首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of superphosphate (organic complexed superphosphate (CSP)) has been developed by the introduction of organic chelating agents, preferably a humic acid (HA), into the chemical reaction of single superphosphate (SSP) production. This modification yielded a product containing monocalcium phosphate complexed by the chelating organic agent through Ca bridges. Theoretically, the presence of these monocalcium-phosphate-humic complexes (MPHC) inhibits phosphate fixation in soil, thus increasing P fertilizer efficiency. This study investigateed the structural and functional features of CSP fertilizers produced employing diverse HA with different structural features. To this end were used complementary analytical techniques: solid-phase 31P NMR, 13C NMR, laser-confocal microscopy, X-ray diffraction, and molecular modeling. Finally, the agronomical efficiency of four CSP have been compared with that of SSP as P sources for wheat plants grown in both alkaline and acidic soils in greenhouse pot trials under controlled conditions. The results obtained from the diverse analytical studies showed the formation of MPHC in CSP. Plant-soil studies showed that CSP products were more efficient than SSP in providing available phosphate for wheat plants cultivated in various soils with different physicochemical features. This fact is probably associated with the ability of CSP complexes to inhibit phosphate fixation in soil.  相似文献   

2.
【目的】腐殖酸对磷肥增效的调控效应与其结构性密切相关。本文比较了不同磺化反应方法制备的腐殖酸磷肥对冬小麦磷素利用的影响,为制备调控磷肥专用的腐殖酸增效载体提供依据。【方法】采用磷酸与氢氧化钾反应法制备普通磷肥 (P)、普通腐殖酸磷肥 (HAP),并采用加双氧水、硝酸等方法制备了四种磺化腐殖酸磷肥 (HA1P、HA2P、HA3P和HA4P)。用田间土柱栽培试验方法,在等磷量基础上,设置普通磷肥 (P)、普通腐殖酸磷肥 (HAP)、磺甲基化腐殖酸磷肥 (HA1P)、双氧水+磺甲基化腐殖酸磷肥 (HA2P)、硝酸+磺甲基化腐殖酸磷肥 (HA3P)、双氧水+硝酸+磺甲基化腐殖酸磷肥 (HA4P) 6个处理,同时设置不施磷肥对照 (CK) 处理和施用等量腐殖酸处理 (C-HA、C-HA1、C-HA2、C-HA3、C-HA4)。调查了小麦产量和产量构成及经济效益,分析了0—80 cm土壤有效磷含量。【结果】1) 与CK相比,普通腐殖酸 (C-HA) 和磺化处理腐殖酸 (C-HA1、C-HA2、C-HA3、C-HA4) 对小麦籽粒产量无显著影响。与P处理比较,HAP、HA1P、HA2P、HA3P、HA4P处理的小麦籽粒产量分别提高了6.3%、17.8%、10.1%、17.5%、11.1%,4个腐殖酸磺化磷肥 (HA1P、HA2P、HA3P、HA4P) 处理均高于普通腐殖酸磷肥 (HAP) 处理。2)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA2P、HA3P、HA4P分别提高小麦地上部磷吸收量12.3%、12.3%、9.2%、10.8%,其中HA1P和HA2P处理最高。3)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA3P分别提高小麦磷肥农学效率23.6%和7.1%。4)与HAP比较,磺化腐殖酸磷肥处理HA1P、HA2P、HA4P可分别提高0—20 cm土层土壤速效磷含量17.5%、16.2%、17.2%。【结论】磺化腐殖酸磷肥比普通腐殖酸磷肥可以更有效地提高土壤中磷肥的有效性,提高冬小麦对磷素的吸收利用,进而提高冬小麦籽粒产量。四种磺化工艺中,以磺甲基化处理的腐殖酸磷肥 (HA1P) 效果最优。  相似文献   

