首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic analysis of recently identified “atypical” bovine pestiviruses, performed based on different gene regions, has revealed unclear relationships with other established species, therefore, their phylogenetic position could not be determined so far. In this study, the atypical pestivirus Th/04_KhonKaen was recovered from serum of a naturally infected calf and the complete genome sequence was determined and analysed, as means to define its position. The viral genome is 12,337 nucleotides (nt) long, and comprises a 5′-UTR of 383 nt, a 3′-UTR of 254 nt and an open reading frame of 11,700 nt, without duplication of viral sequences or insertions of cellular sequences. The phylogenetic analyses of the full-length sequence, performed by Neighbor-joining, Maximum likelihood, and the Bayesian approach, unanimously placed Th/04_KhonKaen in a single lineage, distinct from the established pestivirus species, and close to bovine viral diarrhea virus types 1 and 2. Furthermore, Th/04_KhonKaen and two previously reported atypical pestiviruses D32/00_‘HoBi’ and CH-KaHo/cont formed a well-supported monophyletic clade in trees based on the complete Npro and E2 gene regions. The finding provides conclusive classification of the Th/04_KhonKaen virus and confirms the standing of the “atypical” bovine pestiviruses as a novel pestivirus species.  相似文献   

2.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

3.
Previous reports on the spread of bovine virus diarrhoea virus (BVDV) from animals primarily infected with the agent are contradictory. In this study, the possibility of transmission of BVDV from calves simultaneously subjected to acute BVDV and bovine coronavirus (BCV) infection was investigated. Ten calves were inoculated intranasally with BVDV Type 1. Each of the 10 calves was then randomly allocated to one of two groups. In each group there were four additional calves, resulting in five infected and four susceptible calves per group. Virulent BCV was actively introduced in one of the groups by means of a transmitter calf. Two calves, susceptible to both BVDV and BCV, were kept in a separate group, as controls. All ten calves actively inoculated with BVDV became infected as shown by seroconversions, and six of them also shed the virus in nasal secretions. However, none of the other eight calves in the two groups (four in each) seroconverted to this agent. In contrast, it proved impossible to prevent the spread of BCV infection between the experimental groups and consequently all 20 study calves became infected with the virus. Following infection, BCV was detected in nasal secretions and in faeces of the calves and, after three weeks in the study, all had seroconverted to this virus. All calves, including the controls, showed at least one of the following clinical signs during days 3-15 after the trial started: fever (> or =40 degrees C), depressed general condition, diarrhoea, and cough. The study showed that BVDV primarily infected cattle, even when co-infected with an enteric and respiratory pathogen, are inefficient transmitters of BVDV. This finding supports the principle of the Scandinavian BVDV control programmes that elimination of BVDV infection from cattle populations can be achieved by identifying and removing persistently infected (PI) animals, i.e. that long-term circulation of the virus without the presence of PI animals is highly unlikely.  相似文献   

4.
The aim of this work was to investigate the susceptibility of calves infected with bovine viral diarrhea virus (BVDV) against secondary infections. For this purpose, the profile of cytokines implicated in the immune response of calves experimentally infected with a non-cytopathic strain of BVDV type-1 and challenged with bovine herpesvirus 1.1 (BHV-1.1) was evaluated in comparison with healthy animals challenged only with BHV-1.1. The immune response was measured by serum concentrations of cytokines (IL-1β, TNFα, IFNγ, IL-12, IL-4 and IL-10), acute phase proteins (haptoglobin, serum amyloid A and fibrinogen) and BVDV and BHV-1.1 specific antibodies. BVDV-infected calves displayed a great secretion of TNFα and reduced production of IL-10 following BHV-1 infection, leading to an exacerbation of the inflammatory response and to the development of more intense clinical symptoms and lesions than those observed in healthy animals BHV-1-inoculated. A Th1 immune response, based on IFNγ production and on the absence of significant changes in IL-4 production, was observed in both groups of BHV-1-infected calves. However, whereas the animals inoculated only with BHV-1 presented an IFNγ response from the start of the study and high expression of IL-12, the BVDV-infected calves showed a delay in the IFNγ production and low levels of IL-12. This alteration in the kinetic and magnitude of these cytokines, involved in cytotoxic mechanisms responsible for limiting the spread of secondary pathogens, facilitated the dissemination of BHV-1.1 in BVDV-infected calves.  相似文献   

5.
The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced.

Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus.

