首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Barley has two flowering types, chasmogamous (open-flowering) and cleistogamous (closed-flowering). We examined the effect of the timing of Fusarium graminearum infection on Fusarium head blight (FHB) and mycotoxin accumulation in barley cultivars with different flowering types using greenhouse experiments. In the first experiment, 13 cultivars were spray inoculated at two different developmental stages, and the severity of FHB was evaluated. The effect of the timing of infection differed among cultivars. Cleistogamous cultivars were resistant at anthesis but susceptible at 10 days after anthesis, whereas chasmogamous cultivars were already susceptible at anthesis. In the second experiment, five cultivars were inoculated at three different developmental stages and the concentrations of deoxynivalenol (DON) and nivalenol (NIV) in mature grain were analyzed. Cleistogamous cultivars accumulated more mycotoxins (DON and NIV) when inoculated 10 or 20 days after anthesis than when inoculated at anthesis, whereas chasmogamous cultivars accumulated more mycotoxins when inoculated at anthesis. Thus, the most critical time for F. graminearum infection and mycotoxin accumulation in barley differs with cultivar, and likely is associated with the flowering type. Late infection, even without accompanied FHB symptoms, was also significant in terms of the risk of mycotoxin contamination.  相似文献   

2.
In the western part of Japan, two wheat cultivars, Nishinokaori and Minaminokaori, are currently cultivated for breadmaking. Breadmaking wheat requires a higher protein content compared to the Japanese noodle wheat (the major type of wheat in Japan). This high protein level in the grain is obtained by top-dressing with nitrogen (N) near anthesis. Because such N applications may increase levels of Fusarium head blight (FHB) and consequent mycotoxin [deoxynivalenol (DON) and nivalenol (NIV)] accumulation in the grain, the effect of N application (0, 4, and 8 g/m2) at anthesis on FHB and mycotoxin accumulation in Nishinokaori and Minaminokaori was tested in the greenhouse in 2004 and 2005 and in two fields in 2006. In the greenhouse, plants were spray inoculated at 3, 10, and 20 days after N treatment. In field experiments, colonized maize kernels, which generate ascospores during the testing season, served as inoculum. In all experiments for both cultivars, N application at anthesis significantly increased grain protein as expected, but had no significant effect on FHB and DON and NIV levels in grain. These results suggest that, at least in these cultivars, N can be applied close to anthesis without increasing the risk of FHB and mycotoxin (DON and NIV) accumulation.  相似文献   

3.
High occurrence of Fusarium poae (FP) and Fusarium langsethiae (FL) and their mycotoxins nivalenol (NIV) and T-2/HT-2 have been observed in Swiss oats. Early prediction of mycotoxin levels is important for farmers and the cereal industry to minimize the risk of contaminated food and feed. Therefore, climate chamber experiments were conducted to investigate the influence of different temperatures (10, 15, 20 °C) and durations (4, 8, 12 h) at 99% relative humidity (RH) on the infection of oats with FP and FL. In addition, to discover the most susceptible period of oats, artificial FL inoculations were conducted at different growth stages. Field experiments were performed to observe the dispersal of these fungal species within the field and to investigate the weather conditions that influence the dispersal. The climate chamber experiments revealed higher contamination with NIV and T-2/HT-2 in the 10 °C treatments and with a prolonged humidity duration of 12 h 99% RH. Inoculations of oat plants at early (DC 61) and mid (DC 65) anthesis, led to higher FL infection and T-2/HT-2 accumulation in the grains compared with treatments at earlier growth stages, which might be due to an increased susceptibility during anthesis. No indication for spore dispersal was observed in the field experiments. The results obtained, together with the cropping factors that influence infection and mycotoxin production, could be used as a first step in developing forecasting models to predict the contamination of oats with the mycotoxins NIV and T-2/HT-2.  相似文献   