3.
The effects of six phosphate (P) fertilizers in mobilizing and immobilizing water-soluble lead (Pb) were determined in a contaminated soil (Alfisol from Shaoxing) from China and four Australian soils (an Oxisol from Twonsville Queensland and three South Australian soils from Cooke Plains (Typic Palexeralf)), Inman Valley (Vertisol), and Two Wells (Natric Palexeralf). The fertilizers tested were single superphosphate (SSP), triple superphosphate (TSP), monoammonium phosphate (MAP), diammonium phosphate (DAP), monocalcium phosphate (MCP), and dicalcium phosphate (DCP) to produce an initial P concentration of 1,000 mg/L. The Chinese soil contained 16,397 mg/kg total Pb, but the Australian soils were uncontaminated. The four Australian soils were each spiked with 1,000 mg Pb/kg soil (as Pb(NO3)2) and incubated for a month. Single superphosphate treatments decreased total soluble Pb in soil solution to 2–14 % of those of the nil-P (0P) treatment in the four Pb-spiked soils and to 48 % in the Chinese Pb-contaminated soil. The DAP treatment followed by the MAP treatment greatly increased the total soluble Pb in soil solution up to 135–500 % of the 0P treatment, except in the Two Wells soil. MCP could decrease the total soluble Pb in Cooke Plains, Inman Valley, Shaoxing, and Two Wells soils while increase it in the Queensland soil; DCP decreased the total soluble Pb in Cooke Plains and Queensland soils while increased it in the Shaoxing and Inman Valley soils. There were close relationships between the total soluble Pb, total soluble Al, and total soluble Fe in the water extracts of each. Soluble Al and Fe ions in soil solution increased soluble Pb concentrations. We conclude that not all phosphate fertilizers immobilize Pb in soils equally well. SSP and TSP are excellent Pb-immobilizing fertilizers, while MAP and DAP are strong Pb-mobilizing fertilizers. MCP and DCP are either Pb-immobilizing fertilizers or Pb-mobilizing fertilizers depending on their reactions with individual soils.  相似文献   

4.
The aim of this review is to describe the main physicochemical characteristics of diverse types of humic‐metal‐phosphate acid complexes. The effects of these complexes on phosphorus (P) fixation in soils with different pH values and physicochemical features and on plant phosphorus uptake are also discussed. Humic‐metal‐phosphate complexes have apparent stability constants in the same range as those of metal‐humic complexes, in solutions with diverse pH and ionic‐strength values. Likewise, the molecular‐size distribution of humic‐metal‐phosphate complexes as a function of pH is similar to that of potassium or sodium humates and metal‐humic complexes. Humic‐metal‐phosphate complexes are able to decrease phosphate fixation in soils and increase plant growth and phosphate uptake. Phosphorus fertilizers containing humic‐metal‐phosphate complexes proved to be efficient to improve plant growth and P uptake with respect to conventional fertilizers such as single superphosphate. The values of parameters related to plant phosphorus‐utilization efficiency (PUt E) suggest that the regulation of root acquisition of phosphate from these complexes could involve the interregulation of a system for the optimization of metabolic P utilization in the shoot and another system involving stress responses of roots under phosphorus deficiency.  相似文献   

5.
通过室内培养试验,以P/Cd摩尔配比分别为0,2∶3,3∶2,2∶1,4∶1进行了不同磷肥钝化修复Cd污染土壤试验。采用毒性淋溶提取法(TCLP)和形态分析法评价了磷酸氢二铵(DAP)、磷酸二氢钾(MPP)、过磷酸钙(SSP)和磷酸钙(TCP)对污染土壤中Cd的钝化效果。结果表明,4种磷肥的钝化效果依次为:MPPDAPSSPTCP,4种磷肥的钝化处理可显著降低土壤中TCLP提取态Cd含量,在磷肥剂量水平P/Cd为4∶1时对土壤中Cd的钝化效果最佳,最大降低幅度为49%;添加磷肥能够大幅度提高土壤中速效磷的含量,相同磷水平下,土壤中速效磷含量高低次序为:MPPDAPSSPTCP,TCLP提取态Cd含量随土壤速效磷含量升高而显著降低(R=-0.903**);DAP,MPP,SSP和TCP处理后交换态Cd的浓度降幅分别为23.75%,39.06%,16.60%和18.36%,而碳酸盐结合态(WSA)、铁锰氧化物结合态(Fe-Mn-OX)、有机结合态(OM)和残渣态(RES)Cd的含量均有所升高,表明磷素是通过改变Cd的存在形态而降低其有效态含量的。  相似文献   

