approximately 72h after infestation, a comb count of the number of viable fleas present on each animal was made. For C. felis and C. canis for dogs and cats, compared with controls, selamectin achieved significant reductions in geometric mean adult flea comb counts of > or =98.9% on days 7, 14, and 21 in all eight studies. On day 30, the reduction for C. felis remained at or above 98.0%. This included the dogs and cats that were soaked with water or bathed with shampoo at 2, 6, or 24h after treatment. There were no significant (P>0.05) differences between the flea counts from selamectin-treated animals in these studies, regardless of bathing status. On day 30, a significant reduction of 91.8% was achieved against C. canis on dogs. Thus, these studies demonstrated that a single topical unit dose of selamectin was highly effective against adult fleas on dogs and cats for at least 27 days.  相似文献   

6.
The activity of selamectin, fipronil and imidacloprid against larval cat fleas (Ctenocephalides felis felis) was evaluated in an in vitro potency assay system. One hundred microliters of each compound at various concentrations in acetone were added to glass vials (1.5 by 3 cm) to which had been previously added 20 mg of sand and 10 mg of flea feces. Vials were then ball milled to allow the acetone to evaporate. Selamectin and fipronil were tested at 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.11, 0.3, and 0.5 microg of active compound per tube. Imidacloprid was tested at 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 microg of active compound per tube. Thirty first instar C. felis larvae were added to each vial. The number of larvae remaining alive in each vial was determined once daily for 72 h. With selamectin, reductions of >/=93.5% were achieved at 24 h after exposure at doses of >/=0.3 microg. In contrast, at 24 h neither fipronil nor imidacloprid reached 90% reduction, even at the highest doses tested (0.5 microg for fipronil and 5.0 microg for imidacloprid). Selamectin was significantly (P/=0.03 microg. A similar pattern of activity was observed at both 48 and 72 h, but higher percentages of larvae were killed for each of the compounds as the incubation time increased. At 72 h selamectin was significantly (P相似文献   

7.
Selamectin, a novel avermectin, was evaluated in two controlled studies (one in Beagles, one in domestic shorthaired cats) to determine an appropriate topical dose for efficacy against adult Ctenocephalides felis felis (C. felis) fleas on dogs and cats for 1 month. For each study, animals were allocated randomly to four treatments. One treatment consisted of the inert formulation ingredients (vehicle) administered as a negative control, and the other three treatments consisted of a single topical dosage of 3, 6, or 9mgkg(-1) of selamectin. In each study, selamectin was administered as a topical dose applied to the skin in a single spot at the base of the neck in front of the scapulae. Dogs and cats were infested with 100 viable unfed C. felis (50 males and 50 females) on days 4, 11, 18, and 27. Seventy-two hours (+/-2h) after each infestation, on days 7, 14, 21, and 30, a comb count to determine the number of viable fleas present on each animal was performed. Efficacy of selamectin on day 30 was used to select an appropriate dose. For dogs and cats, percentage reductions in geometric mean flea comb counts for the three selamectin treatments ranged from 94. 6 to 100% on days 7, 14, and 21, compared with the negative-control treatment. On day 30, reductions in flea comb counts were 81.5, 94.7, and 90.8% for dogs, and 79.8, 98.0, and 96.2% for cats treated with selamectin at 3, 6, or 9mgkg(-1), respectively. For day 30 flea comb counts for dogs and cats, analysis of variance showed that the three selamectin treatments resulted in significantly (P< or =0.05) lower counts than did the negative-control treatment. For dogs and cats, geometric mean flea counts for selamectin administered at a dosage of 3mgkg(-1) were significantly (P< or =0.05) higher than those for the 6 and 9mgkg(-1) treatment dosages combined. There were no significant differences in flea counts between the 6 and 9mgkg(-1) treatments. This analysis was confirmed by linear-plateau modeling. Thus, the optimal dose of selamectin for efficacy against adult fleas for both dogs and cats, as estimated by the turning point (plateau) in the dose response curve, was 6mgkg(-1).  相似文献   