4.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

5.
Fusarium head blight (FHB) of wheat, caused by several Fusarium species, is a damaging disease, resulting not only in yield reduction but also accumulation of mycotoxins in grain. Epidemiology and management of FHB has been extensively studied worldwide. Data on FHB development and accumulation of mycotoxins were obtained in four European countries during 2001–2004 to study the effect of FHB development and environmental conditions on accumulation of deoxynivalenol (DON). The occurrence of DON was highly correlated with presence of one or more toxigenic Fusarium species. Hourly weather data recorded at each sampling site were summarised over several periods of different lengths (5–30 days) during the anthesis and pre-harvest period. All-subsets regression was used to determine the extent to which the probability of DON occurrence is related to weather variables and also the consistency of such a toxin-weather relationship. Combined with a re-sampling technique, all-subsets regression analysis showed the difficulties in identifying a single ‘best’ model of relating the probability of toxin ≥90 μg kg?1 to weather predictors. A wide range of inter-related weather predictors based on time windows around anthesis and pre-harvest were selected in different models. There were many alternative models based on weather predictors only with similar predictive power because of high correlation among weather predictors. The performance of these alternative models was generally poor, particularly in terms of the high proportion of false positive predictions (specificity was only around 0.60–0.65). Inclusion of the number of toxigenic Fusarium species at harvest into models did not improve the model sensitivity (ca. 0.75–0.80) but appreciably improved the specificity (ca. 0.70–0.75). On balance, weather summarised over a 15-day window frame led to models with better predictions than other three window frames (5, 10 and 30 days).  相似文献   

6.
Experiments were conducted under controlled environment conditions to study the relationship between environmental conditions, development of fusarium head blight (FHB) and mycotoxin production. A single isolate from each of four Fusarium species ( F. avenaceum , F. culmorum , F. graminearum and F. poae ) was used to inoculate wheat ears separately. Combinations of two or three isolates were also used to inoculate ears simultaneously. Inoculated ears were subjected to various combinations of duration of wetness (6–48 h) and temperature (10–30°C). For all inoculations, both incidence of spikelets with FHB symptoms and concentration of mycotoxins generally increased with increasing length of wetness period and temperature. There were significant positive correlations among disease incidence, fungal biomass (quantified as total amount of fungal DNA) and mycotoxins. Mycotoxin production was also greatly enhanced by high temperatures (≥ 20°C) during initial infection periods. In single-isolate inoculations, F. poae was the least aggressive. There was no evidence to support synergetic interactions between fungal isolates in causing visual symptoms; rather the results suggest, in most cases, the presence of competitive interactions. Furthermore, the competition led to large reductions in fungal biomass compared to single-isolate inoculations, often > 90% reduction for the weaker isolate(s). In contrast, mycotoxin productivity increased dramatically in the co-inoculations, by as much as 1000 times, suggesting that competition resulted in greater production of trichothecene mycotoxins. The F. graminearum isolate was most competitive and isolates of the other three species were similar in their competitiveness.  相似文献   

7.
Within-field variability in the Fusarium head blight (FHB) and its associated mycotoxins was studied in four European countries. At each of 14 sites, each FHB pathogen and associated mycotoxins were quantified in 16 quadrat samples at harvest. Overall, the incidence of quadrat samples with detectable and quantifiable pathogen DNA was significantly lower in the grain than in the corresponding chaff. Deoxynivalenol (DON) was the most frequently detected toxin in the samples and its accumulation was most strongly associated with the presence of Fusarium graminearum. Nivalenol (NIV) accumulation was significantly associated only with the presence of F. culmorum. Zearalenone (ZON) accumulation was strongly associated with the presence of all three pathogens (F. graminearum, F. culmorum and F. poae). The levels of both DON and ZON concentrations were positively related to the amount of F. graminearum DNA in the grain or in the chaff. The presence/absence of FHB pathogens within a single quadrat appeared to be independent of each other. The presence of a particular FHB pathogen and the amount of its DNA, as well as the associated mycotoxin(s), varied greatly among samples at each site. This study demonstrated the large extent of within-field variability of FHB and its associated mycotoxins, and the importance of representative sampling in FHB studies.  相似文献   

