首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了研究口环间隙对前置诱导轮离心泵空化性能的影响,基于RNG k-ε湍流模型和Rayleigh-Plesset方程均相流空化模型,以前置诱导轮离心泵为研究对象,选取口环间隙为0.15,0.25,0.40和0.60 mm这4种方案对其进行空化流动数值计算,并与试验结果对比分析.研究结果表明,口环间隙大小对诱导轮离心泵的外特性和空化性能影响较大,随着口环间隙的增大,总扬程效率和叶轮扬程效率均减小,与口环间隙为0.15 mm时相比,总扬程效率和叶轮扬程效率分别降低了0.60%和4.21%,效率分别下降了6.50%和9.32%;而口环间隙的增大使得诱导轮扬程和效率均增加,分别增大了29.86%和28.40%.另外,随着口环间隙的增大,空化性能曲线出现波动现象,间隙越大,波动越明显;离心泵主叶轮工作面靠近前盖板出现云状空泡分布,空化不稳定,间隙越大,空化越不稳定,临界空化数越大.经分析,引起空化不稳定性的因素可能有: 口环间隙出口处泄漏高压流体对主流的冲击;口环附近空化的发生以及诱导轮空化引起叶片出口液流角的变化.  相似文献   

2.
高速诱导轮离心泵内空化发展可视化实验与数值模拟   总被引:3,自引:0,他引:3  
为了研究高速诱导轮离心泵内空化发生发展规律,采用高速摄像技术,对离心泵内诱导轮与叶轮流道的空化流动进行可视化研究,并结合CFD数值计算对离心泵内部流场进行模拟分析。结果表明:在空化初生阶段(汽蚀余量为5.0 m),诱导轮叶片前缘出现叶顶泄漏涡空化;在空化发展阶段(汽蚀余量为1.07~5.0 m),流动极为复杂,在诱导轮流道内同时出现叶顶泄漏涡空化、片状空化和云状空化,并且在较低汽蚀余量(汽蚀余量为1.5 m)时,出现不对称空化现象。在空化初生和发展阶段,泵的扬程和效率基本保持不变;在空化恶化阶段(汽蚀余量小于1.07 m),诱导轮流道内基本被空泡堵塞,空泡进入叶轮流道,导致离心泵扬程和效率急剧下降。  相似文献   

3.
诱导轮离心泵空化条件下扬程下降分析   总被引:4,自引:0,他引:4  
以空化条件下离心泵的扬程下降为切入点,基于RNGk -ε湍流方程和Rayleigh-Plesset空化模型研究带诱导轮的离心泵空化流动,获得了空化条件下离心泵流道的空泡分布及扬程下降规律,分析结果表明,空泡发展至诱导轮的喉部时,扬程开始下降;随着压力的降低,空泡首先出现在叶轮进口,并逐步发展至整个流道,进而影响离心泵的内部流动及能量转换;空化同时会引起局部流道的压增现象,压增的位置随空化强度的增大向下游流道移动.验证了诱导轮可以改善泵的空化性能,它能抑制空泡在主叶轮内的扩散,使空化仅造成主叶轮叶片进口处压力的缓慢下降,而主叶轮的扬程并未明显下降.  相似文献   

4.
为了研究叶片缝隙引流对高速诱导轮性能的影响,以1台带前置诱导轮的高速离心泵为研究对象,就诱导轮叶片设置5种不同缝隙下高速离心泵内部流场进行数值模拟,研究诱导轮叶片缝隙引流对其自身及高速离心泵性能的影响.对比分析了开缝后诱导轮截面内速度分布、诱导轮外特性曲线、高速离心泵空化特性曲线、诱导轮流道内空泡分布以及诱导轮沿轴向位置各截面静压分布规律.结果表明,叶片表面设置缝隙可减弱诱导轮叶顶间隙泄漏流对管道壁面的冲击,削弱叶片进口边吸力面附近的旋涡,改善该区域的流态;缝隙可改变诱导轮流道内压力的分布,从而影响诱导轮流道内的空泡的分布,且合理设计缝隙的大小可使高速离心泵的空化性能得到改善.  相似文献   

5.
为进一步探究提升航空航天用高速离心泵空化性能的方法,研究环形槽几何形状对高速诱导轮空化性能的影响,设计了矩形、单曲率、双曲率3种不同几何形状的环形槽.使用原模型泵的外特性和空化性能试验验证了数值模拟方法的有效性,对不同方案进行数值模拟,分析不同几何形状环形槽对高速诱导轮离心泵空化性能、流道内能量分布以及诱导轮入口流态的影响.结果发现:在高速诱导轮上游设置环形槽可以降低泵的必需汽蚀余量,其中单曲率槽可以使离心泵的必需汽蚀余量降低得更多,为27.0%,双曲率槽和矩形槽分别使必需汽蚀余量降低14.7%和5.4%;环形槽可以减小叶顶间隙回流对上游主流的影响,诱导轮叶片上湍动能分布更加均匀,诱导轮流道内的压力明显提升;回流在单曲率槽中的过渡更为平滑而对周向旋涡的抑制作用较弱,矩形槽和双曲率槽吸收壁面旋涡的能力更强,可以削弱上游不对称涡向诱导轮流道的发展和影响.  相似文献   

