首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
抗精噁唑禾草灵耿氏硬草乙酰辅酶A羧化酶基因研究   总被引:1,自引:0,他引:1  
为明确耿氏硬草抗性种群SD-23对乙酰辅酶A羧化酶(ACCase)抑制剂类除草剂的抗性水平及靶标抗性分子机理,采用整株水平测定法测定了SD-23种群对6种ACCase抑制剂类除草剂的抗性,扩增和比对了抗性和敏感种群间的ACCase基因序列,并测定了耿氏硬草种群SD-23对其他4种除草剂的敏感性。结果表明,SD-23种群对精噁唑禾草灵产生了高水平抗性,抗性倍数为12.7,对炔草酯和精吡氟禾草灵产生了低水平抗性,抗性倍数分别为5.2和4.5,对烯禾啶、烯草酮和唑啉草酯较敏感。与敏感种群SD-1相比,SD-23种群ACCase的CT区域第2096位甘氨酸突变为丙氨酸(Gly-2096-Ala);甲基二磺隆、啶磺草胺和异丙隆对抗性和敏感种群均有较好防效,其防效达86.7%以上,干重防效达77.4%以上。ACCase的Gly-2096-Ala突变第一次在耿氏硬草中被报道,该突变可能是导致SD-23种群对精噁唑禾草灵产生抗性的重要原因之一。  相似文献   

2.
江淮地区是我国重要的小麦产区之一。为明确该地区麦田日本看麦娘对精噁唑禾草灵的抗性情况,采用整株水平生物测定法检测了该地区的10个种群对精噁唑禾草灵的抗性水平;扩增和比对了高抗种群(AH-40、JS-19)、中抗种群(AH-41、JS-20)与敏感种群(AH-7)的ACCase CT区域基因片段差异,并测定了GSTs、P450s酶抑制剂对精噁唑禾草灵的增效作用及4个抗性种群对8种除草剂的抗性。结果表明,高水平抗性种群数量占供试种群总数的50%,抗性指数为13.14~18.54;测序结果表明,高抗和中抗种群中均未发现已报道可引起靶标抗性的位点突变。AH-40种群在施用GSTs代谢酶抑制剂(灭草环、三聚氯氰、NBD-Cl)和P450s酶抑制剂(PBO、马拉硫磷)后均可显著提高其对精噁唑禾草灵的敏感性,增效倍数分别为1.68、1.68、2.45、1.64、2.03;JS-19种群在施用GSTs酶抑制剂(灭草环、三聚氯氰、NBD-Cl)后GR50有所下降,增效倍数为1.71、1.94、1.71;供试酶抑制剂未对其他抗性种群产生明显增效作用。抗性检测结果显示,4个抗性种群均对炔草酯和甲基二磺隆高抗,AH-41、JS-19高抗高效氟吡甲禾灵,JS-20高抗烯禾啶,但均对唑啉草酯、啶磺草胺、氟唑磺隆和异丙隆敏感。  相似文献   

3.
In 2009, a survey was conducted of cereal fields in five prefectures of Greece to establish the frequency and distribution of herbicide-resistant sterile wild oat (Avena sterilis L.). In total, 104 sterile wild oat accessions were collected and screened in a field experiment (conducted in 2009 and repeated in 2010) with several herbicides commonly used to control this weed. Most of the sterile wild oat accessions (89%) were classed as resistant (or developing resistant) to the ACCase-inhibiting herbicide diclofop, while resistance to other ACCase-inhibiting herbicides was markedly lower. The results of the pot experiments showed that some of the sterile wild oat accessions were found to have a very high level of diclofop resistance (resistance index up to 28.6), while cross-resistance with other herbicides was common. The levels of resistance and cross-resistance patterns varied among biotypes with different amount and time of selection pressure, indicating either more than one mechanism of resistance or different resistance mutations in these sterile wild oat biotypes. LA14, which had the highest diclofop resistance level (28.6 resistance index), showed resistance to all APP herbicides applied and non-ACCase inhibitors. Alternative ACCase-inhibiting herbicides, namely tralkoxydim and pinoxaden remain effective on 86 and 92% of the tested sterile wild oat populations, respectively. For the ALS-inhibiting herbicide mesosulfuron + iodosulfuron, nearly all the sterile wild oat accessions were susceptible (97%), with only 3 of them classed as developing resistance. Therefore, there is an opportunity to effectively control sterile wild oat by selecting from a wide range of herbicides and other cultural practices. Early post-emergence herbicide application is strongly suggested, since it could decrease the number of resistant seeds in the field and slow down the dispersal of this major problem.  相似文献   