8.
Fusarium head blight is one of the most noxious cereal diseases. Worldwide, F. graminearum (FG) and the mycotoxin deoxynivalenol (DON) is the most dominant species/mycotoxin in barley and wheat. Barley is often produced as on farm feed and thus routine mycotoxin analyses similar to those of cereals for human consumption are not performed. Hence, an early prediction of mycotoxin levels is important for farmers to minimise the risk of contaminated feed but also of contaminated cereals entering the cereal supply chain. Therefore, climate chamber experiments with artificial FG infection of barley investigating the influence of different temperatures (10 °C, 15 °C, 20 °C) and durations (4 h, 8 h, 12 h) at 99% relative humidity were conducted to accumulate data to develop a forecasting system. An up to three times higher DON contamination in the 15 °C treatments for the feed barley variety Ascona was detected compared with the 10 °C and 20 °C treatments. For the malting barley variety Concerto, the prolonged humidity durations had a stronger effect under all tested temperatures and resulted in up to two times higher DON contaminations. In addition, field experiments where spore deposition during anthesis as well as disease incidence, fungal amount and mycotoxins were observed, showed that the overwintered straw treatment resulted, depending on the year, in a three times higher FG incidence and DON content compared with the control and freshly inoculated straw treatment.  相似文献   

9.
Goswami RS  Kistler HC 《Phytopathology》2005,95(12):1397-1404
ABSTRACT Fusarium head blight (FHB), or scab, is a destructive disease of small grains caused by members of the Fusarium graminearum species complex, comprised of at least nine distinct, cryptic species. Members of this complex are known to produce mycotoxins including the trichothecenes deoxynivalenol (DON) along with its acetylated derivatives and nivalenol (NIV). In this study, 31 strains, belonging to eight species of this complex and originating from diverse hosts or substrates, were tested for differences in aggressiveness and mycotoxin production. Large variation among strains, both in terms of their aggressiveness and the ability to produce trichothecenes on a susceptible cultivar of wheat was found; variation appears to be a strain-specific rather than species-specific characteristic. While pathogenicity was not influenced by the type of mycotoxin produced, a significant correlation was observed between the amount of the dominant trichothecene (DON and its acetylated forms or NIV) produced by each strain and its level of aggressiveness on wheat. Some isolates also were tested for their ability to infect rice cv. M201, commonly grown in the United States. While tested strains were capable of infecting rice under greenhouse conditions and causing significant amount of disease, no trichothecenes could be detected from the infected rice florets.  相似文献   

10.
A total of 82 fungal isolates was obtained from wheat kernel samples affected by fusarium head blight collected from 20 locations in southern Brazil. Polymerase chain reaction (PCR) assays were used to characterize trichothecene mycotoxin genotypes [deoxynivalenol (DON), nivalenol (NIV) and two acetylated derivatives of DON]. To identify isolates that producing DON and NIV, portions of the Tri13 gene were amplified. To identify 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) genotypes, portions of Tri3 and Tri12 were amplified. Nearly all of the isolates studied (76/82) were of the DON/15-ADON genotype. Six of the isolates were of the NIV genotype. The DON/3-ADON genotype was not observed. Portions of three genes were sequenced from representative isolates of the NIV and DON/15-ADON genotypes and compared with sequences from curated reference isolates of Fusarium in GenBank. blast queries for individual gene sequences and pairwise comparisons of percentage identity and percentage divergence based on 1676 bp of concatenated DNA sequence suggested that the isolates representing the DON/15-ADON genotype were Fusarium graminearum sensu stricto and the isolates representing the NIV genotype were Fusarium meridionale . This is the first detailed report of trichothecene mycotoxin genotypes of F. graminearum and F. meridionale in Brazil.  相似文献   

