首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The purpose of the study was to investigate whether dietary ration or diet composition influence the relationship between plasma growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) in Arctic charr (Salvelinus alpinus L.). The pattern of changes in plasma GH and IGF‐1 concentrations was examined in fish fed at different ration levels (0%, 0.35% and 0.70% BW day−1) for 5 weeks, and in fish fed diets containing different lipid:crude protein (LCP) ratios. Ration level significantly affected plasma GH and IGF‐1 concentrations; at 5 weeks the levels of both hormones in the food‐deprived group were significantly lower than in fish fed the 0.70% BW day−1 ration. Also, plasma IGF‐1 levels in fish of each ration treatment group were significantly correlated with individual final body weight; no such correlation was found for GH. To examine the effects of dietary LCP ratios, fish were fed for up to 18 weeks, with one of four formulated diets that had LCP ratios (dry matter basis) of 0.35 (Diet 1), 0.43 (Diet 2), 0.51 (Diet 3) or 0.59 (Diet 4), or a commercial diet (Diet 5) which had an LCP ratio of 0.38. Statistical differences in plasma GH and IGF‐1 concentrations were found only after 18 weeks. Growth hormone was significantly lower in fish fed Diets 1 and 2 compared with Diets 3 and 5, and IGF‐1 was significantly lower in fish fed Diet 1 compared with Diets 2 and 5. Significant correlations between plasma GH and IGF‐1 concentrations were found only for fish fed Diets 1 and 5, suggesting that the influence of diet composition on the relationship between GH and IGF‐1 varies with the dietary LCP ratio in this species. The decline in plasma IGF‐1 concentrations during food deprivation is similar to that described in other species; however, the unexpected decrease in plasma GH during food deprivation in this study may represent a species‐specific response.  相似文献   

2.
Arctic charr (Salvelinus alpinus) were fed for 99 days on experimental diets with 40% of fish meal replaced, on a crude protein basis, with intact yeast (Saccharomyces cerevisiae) (ISC), extracted yeast (ESC), Rhizopus oryzae fungus (RHO) or de‐shelled blue mussels (Mytilus edulis) (MYE). The fish were evaluated for growth performance, nutrient digestibility and fish intestinal function. Growth performance, retention of crude protein and sum of amino acids were not affected in fish fed diets ISC or MYE compared with those fed the reference (REF) diet. However, fish fed diet ISC displayed decreased digestibility of crude protein and indispensable amino acids and decreased intestinal barrier function compared with fish fed the REF diet. Fish fed diet ESC exhibited decreased growth performance and protein retention, but had comparable digestibility to fish fed the REF diet. Fish fed diets MYE and RHO showed similar performance in terms of growth, nutrient digestibility and intestinal barrier function. Overall, the results indicated that blue mussel and intact S. cerevisiae yeast are promising protein sources for Arctic charr.  相似文献   

3.
Arctic charr (Salvelinus alpinus L.) were fed either a commercial diet or six experimental test diets containing coconut oil and different polyunsaturated fatty acids (PUFA) at a level of 1% by dry weight. Best growth rates were observed with the commercial diet, worst with diet containing coconut oil with no PUFA. An increase in hepatic lipid, hepatic sterol esters and muscular moisture content, and a decrease in muscular lipid was generally found in fish fed the test diets compared to those maintained on the commercial diet.Phosphatidylcholine was the dominant polar lipid (PL) class in all tissues examined. Extensive modification of dietary saturated fatty acids into 18:1 (n-9) was observed in tissue triacylglycerols (TAG) of fish fed test diets. No changes occurred with the commercial diet.Dietary PUFA were essentially incorporated unchanged into tissue TAG of all fish in the present study. PUFA composition of hepatic phospholipids was significantly influenced by that contained in the diets. However both 18:2 (n-6) and 18:3 (n-3) in the test diets were extensively elongated and desaturated prior to incorporation into PL. The (n-9) PUFA content was always higher in liver of fish fed the test diets. When 18:2 (n-6) and 18:3 (n-3) were supplied together, the level of (n-3) PUFA exceeded those of (n-6) PUFA. Muscle PL were less influenced by diet than liver. In muscle (n-3) PUFA were always the predominant PUFA irrespective of diet. Only low amounts of (n-9) PUFA were found. It is suggested that (n-3) PUFA are the prime essential fatty acids for Arctic charr, and that they are used in preference to (n-6) PUFA for elongation, desaturation and incorporation into PL. The results suggest that the quantitative requirement of Arctic charr for EFA is may be higher than that of other salmonids.  相似文献   

