首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Comparative studies on the adsorption capacity of two synthetic fibers, polyamide (PA 66) and polyester (PET) pre-treated with N-cetylpyridinium chloride (PET-NCPCl), towards graphene oxide (GO) have been carried out. The fiber samples were characterized by scanning electron microscopy (FE-SEM) and Raman spectroscopy. The results of adsorption isotherms, kinetics, and zeta potential determinations as a function of the GO concentration, pH, and temperature show that at a low pH of 2.5 and a high temperature of 323 K, almost 99 % of the 75 mg/l GO solution is adsorbed onto PA 66 and 70 % onto the PET-NCPCl fibers. The interaction should be first attributed to electrostatic forces, also the adsorption data exhibited a good fit to the Freundlich isotherm model and the free energy value of 10 kJ/mol was in the range of physical adsorption, which could suggest that the interaction is driven mainly by physical forces. Due to the increasing development of wastewater treatments based on the GO reactivity with metals and cationic contaminants, synthetic fibers coated with GO could be considered an adsorbent for environmental applications.  相似文献   

2.
A novel cellulose-based porous adsorbent with high adsorption capacity for methylene blue (MB) was prepared by free radical polymerization methods. The obtained polymer grafting rate and dye removal efficiency are as high as 338.64 % and 97.74 %, respectively, when the dosage of monomer is 4.5 g, the polymerization condition is 3 h at 70 °C. The cellulose-based adsorbent showed high mechanical properties and good flexibility. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for methylene blue was 1734.816 mg g-1 at pH 9.0 at 313 K, which is higher than the values observed for other adsorbents. Scanning electron microscopy (SEM) showed that the cellulose-based adsorbent exhibits a typical well-defined porous and interconnected three-dimensional framework structure, which is benefits to dye adsorption. The adsorption kinetics (pseudo first-order, pseudo-second-order, and intraparticle diffusion models) was also studied, and the pseudo-second-order model fitted MB adsorption better than the pseudo-first-order and intraparticle diffusion models at different initial dye concentrations (500-3000 mg l -1). The novel polyacrylic acid-grafted quaternized cellulose (PAA-g-QC) adsorbent is thus potentially useful for the treatment of dye-contaminated wastewater.  相似文献   

3.
In this work, dopamine hydrochloride, an environmental friendly compound, was applied on polyester fabric through conventional simple impregnation method in alkaline solution (pH=8.5) at room temperature. In situ spontaneous oxidative polymerization of dopamine form polydopamine (PDA) along with aminolysis of polyester fabric surface. Also, a range of colored polyester fabric were successfully achieved by formation of polydopamine adhesive coating layer at different concentration of dopamine hydrochloride (0.001-4 g/l). Fourier transform infrared spectroscopy and field emission scanning electron microscopy showed deposition of polydopmaine on the polyester fabric surface. The modified colored polyester fabric showed reasonable durability against washing, rubbing and light. The treated polyester fabric with 2 g/l dopamine hydrochloride as optimum concentration indicated not only lower spreading time for water droplet and electrical resistance with higher tensile strength but also very good bactericidal activity against Staphylococcus aureus and Escherichia coli.  相似文献   

4.
A novel eco-friendly porous adsorbent of cellulose (CE)/chitosan (CS) aerogel was prepared through sol-gel process and freeze-drying to remove Congo Red (CR). A series of aerogels were prepared by adjusting the mass ratios of CE and CS. Composite aerogels were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). SEM images showed that it was possible to change the structure of the aerogel by adjusting the amount of chitosan. The effects of dosage of chitosan, initial pH, temperature, adsorbent dosage, contact time, and initial dye concentration on adsorption capacities for CR were studied in detail. Batch adsorption studies showed that aerogel exhibited maximum removal efficiency to CR at a composite ratio of 1:3 and dosage of 2.5 g/l. CE/CS aerogel had excellent adsorption capacities for CR at a pH range of 3-11, which indicated stability of the aerogel in both acidic and alkaline conditions. CR adsorption on the composite aerogel fitted pseudo-second-order kinetics and Langmuir isotherm. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for CR was 381.7 mg/g at pH 7.0 at 303 K for 24 h. The adsorption mechanism included electrostatic and chemical interactions. The results indicated that the adsorption capacity of CE/CS aerogels was higher than the other chitosan composites adsorbents.  相似文献   