6.
不同空化数下轴流泵叶顶间隙区空化特性   总被引:1,自引:0,他引:1  
基于修正的SST k-ω湍流模型和空化模型,对叶顶间隙为0.5 mm轴流泵模型进行了数值计算,分析了不同空化数下叶顶区不同圆柱截面的空化面积、叶轮出口轴向速度以及叶顶区空泡体积分数等特性。数值计算与高速摄影试验结果表明,数值模拟方法准确预测了轴流泵NPSH曲线和叶顶区空化流场;轴流泵初生空化出现在叶顶区,其空化类型主要包括刮起涡空化、泄漏流空化、卷吸区空化及叶顶泄漏涡空化;在空化数为0.451时,叶顶泄漏涡具有明显的涡带空化特性,随着空化数的逐渐降低,叶顶泄漏涡卷吸区的空化范围逐渐扩展,并与泄漏流空化区连成一片,且空泡云扩展到整个叶片吸力面;在间隙泄漏流作用下,叶轮出口轴向速度在靠近间隙区域逐渐降低,并随着空化数减小,轴面速度进一步下降;在不同空化数下,叶片吸力面圆周截面空化面积系数从轮毂到轮缘先增大,在叶片中部达到最大值,然后迅速减小,在叶顶区由于受到间隙效应的影响,叶顶区空化面积迅速增大。  相似文献   

7.
为了研究诱导轮的几何形状以及诱导轮与叶轮之间的相互配合对于高速离心泵的空化性能的影响,基于RNG k-ε模型和Schnerr-Sauer空化模型,对于高速离心泵在前置不同几何结构的变螺距诱导轮和多种诱导轮与叶轮的配合条件下进行了数值模拟.结果表明,与叶片直径线性变化的变螺距诱导轮相比,叶片直径为常数的变螺距诱导轮可以更好地改善高速离心泵的空化性能;诱导轮与叶轮直径轴向距离太小或者过大,将导致叶轮的压力系数与空化数减小,叶轮流道气相体积占比增加,高速离心泵的效率及扬程下降;另外,高速离心泵的空化性能随周向夹角改变而产生很大波动,但是变化规律不明显.  相似文献   

8.
叶片数对高比转数轴流泵空化特性的影响   总被引:2,自引:0,他引:2  
基于shear stress transport(SST)k-ω湍流模型和Zwart空化模型,针对某一高比转数轴流泵模型,对叶片数分别为3、4和5的3组叶轮方案,分别进行了空化流场模拟和实验,计算了不同叶片数下的流量-扬程曲线、流量-效率曲线和空化性能曲线,得到了3组叶轮的临界空化余量NPSHc分别为6.19m、5.122m和4.765m。与叶片数为3的叶轮方案对比,另外2组叶片数方案的NPSH值分别降低了17.25%和23.02%。在空化充分发展的工况范围,发现叶片数多的叶轮的扬程对NPSH降低较敏感;针对轴流泵叶片背面的固定空化和叶顶间隙的旋涡空化,用空泡分布来表征空化的程度,分析了其在不同空化余量下空泡分布的变化规律。通过对比得到,相同NPSH下,叶片数Z=5的叶轮,叶片背面空泡分布体积较少,即空化的程度较低;但其空化严重区的空泡体积增幅较大,即空化发展的速度较快;叶顶区域的叶顶涡诱导的低压区随叶片数减少,范围逐渐向上游扩大,轮缘的空泡体积也随之增大,叶顶泄漏空化更加严重。即叶片数对不同类型空化情况,以及相同类型的不同程度的空化情况影响不同。  相似文献   

9.
介绍了开式叶轮的设计方法,确定了泵的主要设计参数。详细论述了开式离心泵全流道模型的建立方法,采用FLUENT软件对轴向间隙分别为0.5,0.75,1,1.25和1.5mm的开式离心泵进行全流场数值模拟,计算时采用雷诺时均方程和标准k-ε湍流模型,应用SIMPLE算法,对比分析泵内部静压力和速度,分析轴向间隙对开式离心泵内流场、空化性能、扬程及效率的影响,得出随着轴向间隙的增大,开式离心泵的抗空化性能、扬程和效率降低的结论,为开式离心泵的优化设计提供了有价值的参考。  相似文献   