4.
The objectives of this study were to describe the intra-specific variation in herbicide response of weed populations when subjected to new vs. well-established herbicides, and to assess distributions of logLD50- and logGR50-estimates as a potential indicator for early resistance detection. Seeds of two grass weeds (Alopecurus myosuroides, Apera spica-venti) were collected in southern Sweden, mainly in 2002. In line with the objectives of the study, the collections sites were not chosen for noted herbicide failures nor for detected herbicide resistance, but solely for the presence of the target species. For each species, seedlings were subjected to two herbicides in dose-response experiments in a greenhouse. One herbicide per species was recently introduced and the other had been on the market for control of the species for a decade, with several reports of resistance in the literature. Fresh weight of plants and a visual vigour score were used to estimate GR50 and LD50, respectively. Resistance to fenoxaprop-P-ethyl in A. myosuroides was indicated by the LD50-estimates to be present in frequencies sufficient to affect the population-level response in 9 of 29 samples, and was correlated to response to flupyrsulfuron, while low susceptibility to isoproturon in A. spica-venti populations was not linked to the response to sulfosulfuron. In the study as a whole, the magnitude of the estimated herbicide susceptibility ranges differed irrespective of previous exposure. No consistent differences were found in the distribution of LD50-estimates for new and “old” herbicides, and normality in the distribution of estimates could not be assumed for a non-exposed sample, even in the absence of an indication of cross-resistance.  相似文献   

5.
The cotton whitefly Bemisia tabaci, (Genn.) is an important pest of field crops, vegetables and ornamentals worldwide. Neonicotinoids are considered an important group of insecticides being used against B. tabaci for several years. B. tabaci has developed resistance to some of the compounds of the group. This study was designed to investigate if the selection of B. tabaci with acetamiprid would give a broad-spectrum of cross-resistance and to genetically classify the resistance. At G1 a low level of resistance to acetamiprid, imidacloprid, thiamethoxam, thiacloprid and nitenpyram was observed with resistance ratios of 3-fold, 8-, 9-, 6- and 5-fold, respectively, compared with a laboratory susceptible population. After selection for eight generations with acetamiprid, resistance to acetamiprid increased to 118-fold compared with the laboratory susceptible population. Selection also increased resistance to imidacloprid, thiamethoxam, thiacloprid, nitenpyram, endosulfan and bifenthrin but no change in susceptibility to fipronil was observed. Furthermore resistance in a field population was stable in the absence of acetamiprid selection pressure. Genetic crosses between resistant and susceptible populations indicated autosomal and incompletely recessive resistance. Further genetic analysis suggested that resistance could be controlled by a single factor. The high level of cross-resistance and stability of incomplete resistance in the field population is of some concern. However, lack of cross-resistance between acetamiprid and fipronil or unstable resistance in the resistant population could provide options to use alternative products which could reduce acetamiprid selection pressure.  相似文献   

6.
Spodoptera exigua (Hübner) has a worldwide distribution with a high capacity for damaging a wide range of food, forage and fiber crops. It has been reported extensively from all over the world that populations of this pest species have developed field resistance against many insecticides. The objectives of this study were to determine whether an emamectin benzoate resistant field population of S. exigua re-selected with emamectin benzoate in the laboratory (Ema-SEL) showed cross-resistance to other insecticides, whether resistance was stable under laboratory conditions, and whether there were fitness costs associated with emamectin benzoate resistance. Bioassays at G1 for the field population, gave resistance ratios (RRs) of 220, 149 and 38-fold for emamectin benzoate, spinosad and lufenuron, respectively, compared with a susceptible laboratory population (Lab-PK). Resistance ratios were increased by 526-fold and 6-fold compared with Lab-PK and the unselected field population (Ema-UNSEL, G6), respectively after selection with emamectin benzoate (Ema-SEL) for five generations (G6). Selection with emamectin benzoate had no apparent effect on susceptibility of Ema-SEL to spinosad and lufenuron, instead toxicity to the latter insecticides reduced, suggesting there was no cross-resistance between these compounds. Analysis of various life history traits suggested that the Ema-SEL population had a lower overall fitness (0.38) compared with the Lab-PK (1.0). Lack of cross-resistance and the apparent instability of resistance to emamectin benzoate suggest that spinosad and lufenuron are suitable alternatives for use with emamectin benzoate in resistance management. In addition, the high relative fitness costs observed suggests that emamectin benzoate-resistant insects are at a considerable disadvantage to susceptible populations in the absence of selection pressure although this remains to be tested under field conditions.  相似文献   