5.
In this study, an amidoxime-grafted cotton fabric ion exchanger was developed for methylene blue (MB) removal from wastewater. The ability of the amidoxime-grafted cotton fabrics to remove MB ions from an aqueous solution was investigated in equilibrium, kinetics and thermodynamics studies. Equilibrium data agreed well with the Freundlich and Langmuir isotherm models. The result indicated that, based on the Langmuir coefficient, the maximum capacity (monolayer saturation at equilibrium) of the amidoxime-grafted cotton fabric was 22.27 mg/g. The kinetic data were found to follow the pseudo-second-order model, and intra-particle diffusion is the sole rate-controlling factor. Negative values of ΔG 0, ΔH 0, and ΔS 0 revealed the spontaneous, exothermic and entropy-driven nature of the process.  相似文献   

6.
The renewable, proteinaceous, marine biopolymer spongin is yet the focus of modern research. The preparation of a magnetic three-dimensional (3D) spongin scaffold with nano-sized Fe3O4 cores is reported here for the first time. The formation of this magnetic spongin–Fe3O4 composite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA) (TGA-DTA), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analyses. Field emission scanning electron microscopy (FE-SEM) confirmed the formation of well-dispersed spherical nanoparticles tightly bound to the spongin scaffold. The magnetic spongin–Fe3O4 composite showed significant removal efficiency for two cationic dyes (i.e., crystal violet (CV) and methylene blue (MB)). Adsorption experiments revealed that the prepared material is a fast, high-capacity (77 mg/g), yet selective adsorbent for MB. This behavior was attributed to the creation of strong electrostatic interactions between the spongin–Fe3O4 and MB or CV, which was reflected by adsorption mechanism evaluations. The adsorption of MB and CV was found to be a function of pH, with maximum removal performance being observed over a wide pH range (pH = 5.5–11). In this work, we combined Fe3O4 nanoparticles and spongin scaffold properties into one unique composite, named magnetic spongin scaffold, in our attempt to create a sustainable absorbent for organic wastewater treatment. The appropriative mechanism of adsorption of the cationic dyes on a magnetic 3D spongin scaffold is proposed. Removal of organic dyes and other contaminants is essential to ensure healthy water and prevent various diseases. On the other hand, in many cases, dyes are used as models to demonstrate the adsorption properties of nanostructures. Due to the good absorption properties of magnetic spongin, it can be proposed as a green and uncomplicated adsorbent for the removal of different organic contaminants and, furthermore, as a carrier in drug delivery applications.  相似文献   

7.
In this research, SBA-15/polyaniline mesoporous composite was synthesized, characterized, and applied for the adsorption of Reactive Orange 16 (RO 16) as a reactive dye from aqueous media. Fourier transform infra-red spectroscopy (FTIR), field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and BET were used to examine the structural characteristics of the obtained adsorbent. The input parameters including pH, dosage, temperature, and contact time were investigated and optimized. The obtained optimized conditions are as follows: pH=2, time=60 min, and adsorbent dose=0.4 g/l. Moreover, predictive models based on MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) networks were presented to predict the adsorption amount according to the input parameters including pH, dosage, temperature, time, and dye concentration. Two criteria, namely, correlation coefficient (CC) and root mean square error (RMSE) are used between the observed and predicted amounts to validate the models. Comparison of the obtained results using these two models showed that the prediction based on the MLP network model is better than the RBF network.  相似文献   

8.
Bi2WO6 particles were prepared and then coated on the polyester fabric. Surface morphology, crystal structure, and chemical structure of the Bi2WO6 particle coated polyester fabric were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Photocatalytic activity was evaluated by the degradation of methylene blue (MB) under ultraviolet light irradiation. Influences of the different concentrations of Bi2WO6 on the deposit weight and the photocatalytic activity of the Bi2WO6 particle coated polyester fabric were investigated. In addition, UV protection of the Bi2WO6 particle coated polyester fabric was examined. The results show that Bi2WO6 particles are uniformly coated on the surface of the polyester fabric. The Bi2WO6 particles coated on the polyester fabric are irregular and are orthorhombic. In addition, the Bi2WO6 particle coated polyester fabric exhibits excellent photocatalytic activity and UV protection. The average degradation efficiency of MB in the presence of the Bi2WO6 particle on the polyester fabric coated with 10 g/l Bi2WO6 reaches 98.6 % after being illuminated for 7 h. Therefore, the Bi2WO6 particle coated polyester fabric shows excellent photocatalytic stability for dyes degradation.  相似文献   