8.
A spot-on metaflumizone formulation was evaluated in adult domestic short hair cats to determine its adultidical efficacy against a flea strain that has reduced susceptibility to a number of insecticides. Eight cats served as non-treated controls, eight cats were treated with a metaflumizone formulation at 0.2 ml/kg (40 mg metaflumizone/kg) and eight cats were treated with fipronil 10% w/v-(s)-methoprene 12%w/v at 0.075 ml/kg (7.5-7.7 mg fipronil/kg:9.0-9.2 mg (s)-methoprene/kg). On days -1, 7, 14, 21, 28, 35, and 42 each cat was infested with approximately 100 unfed KS1 cat fleas, Ctenocephalides felis. At approximately 48 h after treatment or infestation, each cat was combed to remove and count live fleas. Treatment with metaflumizone provided > or = 99.3% efficacy for 3 weeks post-treatment and then 97.4, 91.4 and 86.2% efficacy at 4, 5 and 6 weeks post-treatment, respectively. Fipronil-(s)-methoprene provided 99.6% efficacy at 1 week post-treatment and then 97.6, 96.4, 71.3, 22.0 and 13.1% efficacy at weeks 2, 3, 4, 5 and 6, respectively. The reductions in flea numbers were significantly greater for the metaflumizone treatment than for fipronil-(s)-methoprene from 3 to 6 weeks after treatment.  相似文献   

9.
The comparative efficacy of monthly administration of selamectin or lufenuron against Ctenocephalides felis felis on dogs and cats was evaluated over a 5-month period in flea-infested environments. Twenty-four dogs and 32 cats were randomly allocated to receiving a topical treatment with selamectin or an oral administration of tablets containing lufenuron/milbemycin oxime (for dogs) or lufenuron only (for cats). Each product was administered in accordance with the manufacturer's label recommendations. Eight dogs and four cats served as untreated sentinels. Treatments were administered on days 0, 30, 60, 90, and 120. Each animal received an application of 100 fleas on days -28 and -21, and then weekly applications of 20 fleas from days 91 through 147. Flea comb counts were performed on day -6, and every 2 weeks after day 0. From day 29 (dogs) or day 44 (cats) to day 150, geometric mean flea counts for selamectin were < or =0.4. Mean flea counts for animals assigned to treatment with selamectin were significantly lower (P=0.0001) than for animals assigned to treatment with lufenuron at all assessments after day 0.  相似文献   

10.
A spot-on metaflumizone formulation was evaluated to determine its adulticidal efficacy, effect upon egg production, and ovicidal activity when applied to flea infested cats. Eight male and eight female adult domestic shorthair cats were randomly assigned to either serve as non-treated controls or were treated topically with a minimum of 40mg/kg metaflumizone in single spot-on Day 0. On Days -2, 7, 14, 21, 28, 35, 42, 49, and 56, each cat was infested with approximately 100 unfed cat fleas, Ctenocephalides felis felis. On Days 1, 2, and 3, and at 48 and 72h after each post-treatment reinfestation, flea eggs were collected and counted. At approximately 72h after treatment or infestation, each cat was combed to remove and count live fleas. Egg viability was determined by examining hatched eggs after 5 days and adult emergence was determined 28 days after egg collection. Metaflumizone provided >/=99.6% efficacy against adult fleas from Days 3 to 45 following a single application. Following treatment, egg production fell by 51.6% within 24h and 99.2% within 48h. Following subsequent weekly infestations egg production from treated cats was negligible out to Day 38, with >/=99.5% reduction relative to non-treated cats. Where there were eggs to evaluate, metaflumizone treatment did not have any apparent effect on the hatching of eggs or on the development and emergence of adult fleas from the eggs produced by fleas from treated animals.  相似文献   