10.
诱导轮空化流动特性实验研究   总被引:1,自引:0,他引:1  
为了深入研究诱导轮内部的空化流动特性,基于诱导轮空化流动可视化实验台进行了一系列实验,获取了诱导轮的外特性、空化区发展过程以及相应的压力脉动特性。结果表明:流量越大,空化性能曲线越早发生断裂,但存在某个流量使诱导轮具备最佳空化性能;随着空化数的降低,空化首先发生于泄漏涡中,泄漏涡空化逐渐与泄漏流中的剪切层空化连成一片,形成稳定的泄漏空化区,流量越小,空化区面积越大,叶尖的压力脉动幅值也随着空化区面积增大而升高,由于空化区对称分布,压力脉动由叶片通过频率主导;进一步降低空化数时,开始出现各类空化不稳定现象,小流量下出现明显的回流涡空化,大流量下出现同步旋转空化,后者会引起大幅的压力振荡,同时会导致扬程部分下降。空化区进一步发展,导致大流量下发生低频轴向流动不稳定现象,空化喘振。空化区发展至叶轮出口时,影响出口液流角,诱导轮完全失去作功能力,发生空化性能断裂。  相似文献   

11.
为了提升高速井泵的水力性能,探讨影响其性能的主次因素,以100QJ10型高速井泵为研究对象,按照L18(37)正交表,选取叶片出口宽度、叶轮出口直径、叶片数等7个因素,每个因素选取3个水平,共设计18组叶轮,并分别与同一个导叶装配.应用CFX 15.0软件对18组模型泵进行全流场数值模拟,利用极差分析法研究影响100QJ10型高速井泵性能的主要和次要因素.结果表明:叶片出口安放角和叶轮出口边斜切角度对高速井泵的水力性能影响较大;本次优化最优方案为叶轮出口宽度b2=6.5 mm,叶轮出口直径D2=80.5 mm,叶片出口安放角β2 = 27°,叶片数Z=7,叶片进口直径D1=40 mm,叶轮后盖板与反导叶最底端轴向间距h=3.5 mm,叶轮出口斜切角度为0°.分别对初始模型和优化模型进行外特性试验并对比分析,验证了正交试验结合数值模拟方法在高速井泵优化设计方面的可行性.  相似文献   

12.
为了定量研究诱导轮对高速离心泵内部流场和性能的影响,分别对有诱导轮和无诱导轮的高速离心泵进行三维非定常全流道数值模拟,并获得其压力脉动特性和作用在叶轮上的径向力分布。通过对比分析发现诱导轮产生的扬程提高了叶轮进口压力,从而提升泵的抗汽蚀性能并且能增大泵的扬程,但对效率有一定影响。模拟结果还表明,有、无诱导轮的高速离心泵内压力脉动均主要是由于叶轮和蜗壳动静干涉产生,且主频与叶频相一致,加装诱导轮对泵内的压力脉动频率分布影响较小,幅值在小流量下有所增大而设计流量和大流量下则有所降低。加装诱导轮之后,设计工况和小流量下叶轮受到的径向力的均值与最大值都比无诱导轮模型泵稍大,其中设计工况下均值和最大值分别增大15.13%和18.4%。  相似文献   

13.
某型号液体火箭发动机推进剂泵压力脉动量级较大,诱导轮与离心轮匹配性不好,是导致泵内压力脉动较大,泵性能降低的重要原因.为了研究诱导轮与离心轮的匹配关系对泵性能及泵内压力脉动特性的影响,通过数值仿真计算方法,从诱导轮与离心轮的匹配性出发,分析了不同诱导轮方案,以及诱导轮与离心轮相对位置变化对泵内流场特性及性能的影响.结果表明:对于大流量高速离心泵,诱导轮出口保持一定长度的等螺距段,有利于改善离心轮入口流动情况,提高泵的性能;诱导轮叶片转折角过大,会导致离心轮进口回流,降低泵的性能;与诱导轮结构方案相比,诱导轮与离心轮的相对位置对泵性能的影响较小;诱导轮与离心轮轴向距离过小会造成离心轮内流动不均匀,泵性能下降;综合考虑汽蚀性能、压力脉动水平和效率,泵方案设计选用进口变螺距、出口等螺距的诱导轮方案.  相似文献   

14.
离心泵变螺距诱导轮的开发   总被引:1,自引:0,他引:1  
KONG Fan-yu  黄建军  L 《排灌机械》2008,26(3):10-14
为了提高离心泵的抗汽蚀性能,在离心泵叶轮入口处配置变螺距诱导轮,诱导轮设计为变螺距结构,以较小的叶片入口角获得较小的进口流量系数,以较大的叶片出口角产生足够的扬程,满足诱导轮本身的汽蚀性能要求以及离心叶轮入口压力性能的要求.基于诱导轮水力计算方法,分析了变螺距诱导轮的汽蚀性能及变螺距诱导轮重要参数组合,研究了诱导轮的螺距变化规律,给出了变螺距诱导轮应用实例,通过对不同的诱导轮的试验,结果表明,配置变螺距诱导轮的泵组具有良好汽蚀性能.鉴于所介绍的设计方法,考虑一定的尺寸、结构等因素,推出了一组变螺距诱导轮,以便对变螺距诱导轮的生产和进一步的研究提供参考.  相似文献   