11.
The objective of this study was to evaluate the potential role of gramineous weeds present near paddy fields as alternative hosts for the Fusarium graminearum species complex (FGSC) that causes fusarium head blight (FHB) in rice. A total of 142 weed samples were collected from 10 gramineous weed species near paddy fields from August to October 2018 in Jiangsu Province, China. Of the 145 isolates of seven Fusarium species isolated from the weed samples, F. asiaticum was the most abundant (86.9%), followed by F. fujikuroi (5.5%), F. proliferatum (2.8%), F. graminearum (2.1%), F. tricinctum (1.4%), F. acuminatum (0.7%), and F. sporotrichioides (0.7%). Genotype and mycotoxin analyses confirmed that 72.2% of F. asiaticum isolates were producers of deoxynivalenol (DON) with 3-acetyl deoxynivalenol (3ADON), and the remainder were nivalenol (NIV) producers. Pathogenicity assays showed that both 3ADON and NIV chemotypes of F. asiaticum could cause FHB in rice, but NIV chemotypes were significantly (p < .05) more aggressive than 3ADON chemotypes. Three Fusarium mycotoxins, DON, NIV, and zearalenone, occurred naturally at low concentrations in the weed samples. Taken together, this study provides insight into the mycotoxin production and aggressiveness of F. asiaticum isolates from gramineous weeds in China.  相似文献   

12.
山东省小麦赤霉病菌种群组成及其致病力分化   总被引:2,自引:2,他引:0  
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

13.
Fusarium head blight and mycotoxin contamination of wheat,a review   总被引:9,自引:0,他引:9  
Summary An infection of bread wheat by fusarium head blight contaminates the crop with mycotoxins, particularly deoxynivalenol (DON) and nivalenol (NIV). The toxicity and natural occurrence of these mycotoxins in wheat are reviewed. Based on 8 years data of fusarium head blight epidemics of wheat in the Netherlands, DON contamination of the grain was estimated. Fusarium head blight ratings averaged an infection of 1.7% of all spikelets; estimates for DON contamination averaged 0.9 mg kg–1. Taking a guideline level for DON in uncleaned bread wheat of 2 mg kg–1, in 1979 and 1982 a wheat crop was produced with estimated DON concentrations above the limit of tolerance. Human and animal exposure to mycotoxins in the Netherlands appears to be small but chronic. The information presented in this paper illustrates the need for an annual evaluation of the crop for fusarium head blight incidence and mycotoxin content, and the necessity of fusarium head blight resistant wheat cultivars.Samenvatting Aaraantasting van tarwe doorFusarium culmorum enFusarium graminearum leidt tot vorming van mycotoxinen in het graan, waarvan deoxynivalenol (DON) en nivalenol (NIV) de belangrijkste toxinen zijn. In dit artikel wordt een overzicht gegeven van de toxicologische aspecten, en het voorkomen van deze toxinen in tarwe. Informatie over DON en NIV in tarwe in West-Europa is schaars. Gebaseerd op gegevens vanFusarium epidemieën in de jaren 1979–1986 wordt een schatting gegeven van de concentratie DON in Nederlandse tarwe. Rekening houdend met de herkomst en verwerking van tarwe, blijken zowel in dierlijk als menselijk voedsel lage concentraties DON chronisch voor te komen. Op basis van een maximaal toelaatbare dagelijkse dosis DON van 3 g kg–1 lichaamsgewicht is de schatting van de dagelijkse opname van DON in het jaar volgend op de oogst van 1982 net op de grens. Zowel een jaarlijkse inventarisatie vanFusarium aantasting en DON besmetting van het graan, als de ontwikkeling vanFusarium-resistente rassen zijn noodzakelijk.  相似文献   