7.
Inconsistent control of Echinochloa oryzoides has been reported repeatedly by farmers in the major rice growing area of Turkey. Greenhouse studies confirmed the existence of cross and multiple herbicide tolerance of E. oryzoides accessions including acetolactate synthase (penoxsulam, bispyribac-sodium) and acetyl CoA carboxylase (cyhalofob-butyl) inhibiting herbicides. Comparison of 95% lower confidence intervals of ED90 derived from log-logistic dose–response curves, and twice the recommended field rates of the herbicides showed some, but not distinct separation of susceptible and tolerant accessions. We used a novel method to separate heterogeneous data without a priori knowledge of grouping into more than one group. On the basis of the distribution of ED90 it was possible to identify two distinct groups of the 172 accessions tested, 78% were not controlled by ALS inhibitors (penoxsulam, and bispyribac-sodium) at recommended field rates; and 38% were not controlled by the ACCase Inhibitor (cyhalofob-butyl) at twice the field rates. The effective response level of ED90 resulted in 64 and 14 tolerant accessions to ALS and ACCase, respectively. Fourteen accessions showed multiple resistances to ALS and ACCase Inhibitors.Some of the accessions were strongly tolerant to both herbicide modes of action and had 100% survival even at 6 times the recommended rates. Most of these tolerant accessions were from Marmara region, predominantly in Edirne and Balıkesir, which are the regions without any crop rotation.  相似文献   

8.
WeedPAM has been introduced as a new chlorophyll fluorescence imaging sensor to detect herbicide stress in weeds a few days after treatment (DAT). In this study, it was investigated if the sensor could differentiate between 50 sensitive and herbicide resistant populations of Alopecurus myosuroides 5 DAT. Resistance profile of all populations had been analyzed in standard greenhouse bioassays. Populations were sown in winter wheat at several locations in Germany over two years. At 3–7 leaves growth stage, they were treated with four ALS- and three ACCase-inhibitors at recommended dosages. Five DAT, maximum quantum efficiency of PS II was measured with the WeedPAM sensor on 40 A. myosuroides plants per treatment. Based on the sensor data, populations were classified into sensitive and resistant populations. Classification was verified by a visual assessment of all treatments and populations 21 DAT. In total, 95% of the WeedPAM classifications 5 DAT were correct. We could demonstrate that WeedPAM is capable to detect herbicide resistant A. myosuroides populations shortly after treatment. This allows selecting alternative weed control methods against resistant weed populations in the same growing season.  相似文献   

9.
The degree of insecticide resistance, synergism effects, acetylcholinesterase (AChE) activity kinetics, specific activities of detoxification enzymes and cross-resistance were investigated in omethoate resistant and relatively susceptible strains of Aphis gossypii Glover. The resistant cotton aphid strain (ORR) exhibited 231.3-fold resistance to omethoate compared to the susceptible strain (OSS). Synergist piperonyl butoxide (PBO) dramatically increased the toxicity of omethoate in the resistant strain, while triphenyl phosphate (TPP) and diethyl maleate (DEM) did not exhibit synergism effects. The calculated AChE activity, Vmax and Km ratios of ORR to OSS were 0.1, 0.2 and 0.4, respectively. Based on analysis of IC50 indices, enzyme inhibition experiments showed that AChE from the ORR strain was 10.6-, 3.2-, 6.2-, 10.5- and 4.4-fold more insensitive to inhibition by eserine, omethoate, paraoxon, paraoxon-methyl and malaoxon, respectively, than that from the OSS strain. The cytochrome P450-mediated O-demethylation activity (3.7-fold) and ethoxycoumarin-O-deethylase activity (2.6-fold) in the ORR strain were significantly higher than in the OSS strain. Specific activity of carboxylesterase (CarE) and glutathione S-transferase (GST) were not significantly different in both the ORR and OSS strains. Bioassay results indicated the ORR strain had developed high levels of cross-resistance to chlorpyrifos (24.2-fold), malathion (21.1-fold), acephate (10.2-fold), esfenvalerate (30.6-fold), methomyl (22.4-fold), carbofuran (33.2-fold), but had negative cross-resistance to bifenthrin (0.4-fold). Overall, these results demonstrate that reduced AChE sensitivity, combined with increased cytochrome P450 monooxygenase detoxification, plays an important role in the high levels of omethoate resistance and can cause cross-resistance to other insecticides in the ORR strain.  相似文献   