4.
To investigate potential use of increasing nutritional density of diets for rapid growth of warm‐water fishes, a feeding trial was conducted in which growth performance, body indexes, and whole‐body composition of juvenile hybrid striped bass fed diets comprising protein (49, 54, and 59%), lipid (16, 20, 23, and 28%), and energy (22.0–25.1 kJ/g) concentrations beyond established minimum levels were compared to those of fish fed a more typical commercial reference diet (37.5% crude protein, 10.5% crude lipid, and 19.6 kJ/g energy on a dry matter basis). A subset of the experimental diets and the commercial reference diet also were fed to juvenile red drum. After 6 wk of feeding, hybrid striped bass fed the high‐protein and high‐lipid diets showed much greater growth performance compared to fish fed the commercial diet. Increasing dietary protein level, but not lipid level, tended (P ≤ 0.1) to enhance weight gain and feed efficiency of hybrid striped bass. Hepatosomatic index (HSI), intraperitoneal fat (IPF) ratio, and whole‐body protein were significantly (P < 0.01) influenced by dietary protein level. The dietary lipid and associated energy level had significant negative linear effects on daily feed intake. Linear regression analysis showed that dietary energy : protein ratio, largely influenced by dietary protein level, moderately but significantly influenced weight gain, HSI, IPF ratio, and whole‐body protein of hybrid striped bass and red drum. Red drum grew very similar to hybrid striped bass in response to the experimental diets. However, significant differences in HSI, IPF ratio, whole‐body protein, lipid, moisture, and ash between hybrid striped bass and red drum were observed, indicating species differences in protein and energy partitioning. In particular, the excessive lipid in the diet increased HSI and whole‐body lipid of red drum but not of hybrid striped bass.  相似文献   

5.
Rainbow trout (initial body weight 4.16 ± 0.25 g) were fed diets [crude protein 420 g kg?1; gross energy 18.7 MJ kg?1 dry matter (DM); crude fat 110 g kg?1] containing graded levels of either a canola meal (crude protein 350 g kg?1 DM) supplemented with DL‐methionine as partial fish meal protein. A growth trial was conducted over 16 weeks at a water temperature of 12 ± 1 °C. At the end of the growth trial, in addition to body composition analyses, plasma tri‐iodothyronine (T3) and thyroxine (T4), cholesterol and liver fatty acid composition were measured. Replacement of fish meal with canola meal (100–570 g kg?1 replacement) did not affect on growth performance. At 16th week, plasma cholesterol levels were reduced in fish fed all diets in comparison with 8th week. Plasma T4 levels were significantly higher in the canola meal‐fed fish sampled after 16 weeks, but no significant differences in T3 levels were obtained (P > 0.05). Proximate compositions were affected by dietary treatments. The liver fatty acid composition reflected that of the diet with a higher level of polyunsaturated (n‐6) fatty acids in fish fed diet canola meal and a higher content in n‐3/n‐6 ratio in fish fed diet without canola meal. These studies show that canola meal has potential to replace substantial levels of fish meal in diets for carnivorous fish without compromising performance.  相似文献   

6.
Triploids are used in aquaculture because they are sterile and do not undergo preharvest loss in flesh quality. Despite this advantage, they do not always perform as well as diploids when fed commercial diets. This study investigated whether differences in dietary energy utilization might explain this reduced performance. Dietary lipid levels were adjusted to supply diets with 22.7, 23.6 or 24.4 MJ kg?1 gross energy and fed to juvenile diploid and triploid brook charr. Fish were fed to satiation twice daily in a 70‐day growth trial, with samples collected at days 0 and 70 for proximate composition and plasma insulin‐like growth factor I (IGF‐I) analysis. This was followed by a digestibility trial using the same diets to determine apparent digestibility coefficients. Triploids had lower growth rates and condition factor than diploids on all three diets, but there was no effect of ploidy on feed conversion efficiency. Triploids also had lower whole‐body lipid content, but equal protein content, which resulted in lower energy content at both days 0 and 70. There was no effect of diet or ploidy on plasma IGF‐I concentrations. Triploidy did not affect diet digestibility, suggesting that the reduced performance of triploids is due to a difference in metabolism and energy utilization.  相似文献   