9.
A series of copolyesters (Co-PETs) containing poly(ethylene glycol) (PEG), 5-sodiumsulfodimethyl isophthalate (DMS), and dimethyl isophthalate (DMI) were synthesized via the conventional two-step melt-polycondensation method. The synthesized Co-PETs were characterized by 1H-NMR spectroscopy, FT-IR spectroscopy, differential scanning calorimeter (DSC), and thermogravimetric analyzer (TGA). The DSC results showed that the melting temperature (T m) and the heats of fusion (ΔH m) of Co-PETs decreased with increasing the DMS content in Co-PET, while the inclusion of PEG did not affect their thermal properties significantly. The water absorption and the water contact angle of the Co-PET films were found to be significantly affected by the DMS content rather than PEG content. The moisture-related cooling properties of the fabric samples made of Co-PET 5 as well as PET were evaluated by using liquid moisture management tester (MMT) and Q max measurements. The MMT and Q max results indicated that Co-PET 5 fabric containing DMS 1.0 mol% and PEG 10.0 wt% in Co-PET seemed to be a good candidate for the fabric having durable cooling effects.  相似文献   

10.
In this study, decoloration of Direct Blue 71 (DB71) and Direct Red 23 (DR23) has been discussed by using Multiwalled Carbon Nanotubes (MWCNTs) and Hydrogen peroxide under UV radiation. The purpose of this study is removal of organic compounds by using carbon nanotubes that are effective adsorbents for different types of pollutants, due to their porous nature and large surface area. It also causes catalytic decomposition of hydrogen peroxide. Adsorption rate was investigated under various parameters (initial dye concentration, salt, temperature and pH). The main objective of this study is to appraise the synergic effect between H2O2 and MWCNTs under UV radiation. The dye adsorption results of spectrophotometer, showed that by decreasing the dye concentration from 0.2 g/l to 0.05 g/l with the optimal value of MWCNTs 0.2 g/l and hydrogen peroxide 2 g/l at pH=4 and 6 cm distance from the UV lamp, the dye removal increased.  相似文献   

11.
In the present work the natural madder dye (Rubia tinctorum L.) was applied to the simultaneous dyeing and functionalization of polyester (PET) fabric. In the first part of the study the color performance and the durability were revealed for exhaustion dyed fabric. The dyed fabric was then characterized with respect to ultraviolet (UV) protection ability and antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). CIELab color coordinates, namely the positive a* and b* values, confirmed a yellow/orange color of the dyed fabric. From durability tests, the color showed a moderate to good light fastness and good to excellent fastness to washing and rubbing. The madder dye improved both the UV protective performance and the antibacterial activity of the fabric. With 3 % on weight of fiber (owf) the UV protection factor increased up to 106, and the antibacterial activity up to 86 % against both types of bacteria tested.  相似文献   

12.
In order to develop ultraviolet protection and yellowing resistance silk fabric, the silk fabric was treated with dispersive TiO2/La(III) composite solution. The morphology, microstructure, ultraviolet protection and whiteness of the treated silk fabric were characterized by means of transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction and ultraviolet transmittance. Furthermore, the mechanism of the ultraviolet protection was investigated. The results show that the TiO2/La(III) composite particles disperse uniformly. The TiO2/La(III) particles can not only be treated onto the surface of the silk fabric but also can be treated into the interior of the silk fabric successfully. The result of Fourier transform infrared spectra and X-ray diffraction demonstrates that there are hydrogen bonds between the silk fabric and composite particles, and crystallinity of the treated silk fabric decrease when compares to the untreated silk fabric. The ultraviolet protection factor of the TiO2/La (III) treated silk fabric is significantly higher than that of the untreated silk fabric. The main ultraviolet shielding effect of TiO2 treated silk fabric is absorption. The La(III) treated SF has a bad ultraviolet shielding effect, but it has a certain reflection and absorption.  相似文献   