14.
The presence of Fusarium spp. causing Fusarium head blight (FHB) of wheat was studied in Flanders (Belgium) in 2007 and 2008. Symptoms, deoxynivalenol content (DON), Fusarium spp. and trichothecene chemotypes were determined at seven locations on different commercial wheat varieties. Overall, significant differences in disease pressure between locations and varieties were observed within 1 year. In addition, we were able to detect consistent and significant resistance differences among the common varieties both under high disease pressure (2007) and low disease pressure (2008). The accumulation of DON was not related to the presence of F. graminearum but showed a clear correlation with rainfall during and after the period of anthesis. During the two-year survey, characterisation of 756 Fusarium samples by species-specific PCR designated F. poae and F. graminearum as the predominant species in Flanders. Furthermore, most of the ears were colonised by multiple FHB pathogens in 2007 whereas the Fusarium population was less complex in 2008. Log-linear analysis of these multiple (two- and three-way) species interactions revealed a clear correlation between F. poae and several pathogens of the FHB disease complex. Finally, chemotype analysis showed that F. culmorum and F. graminearum were respectively of the NIV chemotype and DON chemotype. 3-ADON and 15-ADON chemotypes occurred in more or less equal amounts within the F. graminearum population both in 2007 and 2008. The congruence of these results with observations throughout Europe are discussed.  相似文献   

15.
ABSTRACT Fusarium graminearum causes Fusarium head blight (FHB) in small grains worldwide. Although primarily a pathogen of cereals, it also can infect noncereal crops such as potato and sugar beet in the United States. We used a real-time polymerase chain reaction (PCR) method based on intergenic sequences specific to the trichodiene synthase gene (Tri5) from F. graminearum. TaqMan probe and primers were designed and used to estimate DNA content of the pathogen (FgDNA) in the susceptible wheat cv. Grandin after inoculation with the 21 isolates of F. graminearum collected from potato, sugar beet, and wheat. The presence of nine mycotoxins was analyzed in the inoculated wheat heads by gas chromatography and mass spectrometry. All isolates contained the Tri5 gene and were virulent to cv. Grandin. Isolates of F. graminearum differed significantly in virulence (expressed as disease severity), FgDNA content, and mycotoxin accumulation. Potato isolates showed greater variability in producing different mycotoxins than sugar beet and wheat isolates. Correlation analysis showed a significant (P < 0.001) positive relationship between FgDNA content and FHB severity or deoxynivalenol (DON) production. Moreover, a significant (P < 0.001) positive correlation between FHB severity and DON content was observed. Our findings revealed that F. graminearum causing potato dry rot and sugar beet decay could be potential sources of inoculum for FHB epidemics in wheat. Real-time PCR assay provides sensitive and accurate quantification of F. graminearum in wheat and can be useful for monitoring the colonization of wheat grains by F. graminearum in controlled environments, and evaluating wheat germplasms for resistance to FHB.  相似文献   

16.
Lodging is one possible risk factor that leads to increased cereal mycotoxin contamination, but few reports have been published on the subject. We examined the effects of lodging on the level of deoxynivalenol (DON) and nivalenol (NIV) contamination in wheat, barley, and rice infected with the Fusarium graminearum species complex. Case-control and intervention studies were applied to test the hypothesis that lodging increases the level of mycotoxin contamination. A total of 66 grain samples were collected from each field in 12 Japanese prefectures from 2002 to 2006. Each sample set consisted of grains from lodged and nonlodged plants. The concentration of DON + NIV in lodged plants was significantly higher than in nonlodged plants. All samples of wheat and barley were contaminated with DON and NIV; however, most of the lodged rice samples were contaminated only with NIV. In intervention trials to investigate the effects of lodging duration, a small area of wheat inoculated with the pathogen was completely lodged by trampling. Even with 5 days of lodging, the levels of DON + NIV in wheat grain at harvest increased by 27–51% compared to nonlodged control plots. For rice, half of each plot area was completely lodged by trampling 20 days before harvest. The level of NIV in lodged rice grain was significantly higher than that in nonlodged rice at optimum and delayed harvests, because lodging significantly increased the level of Fusarium mycotoxins in the three crops. Thus, practices (e.g., rational use of fertilizers) to avoid lodging should reduce the risk of mycotoxin contamination. This is the first epidemiological study on the effect of lodging on mycotoxin production by the F. graminearum species complex in wheat, barley, and rice.  相似文献   