7.
Groups of one‐year‐old smolts of Arctic charr (Salvelinus alpinus L.) reared under a simulated natural photoperiod were fed pelleted feed with a NaCl content of either 1.5% or 9.5% for 6 weeks before release in a river in northern Norway. There were no differences in growth before release between fish fed the two diets. Smolts fed the 9.5% NaCl diet had better hypo‐osmoregulatory ability than those fed the 1.5% diet, and a level of gill Na+‐K+‐ATPase activity that was several times higher. One of the two groups that had been fed the 9.5% NaCl diet had both a significantly higher recapture rate and growth in sea than the two groups fed the 1.5% NaCl diet, whereas this was not true for the other 9.5% NaCl diet group. The results indicate that a NaCl‐enriched diet could be used to ensure sufficient hypo‐osmoregulatory ability of charr smolts that would otherwise have insufficient regulatory ability.  相似文献   

8.
A sixty‐day feeding trial was conducted to determine the ascorbic acid (AA) requirement for growth of striped catfish, Pangasianodon hypophthalmus juveniles. Seven iso‐nitrogenous and iso‐energetic (370 g protein per kg and 19.6 MJ/kg) purified diets were prepared with different levels of ascorbic acid such as control (0), T1 (17.5), T2 (35), T3 (70), T4 (175), T5 (350) and T6 (700) mg ascorbic acid (L‐ascorbyl‐2‐polyphosphate) equivalent per kg diet. Fish with a mean body weight of 3.2–3.4 g were stocked (fifteen fish per tank) in triplicates following a completely randomized design. Each group was fed to satiation twice a day for 60 days. Significant differences were observed in growth, survival, body composition and metabolic enzymes activities with different dietary ascorbic acid levels. Maximum weight gain, specific growth rate (SGR) and protein efficiency ratio (PER) were found in fishes fed with 35 mg AA per kg diet, supported by best feed conversion. Fish fed a diet containing vitamin C had the highest activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) compared to those fed with vitamin C‐depleted diets. In this study, based on using broken‐line regression analysis, the dietary vitamin C requirement for growth of P. hypophthalmus juveniles was estimated to be in the range of 46–76 mg AA per kg, depending on the criterion used, growth and liver storage. Our results will be helpful for the formulation of cost‐effective ascorbic acid incorporated diets for striped catfish, P. hypophthalmus.  相似文献   

9.
An 8‐wk feeding trial was conducted to evaluate the effects of varying dietary protein and lipid levels with different protein‐to‐energy (P/E) ratios on growth, feed utilization, and plasma biochemical parameters of Sinocyclocheilus graham. Nine experimental diets were formulated to contain three protein levels (35, 40, and 45%), and each with three lipid levels (4, 8, and 12%), to produce a range of P/E ratios from 71.31 to 98.64 mg protein/kcal. Each diet was randomly assigned to triplicate groups of 25 fish. Fish grew best when fed the diet containing 45% protein and 12% lipid. However, fish fed the diet with 40% protein and 8% lipid had similar weight gain and specific growth rate as those fed the above diet but showed relatively better feed conversion ratio, protein efficiency ratio, and protein and energy retentions. Additionally, plasma total amino acids and blood urea nitrogen contents and γ‐glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase activities in fish fed the diet containing 40% protein and 8% lipid were relatively low among the dietary treatments. These results may indicate that a diet containing 40% protein and 8% lipid with P/E ratio of 84.05 mg protein/kcal would be suitable for the optimal growth, feed utilization, and health of S. graham.  相似文献   

10.
A feeding trial was conducted to compare the effects of supplemental cholesterol in fish meal (FM), fish protein concentrate (FPC), soy protein isolate (SPI) and soy protein concentrate (SPC)‐based diets on growth performance and plasma lipoprotein levels of Japanese flounder (Paralichthys olivaceus). Eight isonitrogenous and isocaloric diets including FM, FPC, SPI or SPC as sole protein source with or without supplementation with 10 g cholesterol kg?1 diet were fed to juvenile fish for 8 weeks. Dietary cholesterol supplementation significantly increased the feed intake and specific growth rate in fish fed SPI‐based diets, but decreased those in fish fed FPC‐based diets. In addition, cholesterol supplementation significantly increased the level of cholesterol and ratio of low‐density lipoprotein cholesterol to high‐density lipoprotein cholesterol in plasma of fish fed fish protein‐based diets, whereas no effects were observed in fish fed soy protein‐based diets. The hepatic lipid content of fish fed FPC‐, SPI‐ or SPC‐based diets were significantly increased by supplemental cholesterol, but no influence was observed in fish fed FM‐based diets. These results suggested that dietary protein source modify the growth‐stimulating action of cholesterol; cholesterol supplementation may increase the arteriosclerotic lesion in fish fed fish protein‐based diets and the incidence of fatty liver in fish fed soy protein‐based diets.  相似文献   