10.
The Asian citrus psyllid, Diaphorina citri Kuwayama being a vector of huanglongbing (HLB), citrus greening disease is the most destructive pest of citrus and the management of D. citri is crucial for successful control of HLB. We evaluated adult populations of D. citri from twelve districts of Punjab, Pakistan for resistance to seven different insecticides. Different levels of resistance ratios were observed for all insecticides (chlorpyrifos, bifenthrin, imidacloprid, acetamiprid, thiamethoxam, nitenpyram and chlorfenapyr). Field collected populations of D. citri were highly resistant to imidacloprid as compared to the susceptible population. The resistance ratios were in range of 236.6–759.5, 55.5–212.8, 13.1–46.4, 31.4–216.7, 8.6–89.4-fold for imidacloprid, acetamiprid, chlorfenapyr, nitenpyram, and thiamethoxam, respectively and 39.8–107.1 and 32.7–124.5-fold in case of conventional insecticides i.e., bifenthrin and chlorpyrifos, respectively. Nitenpyram and thiamethoxam, with no or very low resistance should be used in combination or in rotation with other pest management tactics for managing resistance in D. citri. The correlation analysis of the LC50's of insecticides showing positive and negative correlations among different insecticides in all tested populations, suggests mechanism of cross-resistance. Imidacloprid showed a positive correlation with acetamaprid, but a negative correlation with thiamethoxam from the neonicotenoid group, while the resistance to chlorfenpyr positively correlated with chlorpyrifos and bifenthrin in the pyrethroid group. Multiple resistance mechanisms could be the reason behind the development of such a high resistance in the D. citri.  相似文献   

11.
Cotton mealybug Phenacoccus solenopsis Tinsley is an important pest of cotton in Pakistan, and its management is difficult due to the development of insecticide resistance. This research was conducted to characterize the bifenthrin resistance in populations of P. solenopsis and different parameters such as cross-resistance, realized heritability and possible resistance mechanisms were studied to improve the management of this important pest. A field-collected population was selected with bifenthrin in the laboratory for 14 generations and developed a resistance of 178-fold. The realized heritability of bifenthrin resistance was 0.54 in the selected population. The toxicity of bifenthrin was synergized by the addition of either piperonylbutoxide (PBO) or S,S,S tributylphosphorotrithioate (DEF) which suggests a general metabolic resistance due to possible involvement of mono-oxygenases or esterases. However, the resistant population did not develop a significant cross-resistance to either buprofezin, chlorpyrifos or lambda-cyhalothrin. These data suggest that alternative insecticide-based management programs can be developed for this pest in the short-term, but resistance management strategies which can reduce the sole reliance on insecticides are still needed.  相似文献   

12.
Cucurbit downy mildew caused by the oomycete pathogen Pseudoperonospora cubensis is a devastating disease that is distributed worldwide and affects cucumber in open fields and greenhouses. Fluopicolide, which was a novel systemic fungicide and was released in 2008, it is very effective in controlling downy mildew on cucumber and grape, potato late blight and pepper Phythophthora blight and reduces the loss caused by the diseases, but so far the potential for P. cubensis to develop resistance to fluopicolide has not been investigated. Hence, a laboratory study was undertaken to assess the risk of P. cubensis developing resistance to fluopicolide. Baseline sensitivity to fluopicolide was determined by using 75 P. cubensis isolates collected from cucumber-growing greenhouses in Hebei province, where no fluopicolide had been used for control of cucumber downy mildew before. Values of effective concentrations for 50% inhibition (EC50) of sporulation ranged from 0.02 to 0.40 μg ml−1 and were distributed as a unimodal curve, indicating that all 75 isolates were sensitive to fluopicolide. Sporangia of nine sensitive isolates were ultraviolet (UV)-irradiated, and four fluopicolide-resistant mutants were acquired at a mutation frequency of 7.4 × 10−7. Seven mutants resistant to fluopicolide were obtained from seven isolates by sporangia adaptation on fluopicolide-treated leaves of cucumber. The EC50 values for all eleven fluopicolide-resistant mutants ranged from 3.37 to 13.06 μg ml−1 with mean resistance factors of 7.9–118.0. After 10 sporangia transfers on fungicide-free leaves of cucumber, all eleven resistant mutants remained resistant to fluopicolide with mean resistance factors of 8.2–81.3. Seven resistant mutants from the selection for resistance and one resistant mutant from UV mutagenesis exhibited stable resistance; however, the other three resistant mutants from UV irradiation became significantly less resistant. Compared to their respective sensitive parents, the eleven resistant mutants exhibited diversity in latent period, infection frequency, lesion extension and sporulation ability. Five out of the eleven resistant mutants exhibited prolonged latent period and three out of the eleven resistant mutants provided decreased infection frequency (IF) compared to their respective parents, indicating that in some cases, resistance mutation might affect the latent period and IF of P. cubensis. There were significant differences in pathogenicity and ability to produce sporangia, but this seemed not to be caused by resistance mutation. No cross-resistance was detected between fluopicolide and azoxystrobin, metalaxyl, dimethomorph, or cymoxanil. In all, there could be a moderate to high risk of field populations of P. cubensis developing resistance to fluopicolide, and populations of P. cubensis should be monitored regularly for their shift of sensitivity over years of application.  相似文献   