11.
A novel spot-on formulation containing metaflumizone and amitraz (ProMeris/ProMeris Duo for Dogs, Fort Dodge Animal Health, Overland Park, KS) was evaluated in a laboratory study to determine the appropriate dose for efficacy against fleas and ticks on dogs for 1 month. Thirty-six Beagles were randomly allocated to six equal groups and individually housed. One group remained nontreated. Another was treated with a placebo formulation (solvents with no active ingredients). Three groups of dogs were treated topically with the metaflumizone plus amitraz formulation (150mg of each of metaflumizone and amitraz/ml), at volumes providing doses of 10, 20 and 40mgeachactive/kg. The final group was treated with a commercial spot-on providing 6.7mgfipronil/kg. All treatments were applied to the skin at a single spot between the scapulae on Day 0. Dogs were infested with 50 adult brown dog ticks (Rhipicephalus sanguineus) on each of Days -2, 5, 12, 19, 26, 33 and 40, and with 100 cat fleas (Ctenocephalides felis felis) on Days -1, 6, 13, 20, 27, 34 and 41. Dogs were examined and parasites "finger counted" on Day 1 to estimate knock down efficacy, and all animals were comb counted to determine the numbers of viable fleas and ticks on Days 7, 14, 21, 28, 35 and 42. There were no significant differences in parasite counts between the nontreated control and the placebo-treated control groups for either fleas or ticks (P>0.05) except for very slight reductions on Day 7 for fleas and Day 14 for ticks, demonstrating that the formulation excipients had no activity. The qualitative finger counts on Day 1 indicated that all of the insecticidal treatments resulted in a noticeable reduction in flea and tick numbers within 1 day of treatment. All of the metaflumizone and amitraz treatments and fipronil resulted in significantly lower flea and tick numbers relative to nontreated controls on all posttreatment count days (P<0.05). For the metaflumizone plus amitraz treatments, mean flea and tick counts for the 10mg/kg dose were significantly higher than those for the 20mg/kg dose (P<0.05) from Day 21 on. There was no significant advantage provided by the 40mg/kg dose over the 20mg dose throughout the entire study (P>0.05). The two higher metaflumizone plus amitraz doses provided >95% control of fleas and >90% control of ticks for at least 35 days after treatment, and this level of control was similar to that of the commercial fipronil product. The 20mg/kg dose was selected as the minimum commercial dose rate to provide effective flea and tick control for at least 1 month following a single treatment.  相似文献   

12.
A study was conducted to evaluate the efficacy of selamectin and fipronil-(S)-methoprene against adult cat fleas (Ctenocephalides felis), flea egg production, and the viability of flea eggs collected from treated cats. Cats were infested with approximately 50 adult fleas 2 days before treatment and weekly thereafter; flea eggs were collected and counted on days 0, 1, 2, and 3 and 48 and 72 hours after each weekly flea infestation. Live fleas were collected approximately 72 hours after treatment or infestation. Compared with fipronil-(S)-methoprene, selamectin provided significantly greater control of adult fleas from days 24 to 31 and significantly greater reduction in egg production from days 16 to 45. For the most part, both products significantly impacted larval and adult emergence for the entire 6-week study, with fipronil-(S)-methoprene providing significantly greater reduction in larval and adult emergence at week 6.  相似文献   

13.
The speed of kill of selamectin, imidacloprid, and fipronil-(S)-methoprene against Ctenocephalides felis infestations on cats for one month following a single treatment was evaluated. Eighty cats were randomly allocated so that there were 20 cats in four different treatment groups. On Days -2, 7, 14, 21, and 28, each cat was infested with 100 adult C. felis from the Kansas 1 flea strain. Following initial application only imidacloprid had caused a significant reduction in adult fleas on treated cats within 6 hours, but by 24 hours all three formulations had killed 96.7% of the fleas. At 7 days post treatment, all three formulations reduced flea populations within 6 and 24 hours by 68.4% and 99.4%, respectively. At 21 and 28 days after treatment, none of the formulations killed significant numbers of fleas as compared to controls within 6 hours of infestation. At 28 days after treatment, selamectin, fipronil-(S)-methoprene, and imidacloprid had killed 99.0%, 86.4%, and 72.6% of the fleas within 48 hours of infestation, respectively. This study demonstrates that the speed of kill of residual flea products on cats decreases throughout the month following application. It also demonstrated that selamectin provided the highest level of residual activity on cats against the Kansas 1 flea strain.  相似文献   

14.
The adulticidal, ovicidal, and larvicidal effects of selamectin against flea (Ctenocephalides felis felis) infestations on dogs and cats were evaluated in a series of seven controlled and masked studies (three in cats, four in dogs). Animals were randomly allocated to treatment with either selamectin at a minimum dosage of 6mgkg(-1) in the commercial formulation or one of two negative-controls (0.9% NaCl solution or the vehicle from the commercial formulation). Treatments were administered topically in a single spot on the skin at the base of the neck in front of the scapulae. Speed of kill, measured by flea comb counts at 12h intervals during the 48h immediately following a single treatment on day 0, was evaluated in two studies. One study was in dogs and the other in cats, and each animal was infested with approximately 100 unfed viable adult fleas prior to treatment. Reductions in geometric mean flea counts for selamectin compared with saline were >98% between 24 and 36h after treatment in dogs, and between 12 and 24h after treatment in cats (P< or =0.0006). Efficacy in reducing flea egg hatch and larval development was evaluated in four studies, in which dogs and cats were treated once on day 0 and then repeatedly infested with approximately 600 fleas. Flea eggs were collected approximately for 72h after each infestation, on days 3, 7, 14, 21, and 30, counted, and cultured to determine their hatchability and subsequent larval development. Compared with the vehicle, selamectin was highly effective in reducing flea egg hatch (>92% in cats) and larval development (> or =95% for dogs and cats), and emergence of adults (97.8-100% for dogs, 85.6-100% for cats) for 30 days. Effects of exposure to hair coat debris were investigated in a study with dogs treated once on day 0 and repeatedly infested with 100 adult fleas. Debris (dander, flea faeces, hair, scales) was collected on days 1, 7, 14, 21, and 30 and added to normal flea eggs or larvae for incubation. Compared with debris from vehicle-treated dogs, debris from selamectin-treated dogs was highly effective in preventing egg hatch (>96%), in killing larvae (>98%) and in preventing larval development to adults (>99%) (P相似文献   