6.
Previous studies describe the suitability of a new type of phosphorus (P) fertilizer, called “rhizosphere‐controlled fertilizer” (RCF), to supply available P to plants while reducing soil phosphorus fixation. In order to explore the involvement of organic acid root exudation in P uptake from RCF, we investigated the relationship between shoot and root P concentrations, and the concentration of the main polycarboxylic organic acids in roots, shoots, and plant exudates. Plant species with different P‐acquisition efficiency (low: maize; medium: chickpea; high: lupin) were grown in hydroponics with three different P fertilizers: The water‐insoluble P fraction of RCF (RCF); Phospal, a slow‐release source of phosphate composed of calcium and aluminum phosphates (PH); monopotassiumphosphate (KP), and a control treatment without P (P–). RCF was as efficient as KP in supplying P to plants in the case of chickpea and lupin, and slightly less efficient than KP in maize. However, P from PH was not available for maize and less available compared to KP and RCF in chickpea and lupin. This variation reflects the different efficiencies in P acquisition for the three plant species. Except in the case of maize, plants receiving KP presented the lowest concentration of organic acids in roots and exudates, while those plants suffering severe P deficiency (P– and PH) showed the highest organic acid concentration. However, RCF had a high concentration of organic acids in roots and exudates, as well as a high P concentration in the shoot indicating that P uptake from RCF is enhanced due to root release and action of specific organic acids.  相似文献   

7.
增值磷肥对潮土无机磷形态及其变化的影响   总被引:2,自引:0,他引:2  
在实验室条件下制备了海藻酸磷肥、腐植酸磷肥和氨基酸磷肥3种增值磷肥,利用室内土壤培养试验研究增值磷肥对潮土无机磷组分及其变化的影响。结果表明, 1)培养180 d后,普通磷肥(磷酸一铵,下同)和增值磷肥均显著提高了土壤速效磷含量,并降低了土壤pH; 施用增值磷肥提高土壤速效磷的幅度为34.6~41.92 mg/kg,高于普通磷肥; 施用增值磷肥降低土壤pH的幅度为0.23~0.36个单位,高于普通磷肥。2) 与普通磷肥相比,增值磷肥明显降低土壤对磷的固定,腐植酸、海藻酸和谷氨酸增值磷肥处理的固定率分别比普通磷肥降低7.32%、7.13%和11.99%。3)培养180 d后,与普通磷肥处理相比,增值磷肥均提高土壤Ca2-P、 Ca8-P 和 Al-P含量,减缓Al-P 向 Fe-P 的转化。  相似文献   

8.
增效磷肥对冬小麦产量和磷素利用率的影响   总被引:12,自引:6,他引:6  
在实验室条件下分别制备了含腐植酸、 海藻酸和谷氨酸3种增效剂的增效磷肥,运用土柱栽培试验研究等磷(设置低、 高2个施磷水平)投入条件下不同增效剂添加量的增效磷肥对小麦产量和磷肥利用率的影响。结果表明, 1)低磷水平下,增效磷肥处理小麦子粒产量比普通磷酸一铵提高9.74%~33.54%,高磷水平下,含腐植酸增效磷肥和含海藻酸增效磷肥处理小麦子粒产量分别比普通磷酸一铵增加26.81%和30.65%。低磷和高磷水平下,不同增效磷肥处理小麦子粒产量均随增效剂添加量的增加而提高。2)低磷和高磷水平下,增效磷肥处理小麦子粒含磷量与普通磷酸一铵处理差异不显著。3)低磷水平下,增效磷肥处理小麦吸磷总量比普通磷酸一铵增加14.81%~42.59%,磷肥的表观利用率平均提高了8.71~26.21个百分点;高磷水平下,腐植酸增效磷肥和海藻酸增效磷肥处理小麦吸磷总量分别比普通磷酸一铵增加18.18% 和 32.73%,磷肥的表观利用率平均提高了6.13 和10.19个百分点。  相似文献   