From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.  相似文献   


6.
Genetic comparison of ovine and bovine pestiviruses   总被引:1,自引:0,他引:1  
Viral RNA oligonucleotide fingerprinting was used to compare genetic relationship among pestiviruses originating from ovine or bovine host species. Ovine pestiviruses, including reference border disease virus and 2 border disease isolates originating from natural pestivirus infections of sheep, appeared to have a more distant genetic relationship among themselves than with certain bovine pestiviruses. A closer genetic relatedness was evident between border disease virus and 3 noncytopathic bovine pestiviruses, including Draper bovine viral diarrhea virus (BVDV), a BVDV isolate that originated from aborted bovine fetuses, and a virus that was isolated from the serum of a calf that had a chronic BVDV infection. Four noncytopathic bovine viruses, including Draper BVDV and 3 field isolates, were closely related. Reference Oregon C24V BVDV, a cytopathic virus, was closely related to only 1 of the 7 noncytopathic viruses in this study.  相似文献   

7.
Bovine viral diarrhea virus (BVDV) has been segregated into two genotypes, type 1 and type 2. To determine the efficacy of the commercially available bovine viral diarrhea type 1 vaccine used in Japan against BVDV type 2, calves were infected with BVDV type 2 strain 890 4 weeks after administration of the vaccine. The vaccinated calves did not develop any clinical signs and hematological changes such as observed in unvaccinated calves after the challenge. Furthermore, the challenge virus was not recovered from the vaccinated calves throughout the duration of the experiment, whereas it was recovered from all unvaccinated calves. The bovine viral diarrhea vaccine used in Japan is efficacious against infection with BVDV type 2 strain 890.  相似文献   

8.
Using RNA purified directly from stored clinical specimens, a collection of 62 pestiviruses were typed by RT-PCR and sequencing within the 5'-untranslated region of the genome. All the specimens had been obtained in 1966/1967 from diary cattle in England and Wales. Eight further pestiviruses, grown in cell culture, were characterised in the same way. Seven of these viruses were representatives of a panel of British isolates, obtained from cattle ten years before. The eighth was the virus used in a British bovine viral diarrhoea (BVD) vaccine. Most of the viruses were genetically unique and were of BVDV type Ia. One recent isolate was BVDV type Ib, two others were intermediate between Ia and Ib. No BVDV type II or border disease virus (BDV) isolates were found. There was no overall association between geographical and phylogenetic clustering, suggesting long-distance virus dispersal, presumably via trading of infected cattle. The sequences of the recently obtained cattle viruses were very similar or, in one case, identical to the older isolates in the region studied. Their close similarity to some previously characterised pestiviruses from British sheep suggests that a common pool of BVDV Ia is shared by these two livestock species, although another pestivirus--BVDV--is confined to sheep. The British cattle viruses were mostly distinct from continental European isolates, but more similar to type Ia isolates from North American cattle.  相似文献   

9.
10.
The aim of the experiment was to study whether bovine herpesvirus 1 (BHV1) marker vaccine batches known to be contaminated with bovine virus diarrhoea virus (BVDV) type 1 could cause BVD in cattle. For this purpose, four groups of cattle were used. The first group (n = 4 calves, the positive control group), was vaccinated with vaccine from a batch contaminated with BVDV type 2. The second group (n = 4 calves, the negative control group), was vaccinated with vaccine from a batch that was not contaminated with BVDV. The third group (n = 39 calves), was vaccinated with a vaccine from one of four batches contaminated with BVDV type 1 (seronegative experimental group). The fourth group (n = 6 seropositive heifers), was vaccinated with a vaccine from one of three batches known to be contaminated with BVDV type 1. All cattle were vaccinated with an overdose of the BHV1 marker vaccine. At the start of the experiment, all calves except those from group 4 were seronegative for BVDV and BHV1. The calves from group 4 had antibodies against BVDV, were BVDV-free and seronegative to BHV1. After vaccination, the positive control calves became severely ill, had fever for several days, and BVDV was isolated from nasal swabs and white blood cells. In addition, these calves produced antibodies to BVDV and BHV1. No difference in clinical scores of the other groups was seen, nor were BVDV or BVDV-specific antibody responses detected in these calves; however, they did produce antibodies against BHV1. The remainder of each vaccine vial used was examined for the presence of infectious BVDV in cell culture. From none of the vials was BVDV isolated after three subsequent passages. This indicates that BVDV was either absent from the vials or was present in too low an amount to be isolated. Thus vaccination of calves with vaccines from BHV1 marker vaccine batches contaminated with BVDV type 1 did not result in BVDV infections.  相似文献   