11.
The effect of dietary n−3 and n−6 polyunsaturated fatty acids (PUFAs) on juvenile Arctic charr Salvelinus alpinus (L.) were investigated with respect to essential fatty acid (EFA) deficiency and lipid metabolism using one commercial and 12 casein-based test diets. Arctic charr with mean weight of 1.6g were fed test diets for 12 weeks at 10°C. At the end of the feeding, blood, liver, muscle and whole fish were sampled to determine haematocrit, haemoglobin, water content, lipid and fatty acid composition. Charr fed diets containing 0–1.0% n−3 PUFAs showed typical EFA deficiency signs: fatty liver or elevated water content in whole body or substantial accumulation of 20:3n−9 in liver polar lipids. These signs were less apparent or disappeared when charr were fed diets containing ≥ 2.0% 18:3n−3. No correlation was found between dietary PUFAs and haematocrit or haemoglobin values. Significant changes in fatty acid composition of liver polar lipids in charr fed dietary PUFAs indicate that charr can convert 18:3n−3, 18:2n−6 and 20:5n−3 into long-chain PUFAs. While charr had a direct incorporation of dietary 22:6n−3 into liver and muscle there appears to be preferential utilization of n−3 PUFAs for elongation and desaturation. The conversion of 18:4n−3 was less in muscle than in livers. These findings, combined with data on growth and feed efficiency reported previously by Yang and Dick (1993), indicate that charr require 1−2% dietary 18:3n−3 (dry weight). Small amounts of dietary 18:2n−6 (up to 0.7%) did not have detrimental effects on charr.  相似文献   

12.
A growth trial was conducted to investigate the effects of fish oil and corn oil on the growth and non‐specific immune responses of juvenile grouper, Epinephelus malabaricus. Five semi‐purified diets were supplemented with 40 g kg−1 of either fish oil (F4), corn oil (C4) or blend of fish oil with corn oil at ratio of 3 : 1 (F3C1); 1 : 1 (F2C2) and 1 : 3 (F1C3). Each diet was fed to triplicate groups of grouper (mean initial weight: 10.26 ± 0.14 g) in a recirculating rearing system for 8 weeks. Weight gain and feed efficiency of fish fed the F4, F3C1 and F2C2 diets were the highest (P < 0.05), followed by fish fed the F1C3 diet, and the lowest in fish fed the C4 diet. Fish fed the C4 diet had a lower survival rate than fish on other dietary treatments. Fatty acid composition of liver and muscle in fish generally reflected the composition of the diet. Leukocyte superoxide anion (O2) production ratio was the highest in fish fed the F3C1 and F2C2 diets, followed by fish fed the F4 and F1C3 diets, and the lowest in fish fed the C4 diet. Fish fed the F3C1 and F2C2 diets had higher plasma lysozyme activities than fish fed the F4 and C4 diets. Plasma alternative complement activity was higher in fish fed the F3C1, F2C2 and F1C3 diets than fish fed the F4 and C4 diets. These results suggest that grouper fed diets with 3 : 1 or 1 : 1 of fish oil to corn oil ratio had similar growth to the fish fed diet with fish oil. Blend of fish oil with corn oil in diet significantly enhanced non‐specific immune responses of grouper when the fed diet contained fish oil as the only lipid source.  相似文献   