9.
中低分子量腐殖酸提高冬小麦磷吸收和产量的机理   总被引:2,自引:2,他引:0  
  【目的】  研究不同分子量腐殖酸与磷肥复合制备的腐殖酸磷肥对作物和土壤磷有效性的影响,为腐殖酸磷肥研发和磷素高效利用提供理论依据。  【方法】  利用超滤分级方法,将风化煤腐殖酸分子量分为 > 100 kDa、10~100 kDa和 < 10 kDa 3个部分,获得高 (HAH)、中 (HAM)、低 (HAL) 不同分子量的腐殖酸,采用磷酸与KOH反应法制备普通磷肥 (P)、未分级腐殖酸磷肥 (PHA)、高分子量腐殖酸磷肥 (PHAH)、中分子量腐殖酸磷肥 (PHAM) 和低分子量腐殖酸磷肥 (PHAL) 5种磷肥。采用深100 cm、内径25 cm的土柱进行冬小麦栽培试验,按等磷量原则,设置P、PHA、PHAH、PHAM、PHAL 5个施磷处理,同时设置与4个施磷处理对应的等量腐殖酸处理 (HA、HAH、HAM、HAL),以不施磷肥为对照CK。测定小麦产量及产量构成因素、植株磷含量及不同层次土壤有效磷含量。  【结果】  1) 与CK相比,腐殖酸处理 (HA、HAH、HAM、HAL) 小麦增产不明显。与普通磷肥相比,PHA、PHAM和PHAL处理产量显著提高了14.73%、18.84%、21.37% (P < 0.05),3 个处理间产量差异不显著,PHAH增产不明显。PHAL处理千粒重显著高于普通磷肥处理,其余3个腐殖酸磷肥处理增幅未达显著水平。2) PHA、PHAM和PHAL处理籽粒吸磷量较普通磷肥处理分别显著提高14.97%、19.45%、22.68%,而PHAH增幅未达显著水平;腐殖酸磷肥处理间秸秆吸磷量没有显著差异。3) 与普通磷肥相比,PHA、PHAH、PHAM、PHAL磷肥偏生产力和农学效率分别提高14.71%、6.01%、18.82%、21.35%和14.95%、1.66%、20.18%、23.03%,磷肥表观利用率分别提高2.93、0.51、4.52、5.41个百分点,也以中、低分子量腐殖酸磷肥效果最为明显,腐殖酸中的氧烷基碳、羧基/酰胺基碳、烷基碳结构与小麦籽粒产量和磷肥利用率具有正相关性,与芳香碳、芳香C―O负相关。4) 4个腐殖酸磷肥处理间及其与普通磷肥处理间 0—20、20—40、40—60 cm 土层土壤有效磷含量差异不显著。  【结论】  田间土柱栽培条件下,单施腐殖酸对小麦没有表现出明显的增产效果。腐殖酸中的氧烷基碳、羧基/酰胺基碳、烷基碳结构与小麦磷素吸收具有正相关性,低分子量腐殖酸具有较多的烷基碳、氧烷基碳、羧基/酰胺基碳结构,因而低分子量腐殖酸提高磷肥中磷素利用率的作用好于中分子量腐殖酸,而高分子量腐殖酸的效果不显著。  相似文献   

10.
Abstract

The agronomic effectiveness of five partially acidulated phosphate rocks (PAPRs) and an unground phosphate rock (PR) were compared against single superphosphate (SSP) in a glasshouse experiment using a high phosphorus (P) retention soil at a near‐neutral pH (pH 6.5), and corn (Zea mays L.) as the test crop. The PAPRs were prepared by acidulating unground North Carolina PR with either phosphoric or sulphuric acid (expressed as Phos‐PAPR and SA‐PAPR, respectively) and at three levels of acidulation (20, 33, and 50%). The relative agronomic effectiveness (RAE) and substitution value (SV) of the test fertilizers, calculated with respect to SSP using the standard “vertical”; and “horizontal”; comparisons, showed that 50% phosphoric acidulated PAPR performed as effectively as SSP whereas the other fertilizers were less effective. The PR treatment showed a small yield response. The dry matter yield and P uptake were linearly related to water‐soluble P of the fertilizers up to 66% of total P and there was no advantage in acidulating fertilizers above this level of water‐soluble P using reactive PR. Whereas very little of the directly‐applied PR dissolved (3.4% of PR applied), PR applied as a component of PAPRs dissolved up to 22%. The dissolved proportion of added PR component increased with increasing water‐soluble P content of the fertilizer. The results suggest a greater efficiency of PAPR than SSP as a P supplier to plants.  相似文献   