13.
Red rice is the main weed in rice paddy fields. Imidazolinone herbicides in resistant rice cultivars currently provide a unique opportunity to control red rice in large-scale rice fields. However, the continuous use of this technology has resulted in imidazolinone-resistant red rice biotypes. This study aimed to identify the mechanism of herbicide resistance and the frequency and spatial distribution of the known imidazolinone herbicide-resistant alleles in red rice. The nucleotide sequence of the ALS gene indicated that the G654E, S653D and A122T mutations are present in the imidazolinone herbicide-resistant rice cultivars IRGA 422 CL, SATOR CL and PUITÁ INTA CL, respectively. This information and the nucleotide sequence surrounding these mutations were used for the development of single nucleotide polymorphism (SNP) molecular markers to identify the possible mutations that confer herbicide resistance in red rice. This analysis was carried out in a total of 481 plants from 38 populations collected as individuals that escaped control with the herbicides imazethapyr and imazapic in rice paddy fields in Southern Brazil. The G654E mutation was the most frequent, being found in 100% and 90.9% of the populations in the 2006/2007 and 20007/2008 seasons, respectively. In addition, the S653D and A122T mutations were also present either alone or as double or triple mutations in some plants. Target site insensitivity is the predominant mechanism of resistance in red rice resistant to imidazolinone herbicides in Southern Brazil. The high frequency of the S653D mutation, the same mutation responsible for the resistance in the rice cultivar largely used in Southern Brazil, indicates that gene flow is occurring from the rice cultivar to red rice. Management practices related to increasing crop sanitation and decreasing of herbicide selection pressure through crop rotation should be enforced to prevent the evolution of herbicide resistance in red rice.  相似文献   

14.
Field evolved resistance to acetolactate synthase (ALS)-inhibiting herbicides in a multiple resistant Lolium rigidum population (VLR69) is known to be mainly due to enhanced rates of herbicide metabolism, likely involving cytochrome P450 monooxygenases. The present study investigates genetic inheritance of P450-mediated metabolic resistance to the ALS-inhibiting herbicide chlorsulfuron. To this end, a P450-mediated, metabolism-based resistant sub-set of VLR69 was carefully selected using plant vegetative cloning, appropriate herbicide screen test and the known P450 inhibitor malathion. Both intermediate and near-dominant nuclear-encoded phenotypic resistance traits were observed in 14 reciprocal F1 families. The segregation of phenotypic chlorsulfuron resistance in ψ-F2 families was analysed using genetic inheritance models involving one or two loci. The results from four ψ-F2 families revealed complex patterns of genetic inheritance of P450-mediated metabolic resistance in genetically diverse and cross-pollinated species L. rigidum: multiple loci are likely involved and interact with herbicide rates and environmental conditions in mediating the resistance phenotype.  相似文献   