13.
A novel reactive flame retardant (FR) containing phosphorus, nitrogen, and silicon was synthesized successfully, and its chemical structure was fully characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectrometry (1H-NMR and 31P-NMR). Then it was used to impart flame resistance to cotton fabrics. Vertical flammability and limiting oxygen index test were used to evaluate the flame retardancy of the cotton fabrics treated with FR. When the cotton treated with 150 g/l FR and 50 g/l sodium hypophosphite, the finished cotton can pass the vertical flammability test. Thermogravimetry (TG) was used to evaluate thermal behavior of FR and cotton fabrics. TG results demonstrated that the FR has good thermostability and char-forming ability. After treatment with FR, the thermal stability of the cotton fabrics was clearly improved, indicating that the FR can protect cotton fabric from fire to a certain degree. Furthermore, attenuated total reflection Fourier transform infrared spectroscopy was utilized to characterize the chemical structure of FR treated cotton fabrics. Finally, the surface morphology in different regions of the treated cotton was observed using scanning electron microscopy.  相似文献   

14.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

15.
Nylon 6 fabric with self-cleaning properties was prepared by corona discharge pre-treatment and coating with TiO2 nanoparticles (NPs) using pad-dry-cure technique. The self-cleaning property was studied by discoloration of methylene blue (MB), ketchup, tea and coffee stains from the corona+TiO2 treated nylon-6 fabric. Color difference (ΔΕ*), reflectance (R) and K/S of MB stain were investigated by diffuse reflectance spectrophotometry. The MB stain was almost completely removed from the corona+TiO2 treated nylon surface after 24 h under UV light/daylight irradiation. Both of these phenomena (corona and TiO2) led to an increase in the discoloration of stains under UV and daylight irradiations. The EDS analysis showed an increase in the concentration of deposited TiO2 NPs coating after corona treatment. The FE-SEM images revealed that the surface of nylon 6 was coarser after the corona treatment. Also, the FE-SEM micrographs exhibited that a uniform layer of TiO2 NPs was formed on the corona treated nylon fabric. The corona+TiO2 treated nylon illustrated antibacterial activity against E. coli and B. subtillis microorganisms. The EDS and FE-SEM analysis confirmed that after 5 washing cycles, the amount of TiO2 NPs was higher on the surface of corona+TiO2 treated nylon than that of the fabric only treated with TiO2 without corona pretreatment. This result justifies that the corona+TiO2 treated nylon fabric with appropriate self-cleaning property can be applied cost-effectively in the textile industry.  相似文献   

16.
Pre-loading of monochlorotriazinyl β-Cyclodextrin (MCT-βCD) onto/within viscose/wool (V/W) and cotton/wool (C/W) blended fabrics provide hosting cavities that can form host-guest inclusion complexes with reactive dyes in postprinting as well as with triclosan derivative or silver nanoparticles/hyperbranched polyamide-amine (AgNPs/HBPAA) composite in subsequent final antibacterial finishing step. Coloration properties, antibacterial activity against (S. aureus) and (E. coli) pathogenic bacteria, durability of the obtained products, according to the above mentioned route, to wash, surface morphology and composition of selected samples were investigated. Results obtained signify that premodification of the nominated substrates with MCT-βCD (10 g/l), followed by reactive printing with mono-or bifunctional reactive dye (20 g/l), and subsequent post-finishing with triclosan derivative or AgNPs/HBPAA composite (15 g/l each) is an efficient treatments sequence for attaining reactive prints with significant antibacterial efficacy and noticeable durability to wash. Surface depositions of selected active ingredients were also confirmed using SEM and EDX analysis.  相似文献   

17.
In the present study, a novel eco-friendly production of silk fabrics dyed with different natural dye bath concentrations (40, 80, 120, 160, 200 and 240 g/l) extracted from neem (Azadirachta indica) leaves was developed. The surface morphology of the fabrics was examined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy to characterize the chemical structure of the fabrics. The SEM images of the undyed fabric show that the fabric was tightly woven with little porosity between the fibres with dozens of silk threads in orthogonal directions. By increasing the neem concentration, a scale of fine particles grew on the surface of the silk fabrics with little macroscopical defects was demonstrated. The fiber diameters and tightness between filaments were significantly increased. The FTIR displayed that, neem dye does not change the characteristic peaks of the silk fabrics. Also, the evaluation of the antimicrobial activity of the undyed and neem dyed silk fabrics was monitored for Gram positive and Gram negative bacteria in addition to yeasts and fungi by using the agar diffusion method. The comparison between the different dye bath concentrations was based on the inhibition zones obtained after incubation. The antimicrobial activity in leaf extract of neem was estimated in Staphylococcus aureus, Bacillus subtilis and Lactobacillus cereus (Gram positive bacteria); Escherichia coli (Gram negative bacteria); Candida albicans and Candida tropicalis (yeasts); and Aspergillus niger and Fusarium solani (fungi). The results emphasized that, the highest neem dye bath concentration (240 g/l) was found to display good inhibitory effect against the Gram positive and reasonable activity against the Gram negative bacteria. Furthermore, the different dye bath concentrations possess no activities against yeast and fungi. In conclusion, the data reveal that the increase of neem dye concentration does not damage the silk fabric; however, it improves its antimicrobial activity by incorporating with antimicrobial agent. The current study highlighted that using neem leaves had beneficial effect in controlling the pathogenic microbial organisms.  相似文献   