13.
The effects of two plant ingredients (solvent‐extracted soybean meal [SBM] and high‐protein sunflower meal [HPSFM]) and three inclusion levels (0 percent, practical diet containing 25 percent fish meal; 12.5 percent; and 25 percent) of these ingredients were investigated on the growth, feed utilization, gut histology and gene expression in the distal intestine of Arctic charr Salvelinus alpinus (average initial weight, 330.1 ± 8.9 g per fish). Feeding experimental diets for 12 weeks resulted in no difference between HPSFM diets in body weight gain (BWG), thermal‐unit growth coefficient (TGC), feed efficiency (FE), feed intake (FI) or pro‐inflammatory mRNA expression (PIE) with increasing dietary inclusion and between SBM FE, FI and PIE. Differences in quadratic contrasts were observed for nitrogen deposition rate (NDR) and nitrogen retention efficiency (NRE) (p < .05), whereby HPSFM diets elicited the strongest positive response. SBM resulted in linear reduction in BWG, TGC and distal intestine simple fold length and width measurements (p < .05) with stepwise increases in dietary inclusion, whereas dietary HPSFM had no effect. Histological observations of individual villi indicated several symptoms of non‐infectious subacute gastrointestinal enteritis in tanks fed SBM, many of which were not present in tanks fed HPSFM. The dietary HPSFM seems to be more adequate to replace fishmeal in Arctic charr diet than SBM, when fed at a level of up to 25 percent at the grow‐out stage.  相似文献   

14.
Introduced fishes may have major impacts on community structure and ecosystem function due to competitive and predatory interactions with native species. For example, introduced lake trout (Salvelinus namaycush) has been shown to replace native salmonids and induce major trophic cascades in some North American lakes, but few studies have investigated trophic interactions between lake trout and closely related native Arctic charr (S. alpinus) outside the natural distribution of the former species. We used stomach content and stable isotope analyses to investigate trophic interactions between introduced lake trout and native Arctic charr in large subarctic Lake Inarijärvi in northern Finland. Both salmonids had predominantly piscivorous diets at >280 mm total length and were mainly caught from the deep profundal zone. However, lake trout had a more generalist diet and showed higher reliance on littoral prey fish than Arctic charr, whose diet consisted mainly of pelagic planktivorous coregonids. According to length at age and condition data, lake trout showed slightly faster growth but lower condition than Arctic charr. The results indicate that introduced lake trout may to some extent compete with and prey upon native Arctic charr, but currently have only a minor if any impact on native fishes and food web structure in Inarijärvi. Future monitoring is essential to observe potential changes in trophic interactions between lake trout and Arctic charr in Inarijärvi, as well as in other European lakes where the two salmonids currently coexist.  相似文献   

15.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

16.
Alternative protein sources for aquafeeds need to be indentified in order to increase the efficiency of production. Many studies have examined terrestrial plant meals/protein concentrates as alternatives. Recently the focus has turned to aquatic protists and plants as well as by‐products from other industries, such as breweries. Atlantic salmon, Salmo salar, and Arctic charr, Salvelinus alpinus, were fed diets containing canola meal, soybean meal, corn gluten meal, soy protein concentrate, barley protein concentrate, and solar dried algae included at 30% of the test diet. Barley protein concentrate had the highest apparent protein digestibility values for both species (96.3% for Atlantic salmon and 85.1% for Arctic charr), followed by corn gluten meal. Algae had the highest organic matter digestibility value for arctic charr (80.1%) while corn gluten meal had the highest organic matter digestibility value for Atlantic salmon (88.4%). Algae had a high energy apparent digestibility coefficient (82.4 salmon, 82.7 charr) along with corn gluten meal (78.5 salmon, 82.7 charr) for both species. In general, Atlantic salmon had higher apparent digestibility coefficients compared to Arctic charr for most of the tested ingredients. Both corn gluten and barley protein concentrate appear good candidates as alternative protein sources with both species.  相似文献   

17.
Protein in the diet (25 Vs 31%), stocking rate (100 Vs 200 fish per m3), and inclusion rate of pantothenic acid, vitamin B5, (10 Vs 20 mg/kg diet) were compared for their effects on blood plasma protein, albumin, urea-N, creatinine, plasma transaminase enzymes (AST and ALT), thyroxin (T3), and growth in Oreochromis niloticus juveniles. Blood total protein, albumin, ALT, T3, and growth were significantly (P < 0.001) higher in fish groups fed the high protein diet, while urea-N concentration in blood was significantly (P < 0.001) lower. Final body weight and daily weight gain were lower and food conversion rate was higher at the higher stocking density. Blood total protein, albumin, ALT, and T3 were lower in fish groups reared at high stocking density. Body weight and daily gain was significantly higher at the higher pantothenic acid inclusion level, while feed conversion ratio was lower. Blood total protein, albumin, ALT, and T3 were also elevated. The highest income to the system was from the group fed high protein, reared at low stocking density and fed diets supplemented with 10 mg vitamin B5.  相似文献   