11.
Respiratory diseases in calves are responsible for major economic losses in both beef and dairy production. Several viruses, such as bovine respiratory syncytial virus (BRSV), bovine herpes virus-1 (BoHV-1), bovine parainfluenza virus-3 (BPI-3V), bovine viral diarrhea virus (BVDV), and bovine adenoviruses (BAV), are detected in most clinical cases with respiratory signs. The aim of this study is to define seroprevalences of five major viral causes of bovine respiratory infections in cattle in central region of Iran (Esfahan province). The population targeted was 642 dairy cows (Holstein–Friesian) from 25 farms. Samples of blood serum from female cattle were examined. Sera were tested by commercial ELISA kits to detect antibody against BRSV, BoHV-1, BPI-3V, BVDV, and BAV-3. The results were analyzed by Chi-square test. In the present study, seroprevalences of BRSV, BoHV-1, PI3V, BVDV, and BAV-3 were 51.1%, 72%, 84.4%, 49.2%, and 55.6%, respectively. The present study shows that infections of bovine respiratory viruses are very common in cattle in Esfahan.  相似文献   

12.
An investigation based on 2 studies was carried out to assess the involvement of bovine virus diarrhoea virus (BVDV), bovine herpesvirus type 1 (BHV-1), and bovine respiratory syncytial virus (BRSV) in calf respiratory disease in dairy farms in Venezuela. In the first study, 8 farms were selected and paired serum samples from 42 calves with respiratory disease were tested by ELISA for antibodies to the 3 viruses. Seroconversion to BVDV, BHV-1, and BRSV was found to 5, 2, and 6 farms out of the 8, respectively. The proportion of calves that showed seroconversion to BVDV, BHV-1, and BRSV were 19%, 14%, and 26%, respectively. In the second study, another farm having previous serological evidence of BVDV infection was selected. The decline of maternal antibodies against BVDV was monitored in 20 calves and the half-life of maternal antibodies was 34 +/- 12 days presumably indicating an early natural infection with BVDV. Furthermore, sera free of BVDV antibodies that were collected in studies 1 and 2 and were assayed for the presence of BVDV by nested RT-PCR. Two BVDV strains were detected and compared to those of ruminant and porcine pestiviruses. Both strains were assigned to subgroup Ib of type I BVDV. This investigation provides information on BVDV genotypes circulating in Venezuela and may contribute to the establishment of official control programmes against the viruses studied.  相似文献   

13.
To detect herds including cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV), application of the combination of neutralizing antibody detection and virus isolation, so-called spot test, were performed on sera of 3 calves selected from each of 26 farms. Nine farms were judged as positive because 64 or more antibody titers were detected from 2 or more calves or BVDV was isolated from one or more calves. PI cattle were detected from 8 of the 9 farms. The positive judgment on one farm was obtained only when the indicator virus used on the neutralizing test was genotypically identical with the isolate from the farm. These results suggest that the spot test can be effective in detecting herds with PI cattle and that the accuracy may be influenced by the genotypes of the indicator viruses.  相似文献   

14.
Bovine viral diarrhoea virus (BVDV) is an important cattle pathogen that causes acute or persistent infections. These are associated with immunotolerance to the viral strain persisting in animals that became infected early in their intrauterine development. To this date, the epidemiology of BVD in Switzerland runs virtually undisturbed by control measures such as restrictions on animal traffic or vaccination. Here, we analysed the viral genetics of 169 Swiss isolates and carried out crossed serum neutralisation tests to assess the antigenic spectrum of BVDV strains present in the cattle population. Besides confirming the presence of BVDV type 1 subgroups b, e, h and k, a single "orphan" BVDV-1 virus was detected that does not belong to any known BVDV-1 subgroup. No BVDV type 2 viruses were detected, suggesting that they are rare or not present in the cattle population. Antigenic comparison revealed significant differences between the different subgroups, with anti-1k immune serum having up to tenfold lower neutralising activity against 1b, 1e and 1h subgroup viruses, which however may still suffice to protect 1k-immune animals against superinfection by viruses of those other subgroups. Serum from routinely vaccinated animals revealed generally low titres but good cross-neutralisation. A geographic information system revealed that the viruses of the different subgroups are distributed in an apparently randomised fashion in the cattle population. This geographic distribution pattern may reflect peculiarities of the management practice in the Swiss cattle industry that, especially through annual transhumance of up to 25% of the entire population in the alpine region, tend to optimise the spread of BVDV.  相似文献   