18.
Polyethylene terephthalate (PET) textile was coated with anionic cyclodextrin polymer issued by crosslinking between β-CD (β-Cyclodextrin) and BTCA (1,2,3,4-butanetetracarboxylic acid) for paraquat (PQ) removal from aqueous solution. The polymer covering operated by the thermofixation method (170 ºC and 30 minutes) comprised 23.52 % of weight gain, which was related to 0.76 mmol/g of ionic exchange capacity. The functionalized textile was also characterized by FTIR, SEM and TGA. Adsorption experiment was performed employing different parameters such as the pH of the solution, adsorption time, the initial concentration of paraquat and the adsorption temperature. The suitable pH was equal to 8 and the equilibrium time was 420 minutes. At 30 ºC, the adsorption capacity of PQ was increased (5.0, 20.4, and 25.9 mg/g) when the initial concentration of paraquat was enhanced (10, 50, and 250 mg/l). Adsorption kinetics was appropriated to the pseudo-second-order model and adsorption isotherm was fitted to the Langmuir model. Thermodynamic parameters were studied at different temperatures (30, 40, and 50 ºC), in which the negative ΔH displayed an exothermic adsorption process, the negative ΔG showed a spontaneous adsorption process and the positive ΔS revealed an enhanced disorder. Eventually, the recyclability of the modified textile in methanol reached 85 % after four reusability cycles.  相似文献   

19.
Fragrant screwpine fiber reinforced unsaturated polyester composites (FSFRUPC) were subjected to water immersion tests in order to examine the effect of water absorption on the mechanical properties. FSFRUP composite specimen containing 30 % fiber volume fraction with fiber length of 3 mm and 9 mm was considered in this study. Water absorption test was performed by immersing specimen in sea, distilled and well water at room temperature under different time durations (24, 48, 72, 96, 120, 144, 168, 192, 216, 240 hours). The tensile, flexural and impact properties of the water absorption specimen were appraised and compared with those of the dry composite specimen as per the ASTM standard. The tensile, flexural and impact properties of FSFRUPC specimen were found to decrease with the increase in the percentage of moisture uptake. The percentage of moisture uptake of composite was reduced after alkali treatment with 3 % NaoH for 3 hours. In moisture absorption test, the lowest diffusion coefficient, D (6.62513×10-13 m2/s) and swelling rate parameter, K sr (6.341×10-3 h-1) were obtained through the specimen immersed in sea water. The chemical composition, elemental composition of fiber and surface morphology of the FSFRUPC were analysed by using Fourier transform infrared spectroscopy (FTIR), Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) respectively.  相似文献   

20.
The essential oil liposomes, a kind of ecological friendly natural antibacterial agents, have good bactericidal effect. In the present study, tea tree oil liposomes (TTOLs) were prepared by the thin-membrane hydration method with sonication, and then were blended with chitosan (CS) to successfully fabricate novel TTOLs/CS composite sponges by freeze-dried method. Through the scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and performance tests, it was found that the material had good water absorption, water retention and water vapor permeability due to the high porosity. Furthermore, the incorporation of TTOLs in the CS-based sponges significantly improved the microbicidel effect of the sponges against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albicans (C. albicans). Killing log values of TTOLs/CS composite sponges against bacteria and fungi reached over 3. According to the microbial clearance test, propidium iodide (PI) fluorescence test and transmission electron microscope (TEM) observation, the results indicated on one hand that TTOLs/CS composite sponges adsorbed and intercepted microbial cells through the internal pore and surface charge, and on the other hand that they could destroy bacterial intercellular substance, disperse cell colony and damage the integrity of cell membrane, finally leading to the death of microbial cells. In summary, TTOLs/CS composite sponges had great potential to be used as antimicrobial materials in the field of food, cosmetics, medicine, biomedical and biochemical engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号