15.
Lolium rigidum is the most prevalent and damaging grass weed of winter cereals in Spain. L. rigidum infestations are frequently treated with herbicides and, consequently, populations have evolved resistance. The objective of this study was to determine the extent and frequency of herbicide resistance in L. rigidum populations in Spain to the selective herbicides chlortoluron, diclofop-methyl and chlorsulfuron, commonly used for its control in-crop, and to glyphosate. The response to these herbicides was evaluated on 123 accessions surveyed randomly across cereal cropping areas of the regions of Castile and León, Catalonia and Andalusia. The fresh weight and the frequency of undamaged plants were calculated for each accession and herbicide. At the regional level, higher frequencies of accessions displaying resistance occurred in Catalonia, an intensively cropped region with a greater herbicide selection pressure. Of concern is that in this region the 60% of the accessions displayed some level of resistance to the ALS-inhibiting herbicide chlorsulfuron. The 6.9% of the accessions found in Castile and León with some resistance to glyphosate could also indicate an incipient problem of resistance to this herbicide. For the other herbicides and regions the majority of the accessions remained susceptible. The possible mechanisms of herbicide resistance development in L. rigidum accessions (target-site versus non-target-site resistance) and their variation among regions was discussed. This study can be used to generate herbicide resistance-management schemes for farmers, based upon the herbicide the site and the potential for resistance development.  相似文献   

16.
A concern regarding planting of Bt crops is that their widespread cultivation could lead to evolution of insect resistance to Bt toxins. In South Africa, the noctuid maize stem borer (Busseola fusca [Fuller]), is resistant to Bt maize (Zea mays L.; MON810) which produces Cry1Ab protein. The presence of fitness costs in resistant populations could be a valuable component of resistance management since the non-Bt maize refuge may select against resistance. The aim of the study was to determine if there are fitness costs associated with Bt resistance of B. fusca. Life history parameters were compared between individuals of a Bt maize resistant B. fusca population when feeding on Bt or non-Bt maize. Similar comparisons were done using a control population. Field collected larvae as well as their F1-generation were used in the study. The following parameters were compared: pupal mass, moth longevity, fecundity, fertility, larval mass and survival, and sex ratio. Except for LT50-values, no fitness costs were associated with the resistance trait in the highly resistant B. fusca population. The absence of fitness costs and presence of resistant populations may promote the use of a multi-gene strategy which would be expected to impact negatively on fitness.  相似文献   

17.
Trunk injection with penicillin has been tested to control citrus huanglongbing (HLB), but side effects and environmental safety must be assured before approval of penicillin injection can be considered. We investigated effects of penicillin injection on densities of Candidatus Liberibacter asiaticus (Las) in leaves, as well as culturable bacterial populations in rhizospheres and petioles of grapefruit trees in field and greenhouse experiments. Trees were injected with penicillin G, and leaf and root concentrations were assessed in bioassays with Bacillus subtilis. Las densities were determined by qPCR, and bacteria were isolated on a low carbon medium from roots plus rhizosphere and surface-sterilized petioles at various times after penicillin injection. Selected bacterial isolates were tested for penicillin resistance (20 μg/mL) and glyphosate resistance (7000 μg/mL), because glyphosate is widely used and cross-resistance against antibiotics had been documented. One month after penicillin injection half of the greenhouse trees were inoculated with Phytophthora nicotianae. Cycle threshold (Ct) values of Las in old and young leaves significantly increased 90 days after trunk injection with penicillin. Bacterial populations in petioles and root-rhizospheres initially increased after penicillin injections, probably due to nutrient release, then returned to control levels after one week. Penicillin resistance was common in isolates from penicillin-injected and control trees (30–94%). Significantly more glyphosate resistant than sensitive isolates were penicillin resistant (81% versus 52%). Phytophthora root rot was not increased after penicillin injection. Thus, side effects of penicillin injection tested here were minimal, while Las titers were reduced after three months.  相似文献   

18.
The melon and cotton aphid Aphis gossypii Glover (Hemiptera; Aphididae) is one of the most serious pests worldwide. We surveyed insecticide susceptibility in A. gossypii field populations to 12 insecticides (6 neonicotinoids, 3 pyrethroids and 3 others) to examine resistance ratios. The levels of insecticide resistance were extremely high, especially to neonicotinoids, such as acetamiprid, clothianidin, thiacloprid and imidacloprid. To identify the neonicotinoid resistance mechanisms, we used an imidacloprid-resistant (IMI-R) strain as a model strain. IMI-R showed an extremely high resistance ratio and also cross-resistance to all the test neonicotinoids. However, there was little or no cross-resistance to the other insecticides, including sulfoxaflor. Synergist tests and enzyme activity assays suggested the absence of resistance mechanisms based on enhanced detoxification enzymes, such as cytochrome P450, esterase and glutathione S-transferase. One point mutation was found in the beta1 subunit loop D region of the nicotinic acetylcholine receptor (nAChR) of the IMI-R strain. This R81T point mutation was also found in field populations collected from 5 regions. Therefore, the R81T point mutation was identified as an important mechanism of imidacloprid resistance in A. gossypii.  相似文献   