15.
The efficacy of selamectin, a novel avermectin, in protecting dogs and cats against experimentally induced environmental flea (Ctenocephalides felis felis) infestations, was evaluated in a series of controlled and masked studies. Purpose-bred shorthaired cats and Beagles were randomly allocated to treatment with either selamectin at a minimum dosage of 6mgkg(-1) of body weight in the commercial formulation or the negative control treatment (vehicle only), and housed in controlled simulated home environments capable of supporting the flea life cycle. Day 0 was defined as the first day of treatment. Treatments were administered topically in a single spot on the skin at the base of the neck in front of the scapulae. In environmental challenge studies, which were designed to evaluate the efficacy of selamectin in the treatment and control of established flea infestations, dogs and cats were each infested with 100 fleas on days -28 and -21 and placed in carpeted rooms in order to establish high levels of active flea infestation prior to day 0. Treatments were administered monthly for 3 months. Flea comb counts were performed on days 14, 29, 44, 59, 74, and 90. Reductions in geometric mean flea comb counts for selamectin, compared with vehicle, were >99% from day 14 onwards for dogs, and >92% on day 29 and >99% on days 44, 59, 74, and 90 for cats (P=0.0001). In prevention of environmental infestation studies, dogs and cats were placed in environments capable of supporting flea infestations and given monthly treatments for 2 months, commencing on day 0. Animals were infested with 100 fleas on days 1 and 7, and flea comb counts were performed on days 29, 44, and 60. Reductions in geometric mean flea comb counts for selamectin, compared with vehicle, were >99% on days 29, 44, and 60 (P=0.0001) for dogs and cats. Monthly administration of selamectin to dogs and cats housed in environments highly suited to completion of the flea life cycle was shown to be highly effective in the treatment and prevention of flea infestations, without the need for supplementary environmental control measures.  相似文献   

16.
Host association, on-host longevity and egg production of Ctenocephalides felis felis (Bouché) were evaluated using fleas from a commercial laboratory colony and first generation, laboratory-reared, native Indiana fleas. Fleas were placed on cats that were declawed, fitted with Elizabethan collars and housed in specially designed metabolic cages. An average of 85% of the female and 58% of the male fleas stayed continuously on the cats for at least 50 days, indicating that the cat flea is a permanent ectoparasite. The maximum longevity of the cat flea was not determined, but it was shown that it can survive and reproduce on the cat for at least 113 days. A female cat flea may produce up to 1745 eggs during a 50-day period.  相似文献   

17.
OBJECTIVE: To determine whether Mycoplasma haemofelis (Mhf) and Candidatus Mycoplasma haemominutum (Mhm) can be transmitted by ingestion of Mycoplasma-infected Ctenocephalides felis and by-products (feces, larvae, and eggs). ANIMALS: 10 cats. PROCEDURE: 3 cats were carriers of Mhf, and 1 was a carrier of Mhm. Six cats had negative results of PCR assay for Mhf and Mhm DNA. A chamber containing 100 C felis was bandaged to 2 Mhf carrier cats. Five days later, fleas and by-products were analyzed for Mycoplasma spp DNA. The remaining fleas and a sample of by-products were fed to 2 Mycoplasma-na?ve cats. A chamber containing 200 C felis was bandaged to the Mhm carrier cat. Five days later, fleas and by-products were analyzed for Mycoplasma spp DNA. The remaining fleas and a sample of by-products were fed to 2 Mycoplasma-na?ve cats. A chamber containing 200 C felis was bandaged to an Mhf carrier cat and Mhm-carrier cat. Three days later, fleas and by-products were analyzed for Mycoplasma spp DNA. The remaining fleas and a random sample of by products were fed to 4 Mycoplasma-na?ve cats. All cats were monitored for infection for >or=7 weeks. RESULTS: Uptake of Mhf and Mhm DNA into fleas and by-products was detected. None of the na?ve cats became infected. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that ingestion of Mycoplasma-infected C felis or by-products is not an important means of transmission for Mhf or Mhm.  相似文献   