15.
轴流泵叶轮端壁区流动特性数值模拟   总被引:5,自引:0,他引:5  
轴流泵端壁区流动对流场结构、能量传输、水力效率等有着重要的影响。基于CFD技术和高质量结构化网格,对不同叶顶间隙的轴流泵方案进行了全流场数值模拟,探讨了叶顶间隙对端壁区轴面速度、环量等流动参数的影响规律,分析了叶顶泄漏涡的产生机理及其结构,并与高速摄影试验进行了对比。研究结果表明,端壁区叶顶间隙导致进口轴面速度非均匀分布和轮缘侧二次回流;叶轮出口的端壁间隙区轴面流动减弱,且叶顶间隙越大,轴面速度下降幅度越大;叶顶间隙附近的二次回流区使叶轮进口产生环量,当叶顶间隙增大至2 mm时,约50%的流动区域受到间隙的影响而产生预旋;端壁区叶顶泄漏涡的数值模拟运动轨迹及结构与试验一致,在小流量工况下,泄漏涡强度增强,且干扰流场范围扩大。  相似文献   

16.
为了研究混流泵在不同流量和不同进口压力工况下启动过程中的空化特性,采用不同的启动时间,对一台叶顶间隙为0.25 mm的混流泵模型的启动过程进行了高速摄影试验研究.主要研究了模型在4种流量(0.80Qd,0.90Qd,1.00Qd和1.05Qd)工况下,启动时间分别为10,15,20 s下的空化现象.试验结果表明:在混流泵启动过程中,初始阶段由于速度很小,压力没有达到水的气化压力,因此没有出现空化现象;当启动时间达到稳定点后,首先在叶轮叶顶处出现了空泡,随后扩散至叶轮流道,发生严重空化;在相同流量下,泵的进口压力越小(即空化数越小),空化发生的越严重;在进口压力和流量相同时,不同的启动时间下,模型泵在启动过程中,泵内的空化程度随着时间逐渐发展加剧,达到稳态时,空化最为严重.  相似文献   

17.
为研究轮缘叶顶间隙对斜流泵性能和流动不稳定特性的影响,基于SST k-ω湍流模型对某斜流泵选取了0, 0.25, 1.00, 2.00 mm 4种尺寸的叶顶间隙进行数值计算,分析间隙区域内压差分布、泄漏量、叶顶泄漏涡旋强度以及进口轴面速度分布.结果表明:不同运行工况下,斜流泵泄漏量从叶轮进口到叶轮出口先增大后减小,其与间隙区内压差变化趋势相吻合.叶顶泄漏量随着间隙尺寸的增大而增大,导致泵的能量损失增大.经对比发现,间隙尺寸是影响叶顶泄漏量的主要因素.小流量工况下,随着叶顶间隙尺寸的增大,叶顶泄漏流与主流卷吸作用形成的泄漏涡强度逐渐增强.部分泄漏流进入相邻叶片通道,导致其流动失稳.随着叶顶间隙的增大,斜流泵能量损失明显增多,且内流不稳定性明显加剧.增大流量后,不同间隙下叶顶泄漏涡旋转强度均逐渐降低.  相似文献   

18.
多工况高抗汽蚀性能的诱导轮设计   总被引:1,自引:0,他引:1  
针对某流量调节范围(最大流量/最小流量)为30的低比转数高速离心泵,基于能量匹配法,设计了等螺距和变螺距2种结构形式的诱导轮.采用SST湍流模型和Rayleigh-Plesset空泡动力学模型,对离心泵多工况下的全流场进行汽蚀数值模拟,分析了离心泵多工况下的汽蚀断裂特性和气泡分布等流场特征,揭示了不同工况下带诱导轮离心泵的汽蚀断裂机理.在高速试验台上进行了离心泵外特性水力试验,试验结果与计算结果吻合较好.研究结果表明:能量匹配法是指导高抗汽蚀诱导轮设计的基本方法;随着进口压力的降低,带诱导轮离心泵在各工况下的汽蚀断裂特性不尽相同,大流量工况下的扬程断裂曲线呈大斜率形状快速下降,中流量工况下扬程断裂曲线呈直角形,小流量下扬程断裂曲线呈小斜率形状缓慢下降;相对于等螺距诱导轮,变螺距诱导轮具有更小的冲角和更高的扬程,使高速离心泵具有更宽的稳定工作区间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号