18.
In the present study a microtitre plate assay was used to evaluate antagonistic activity of 157 intestinal bacteria belonging to Carnobacterium isolated from Arctic charr (Salvelinus alpinus L.), Atlantic salmon (Salmo salar L.) and wolf fish (Anarhichas lupus L.) against fish pathogenic bacteria. One hundred and forty‐nine strains isolated from Arctic charr fed; (a) different lipid levels and (b) different fatty acids were screened for their ability to inhibit growth of the fish pathogen Aeromonas salmonicida ssp. salmonicida strain AL 2020 (the causative agent of furunculosis). Carnobacterium maltaromaticum and Carnobacterium mobile isolated from fish fed a low‐lipid diet inhibited growth of the pathogen, while none of the Carnobacterium divergens isolated from fish fed the high‐lipid diet had this ability. When Arctic charr was fed different fatty acids, was the frequency of antibacterial ability of C. maltaromaticum highest in strains isolated from fish fed 4%α‐linolenic acid (18:3 n‐3) and lowest in strains isolated from fish fed 4% linoleic acid (18:2 n‐6). Extracellular growth inhibitory compounds harvested in exponential and stationary growth phase from eight carnobacteria strains isolated from three fish species were tested for their ability to inhibit growth of six fish pathogens [A. salmonicida, Vibrio splendidus strain VS11, Vibrio salmonicida strain LFI 315, Vibrio anguillarum strain LFI 317, Moritella (Vibrio) viscosa strain LFI 5000 and C. maltaromaticum (piscicola) CCUG 34645]. The highest antibacterial activity was found when cellular extracts of the producer isolate were harvested in stationary growth phase. Scanning electron microscopy (SEM) investigations of A. salmonicida showed that cell morphology was affected by the inhibitory substance produce by strain 8M851, a Carnobacterium inhibens‐like bacteria.  相似文献   

19.
Experiment was conducted to ascertain the effect of l ‐carnitine on growth and body composition of Cirrhinus mrigala fry (0.342 ± 0.03 g) using five different concentrations (0.25, 0.50, 0.75, 1, and 0%) of l ‐carnitine‐incorporated diets for 120 d. At the end of trial, weight gain, feed conversion efficiency, and protein efficiency of fishes fed with 0.25% l ‐carnitine diet were observed to be significantly higher. Poor growth was recorded in the fry fed diet with no carnitine, while intermediate growth was observed when fed with 0.50, 0.75, and 1% l ‐carnitine‐incorporated diets. The analysis of body composition of C. mrigala fry indicated that there is no significant difference (P > 0.05) in moisture, protein, and ash contents, but significant difference (P < 0.05) was found in body lipid content of fry, fed with different concentrations of l ‐carnitine. Decrease in viscerosomatic and hepatosomatic indices were observed in fishes fed with l ‐carnitine‐incorporated diets. Results of this study indicated that diet containing 0.25% l ‐carnitine can promote higher growth in C. mrigala fry.  相似文献   

20.
In this study, we investigated the effects of animal–plant protein ratio in extruded and expanded diets on nutrient digestibility, nitrogen and energy budgets of juvenile soft‐shelled turtle (Pelodiscus sinensis). Four extruded and expanded feeds (diets 1–4) were formulated with different animal–plant protein ratios (diet 1, 1.50:1; diet 2, 2.95:1; diet 3, 4.92:1; diet 4, 7.29:1). The apparent digestibility coefficients (ADCs) of dry matter and crude lipid for diet 1 were significantly lower than those for diets 2–4. There was no significant difference in crude protein digestibility among diets 1–4. The ADC of carbohydrate was significantly increased with the increase in animal–plant protein. Although nitrogen intake rate, faecal nitrogen loss rate and excretory nitrogen loss rate of turtles fed diet 1 were significantly higher than those fed diets 2–4, nitrogen retention rate, net protein utilization and biological value of protein in these turtles were significantly lower than those fed diets 2–4. In addition, energy intake rate, excretory energy loss rate and heat production rate of turtles fed diet 1 were also significantly higher than those fed diets 2–4. Faecal energy loss was significantly reduced with the increase in the animal–plant protein ratio. The ADC of energy and assimilation efficiency of energy significantly increased with a higher animal–plant protein ratio. The growth efficiency of energy in the group fed diet 1 was significantly lower than those in the groups fed diets 2–4. Together, our results suggest that the optimum animal–plant protein ratio in extruded and expanded diets is around 3:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号