18.
A series of studies was conducted to determine the effect of systemically and topically active insecticides on blood consumption by fleas (Ctenocephalides felis). Infestations were conducted by placing fleas into plexi-glass chambers attached to the lateral rib cage of domestic short-hair cats. After pre-defined periods, fleas and flea feces were extracted using vacuum aspiration and spectrophotometrically analyzed for hemoglobin using Drabkin's reagent. To determine how rapidly nitenpyram kills actively feeding fleas, a single oral treatment was administered 24h after infestation. To determine the effect of nitenpyram on blood consumption of newly acquired fleas, cats were infested with fleas 1h post-treatment and fleas and flea feces from both studies were extracted at 15, 30, 60, 120, 240 and 480min post-treatment or post-infestation. To compare the effects of topically versus systemically active insecticides, 20 cats each with 2 chambers attached, were randomly allocated among groups and were infested with fleas 1h after each of 4 nitenpyram treatments, or at 7, 14, 21 and 28 days after a single application of commercial spot-on formulations of fipronil, imidacloprid or selamectin. Infestations were also completed for untreated (control) cats. Twenty-four hours after infestation, fleas and flea feces were removed for host blood quantification. If at any time, flea blood consumption in a treated group did not significantly differ from that of fleas infesting controls, that treatment group was withdrawn from the study. Nitenpyram effects on actively feeding fleas were first observed at 60min post-dosing when 38% of fleas were dead or moribund, and at 240min 100% were dead or moribund. Nitenpyram produced a significant reduction in flea blood consumption (p<0.05), which appeared to cease 15min after infestation. For the treatment comparisons, significantly more (p<0.05) blood was consumed by fleas taken from imidacloprid and fipronil-treated cats than from the nitenpyram or selamectin groups. Only on nitenpyram- or selamectin-treated cats were there significant reductions (p<0.05) in flea blood consumption on days 21 and 28, with significant difference (p>0.05) between these two groups on day 28. In this study systemically acting insecticides such as nitenpyram, and the topically applied but systemically active insecticide selamectin, were more effective in interfering with flea blood feeding than were imidacloprid and fipronil.  相似文献   

19.
A novel spot-on formulation containing metaflumizone plus amitraz (ProMeris/ProMeris Duo for Dogs, Fort Dodge Animal Health, Overland Park, KS) was evaluated in four laboratory studies to confirm efficacy against fleas and ticks on dogs for 1 month. Three different strains of cat flea (Ctenocephalides felis felis) and four tick species were used. Rhipicephalus sanguineus and Dermacentor variabilis were evaluated concurrently in two studies and Ixodes scapularis and Amblyomma americanum in one study each. In all studies, dogs were randomly allocated to treatment groups and compared with nontreated dogs. One study also included a placebo treatment and a commercial product containing fipronil plus S-methoprene. All treatments were applied to the skin at a single spot between the scapulae on Day 0. Dogs were infested with fleas and/or ticks prior to treatment and then reinfested at weekly intervals for 6 weeks after treatment and evaluated for efficacy at 1 or 2 days after treatment and each reinfestation. These studies confirmed that treatment with ProMeris for Dogs at the proposed commercial dose rate rapidly controlled existing infestations of fleas and ticks on dogs. Treatment provided control of reinfesting fleas for up to 6 weeks and at least 4 weeks control of ticks. Efficacy was confirmed in a variety of dog breeds against three different flea strains and four common species of ticks found on dogs in the United States.  相似文献   

20.
Dogs and cats were treated with 2% temephos [0,0'-(thiodi-p-phenylene) 0,0',0'-tetramethyl bis (phosphorothioate)] powder to evaluate its insecticidal activity against the cat flea (Ctenocephalides felis). Dogs and cats were infested each week with approximately 100 unfed, unsexed fleas less than 14 days old. Live-flea counts were made each day. The experiment was terminated when all dogs and cats retained live fleas for 6 days or more. The 2% temephos powder resulted in excellent flea control on dogs and cats for 2 weeks, partial control for 3 to 4 weeks, and no effective control beyond 4 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号