19.
Development of cross resistance or multiple cross resistance in Phalaris minor in wheat will continue to increase, as the weed develops mechanisms of resistance against new herbicides. This weed is a major threat to wheat productivity in north-western India, and as such needs to be addressed with integrated weed management approaches, including crop and herbicide rotations, herbicide combinations along with cultural and mechanical methods. Three field experiments were conducted during 2008–09 to 2012–13 along with large plot adaptive trials during 2012–13 with the objective to evaluate the efficacy of sequential applications of pendimethalin applied pre-emergent followed by clodinafop, sulfosulfuron, or pinoxaden applied post-emergent and tank-mix applications of metribuzin with these post-emergence herbicides for the management of herbicide-resistant P. minor in wheat. Clodinafop 60 g ha−1 or sulfosulfuron 25 g ha−1 at 35 days after sowing (DAS) and pendimethalin 1000 g ha−1 as pre-emergence did not provide consistently effective control of P. minor in wheat. An increase in the dose of clodinafop from 60 to 75 g ha−1 and of sulfosulfuron from 25 to 30 g ha−1 also did not improve their efficacy to a satisfactory level. However, pinoxaden 50 g ha−1 provided effective control (97–100%) of P. minor but not of broadleaf weeds. The tank-mix application of metribuzin with clodinafop 60 g ha−1 or sulfosulfuron 25 g ha−1 at 35 DAS and the sequential application of pendimethalin 1000 g ha−1 or trifluralin 1000 g ha−1 just after sowing followed by clodinafop 60 g ha−1 or sulfosulfuron 25 g ha−1 at 35 DAS provided 90–100% control of P. minor along with broadleaf weeds in wheat, thus resulting in improved grain yields (4.72–5.75 t ha−1) when compared to clodinafop 60 g ha−1 (3.85–5.60 t ha−1) or sulfosulfuron 25 g ha−1 alone (3.95–5.10 t ha−1). The efficacy of mesosulfuron + iodosulfuron (a commercial mixture) 14.4 g ha−1 against P. minor was not consistent across the experiments and over the years. The ready-mix combination of fenoxaprop + metribuzin (100 + 175 g ha−1) at 35 DAS provided effective control of weeds but its varietal sensitivity needs to be determined before its use in field conditions. The tank-mix or sequential application of herbicides would be a better option than their applications alone to manage the serious problem of herbicide-resistant P. minor in wheat.  相似文献   

20.
This work determined the sensitivity of field populations of Sclerotinia sclerotiorum (Lib.) de Bary before exposure to the fungicide fludioxonil (= baseline sensitivity) and assessed the risk of fludioxonil resistance. The mean EC50 (Effective Concentration) and Minimum inhibitory concentration (MIC) values for fludioxonil based on inhibition of mycelial growth of 120 wild-type isolates were 0.015 ± 0.005 μg/ml and <0.05 μg/ml, respectively. Positive cross-resistance was not detected between fludioxonil and benzimidazole fungicides but was detected between fludioxonil and dicarboximide fungicides which are considered as high resistance risk fungicides by FRAC, even though these fungicides have different molecular structures. By growing wild-type isolates on potato dextrose agar (PDA) containing sublethal concentrations of the fungicide, we obtained four fludioxonil-resistant mutants with resistance factors (EC50 resistant/EC50 sensitive phenotypes) >2000. The laboratory fludioxonil mutants were less fitter than their parental isolates in terms of mycelial radial growth, pathogenicity and sclerotial production. Moreover, on PDA amended with NaCl, the laboratory fludioxonil mutants grew more slowly than their fludioxonil-sensitive parents, especially at lower concentrations of NaCl. According to the fitness of mutants and the cross-resistance between fludioxonil and dicarboximide fungicides, phenylpyrroles can be considered to pose a moderate resistance risk. In a field trial, fludioxonil provided greater control (over 90% disease control) of S. sclerotiorum than iprodione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号