15.
Veterinary vaccines are usually tested for the absence of contaminants. However, the quality control does not always imply that vaccines are not contaminated as, for example, illustrated by the bovine herpes virus 1 (BHV1) vaccine used in The Netherlands in 1999 that contained a small amount of bovine viral diarrhoea virus (BVDV1). Thousands of cows were vaccinated with BHV1 vaccine batches, and the question arose as to whether these small amounts of BVDV1, most likely not detected with in vitro tests, could have infected cattle. More in general, the question was whether the outcome of the in vitro tests, i.e. the in vitro infectivity, was indicative for the infectivity for cattle, i.e. the in vivo infectivity. We therefore carried out in vitro experiments to determine the sensitivity of a BVDV1 isolation assay. In addition, we performed two animal experiments, in which we estimated the lowest dose needed to infect calves with BVDV1. We extrapolated the experimental in vitro and in vivo results from a tissue culture infectious dose (TCID50) to a cattle infectious dose (CID50). We observed a partial response in the calves inoculated with this dose: four out of six calves turned out to be infected. In the tissue culture test, all 20 samples tested negative. The response in vivo, however, was not significantly higher than the in vitro response, which implies that no difference in susceptibility was observed between the animal test and the tissue culture test. Based on the results in our experiments, some cattle may have been infected with BVDV1 after the application of the contaminated BHV1 vaccine during the vaccination campaign. The question remains that how many cattle received contaminated vaccine, and became infected with BVDV1.  相似文献   

16.
Distribution of bovine viral diarrhoea virus (BVDV) antigens in the central nervous system (CNS) of 26 cattle persistently BVDV infected, 11 cattle with mucosal disease (MD), and 32 calves with congenital brain malformations was studied using monoclonal antibodies against BVDV epitopes. In persistently infected cattle and in cattle with MD, a widespread infection of neurons was present. Predilection sites for BVDV antigens were the cerebral cortex and the hippocampus. In calves with congenital encephalopathies, viral antigen-containing neurons could only be detected in the CNS of four animals. From the topographical distribution of BVDV antigens in these four postnatal cases with end-stage lesions, no conclusions could be drawn concerning the pathogenesis of BVDV-induced encephalopathies.  相似文献   

17.
OBJECTIVE: To determine the comparative virulence of 5 isolates of bovine viral diarrhea virus (BVDV) type II by inoculating 6- to 9-month-old beef calves with isolates originating from the tissues of cattle affected with naturally occurring, transient, acute, nonfatal infections or naturally occurring, peracute, fatal infections. ANIMALS: 22 calves that were 6 to 9 months old. PROCEDURE: The study used BVDV isolates 17011, 713, and 5521 that originated from fetuses aborted from cows with transient, nonfatal, acute BVDV infections and isolates 23025 and 17583 that originated from the tissues of cattle with peracute, fatal BVDV infections. Calves were allotted to 6 groups (1, mock-infected control calves [n = 2]; 2, inoculated with BVDV 17011 [4]; 3, inoculated with BVDV 713 [4]; 4, inoculated with BVDV 5521 [4]; 5, inoculated with BVDV 23025 [4]; and 6, inoculated with BVDV 17583 [41]. Rectal temperatures and clinical signs of disease were recorded daily. Total and differential WBC and platelet counts were performed. Histologic examination and immunohistochemical analysis were conducted to detect lesions and distribution of viral antigens, respectively. RESULTS: Calves inoculated with BVDV 23025 or 17583 developed more severe clinical signs of disease (fever and diarrhea), more severe lymphopenia, and more severe lesions (alimentary epithelial necrosis, lymphoid depletion, and BVDV antigen deposition in lymphatic tissues), compared with calves inoculated with BVDV 713, 5521, or 17011. CONCLUSIONS AND CLINICAL RELEVANCE: Relative severity of experimentally induced infections corresponded to severity of clinical signs of naturally occurring infections with respective BVDV isolates.  相似文献   

18.
Bovine viral diarrhea- and Border disease viruses of sheep belong to the highly diverse genus pestivirus of the Flaviviridae. Ruminant pestiviruses may infect a wide range of domestic and wild cloven-hooved mammals (artiodactyla). Due to its economic importance, programs to eradicate bovine viral diarrhea are a high priority in the cattle industry. By contrast, Border disease is not a target of eradication, although the Border disease virus is known to be capable of also infecting cattle. In this work, we compared single dose experimental inoculation of calves with Border disease virus with co-mingling of calves with sheep persistently infected with this virus. As indicated by seroconversion, infection was achieved only in one out of seven calves with a dose of Border disease virus that was previously shown to be successful in calves inoculated with BVD virus. By contrast, all calves kept together with persistently infected sheep readily became infected with Border disease virus. The ease of viral transmission from sheep to cattle and the antigenic similarity of bovine and ovine pestiviruses may become a problem for demonstrating freedom of BVD by serology in the cattle population.  相似文献   

19.
Neutralising serum antibodies against bovine virus diarrhoea virus (BVDV) were monitored for three years in 35 cattle that were infected with the virus as calves; 24 of the calves were inoculated intramuscularly or intranasally, and 11 contracted the infection naturally. All the experimentally infected calves seroconverted within 14 to 28 days after inoculation, and all the animals still had high serum levels of antibodies to BVDV three years after infection. Determinations of antibody levels in milk and blood samples excluded the possibility that the calves had been reinfected with BVDV during the study.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号