17.
The average amount of precipitation in spring and summer 2010 and 2011 coupled with relatively high temperatures caused massive Fusarium spp. infection of maize and yield losses in southern Poland. In order to examine the cause of this disease outbreak, Fusarium spp. were isolated and fungal strains were identified based on morphological characters and species-specific PCR assays. A total of 200 maize samples were processed, resulting in the obtention of 71 strains, which belonged to five Fusarium species, F. poae being the predominant one (74.56%). Other isolates were identified as F. graminearum, F. oxysporum, F. verticillioides and F. proliferatum. PCR-based detection of mycotoxin-synthesis-pathway genes was also used to determine the potential of the analyzed strains to produce trichothecenes (DON and NIV) and fumonisins (FUM). Only 14 isolates revealed the potential to produce DON (11 strains) and FUM (3 strains). HPLC analyses of grain samples revealed the presence of DON only – other mycotoxins were not detected. Moreover, 57.1% of potentially mycotoxin-producing isolates indicated the toxicity in a biological test.  相似文献   

18.
We screened 188 isolates of Fusarium graminearum, which originated from northwest Europe, the USA and Nepal, for genetic diversity using a sequence-characterised amplified region polymorphism (SCAR). On the basis of this analysis, 42 of the 118 isolates were selected for random amplified polymorphic DNA (RAPD) analysis. Three groups were identified, two of which, A and B, contained the isolates from Nepal, and a third, group C, contained the isolates from Europe and the USA. In pathogenicity tests on wheat and maize seedlings, group C isolates were more pathogenic than the group A and B isolates. The isolates were assigned chemotypes based on their ability to produce the trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON). Isolates from group A were equally likely to produce NIV or DON while group B isolates produced predominantly NIV, and group C isolates produced predominantly DON. Within group A, isolates of the two chemotypes were equally pathogenic to wheat but isolates with the NIV chemotype were significantly more pathogenic to maize. The results confirm that distinct genetic groups exist within F. graminearum and demonstrate that these groups have different biological properties, especially with respect to their pathogenicity to two of the most economically important hosts of this pathogen.  相似文献   

19.
ABSTRACT A susceptible synthetic winter rye population was inoculated with 42 isolates of Fusarium culmorum, originating from nine European countries and Australia, at two field locations in Germany. Significant (P = 0.01) genetic variation in aggressiveness of isolates of F. culmorum was observed across both field locations. Field samples were used to determine deoxynivalenol (DON), nivalenol (NIV), and ergosterol (ERG) contents. The 42 isolates also were incubated on rye grain in vitro, and DON and NIV contents were analyzed. Thirty-four isolates produced DON, and seven isolates produced NIV at both field locations and in vitro. Mean DON contents ranged from 0.5 to 64.6 mg/kg in grain from field trials and from 0.3 to 376.3 mg/kg in grain incubated in vitro; mean NIV contents ranged from 17.6 to 30.4 mg/kg in grain from field trials and from 0.8 to 381.0 mg/kg in grain incubated in vitro. No correlation was found between the DON content of field-grown grain and grain incubated in vitro. NIV-producing isolates originated from the Netherlands, Germany, Italy, and Australia. More aggressive isolates produced higher mean DON contents in grain in field trials (r = 0.69; P = 0.01). However, DON production rate per unit of fungal biomass, estimated as the DON/ERG ratio at harvest, was not correlated with aggressiveness. Toxin production seemed to be a common feature in F. culmorum. In vitro assays reliably distinguished DON- and NIV-producing types of F. culmorum; however, these assays could not predict production of DON by these isolates in the field.  相似文献   

20.
Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)‐like symptoms during the 2010–11 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F. pseudograminearum were diagnosed from 42 of the 44 sites using species‐specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg?1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg?1 DON. DON concentration in straw also exceeded 1 mg kg?1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F. graminearum and/or F. pseudograminearum and weather‐related factors influenced DON levels in immature grains. The average monthly rainfall for August–November during crop anthesis and maturation exceeded the long‐term monthly average by 10–150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号