11.
To optimize the economical cost of each unit of fertilizer applied and to reduce the environmental contamination caused by nutrient losses, the development of highly efficient granulated fertilizers is of great importance. This study proposes a strategy that consists of developing specific fertilizers having nutrient release patterns that are dependent on plant activity in the rhizosphere. This type of fertilizer is named "rhizosphere-controlled fertilizer" (RCF fertilizer). This fertilizer is based on the introduction of an organomineral matrix composed of metal [Mg (Ca is also possible), Zn (Fe and other metals are also possible)]-humic phosphates. The presence of this matrix modifies the nutrient release pattern of the fertilizer. In this way there are two main nutrient fractions: (i) a water-soluble fraction or "starter" fraction and (ii) a "rhizosphere-controlled" fraction insoluble in water but soluble by the action of the rhizospheric acids released by plants and microorganisms. This study shows the chemical and structural characterization of the organomineral matrix, as well as its efficiency in slowing the nutrient release rate of the RCF fertilizer, principally with respect to P and N. It is demonstrated how these properties of the matrix were also reflected in the significant reduction in both ammonia volatilization and N leaching in a pot system consisting of wheat plants cultivated in a calcareous soil and fertilized with a RCF fertilizer.  相似文献   

12.
聚磷酸铵在土壤中有效性的变化及其影响因素   总被引:2,自引:1,他引:1  
  【目的】  明确聚磷酸铵在土壤中有效性的变化及影响因素,为聚磷酸铵的合理高效施用提供参考。  【方法】  选用pH不同的两种供试土壤进行室内恒温培养试验和盆栽试验。培养试验总时长331 h (14天),设置4个磷肥处理:不施磷肥处理 (CK),及分别施磷酸二氢铵 (MAP)、聚合度4的聚磷酸铵 (APP-4) 和聚合度6的聚磷酸铵 (APP-6)处理;除CK外,其他3个处理均施用P2O5 83.8 mg/kg,每个处理重复4次。于施肥后第0、3、24、96、144、240和331 h采样测定土壤有效磷含量。盆栽试验以玉米为供试材料,设置5个磷肥处理:不施磷肥处理(CK),及分别施磷酸二氢铵 (MAP)、过磷酸钙 (SSP)、聚合度4的聚磷酸铵 (APP-4) 和聚合度6的聚磷酸铵 (APP-6)处理;除CK外,其他处理均以每盆 (2 kg土) 施N 0.400 g、P2O5 0.764 g、K2O 0.386 g,玉米苗移栽后第30天收获植株,测定地上部与地下部干重和全磷含量,同时测定土壤pH和有效磷含量。  【结果】  相比于MAP处理,APP处理能在较长时间内维持土壤中的有效磷含量。在酸性土中,APP-4和APP-6处理的磷肥利用率较SSP处理分别提高了49.5%和84.3%,在碱性土中较SSP处理分别提高了307.3%和316.2%。在酸性土中,APP处理的玉米地上部全磷含量较SSP处理提高了7.9%~12.4%,APP-6处理的玉米地下部全磷含量较SSP处理提高了13.5%;在碱性土中,APP处理的玉米地上部全磷含量较SSP处理提高了175.0%~177.6%,玉米地下部全磷含量提高了111.2%。APP-4和APP-6处理的玉米植株吸磷量在酸性土中较SSP处理提高了43.3%和74.0%,在碱性土中分别提高了244.6%和251.7%。与SSP处理相比,APP处理玉米地上部干重显著提高了17.2%~51.9%,地下部干重显著提高了13.3%~49.5%。  【结论】  聚磷酸铵比普通磷酸二氢铵能在更长的时间范围内维持土壤有效磷的含量,显著增加玉米对磷素的吸收利用效果,从而促进玉米的生长。聚合度和土壤酸碱性对聚磷酸铵的肥效响应显著,聚合度6的聚磷酸铵肥效显著优于聚合度4的聚磷酸铵,聚磷酸铵在碱性土壤中施用的效果好于酸性土壤。  相似文献   

13.
Abstract

In an attempt to search for a cheaper source of phosphorus (P), both for direct application and industrial use, three P fertilizers were evaluated in incubation and greenhouse studies. Indigenous Sokoto rock phosphate (SRP) imported, Togo rock phosphate (TRP), and conventional single superphosphate (SSP) were applied on three soil types namely Oxisol, Ultisol, and Alfisol at rates ranging from 0–800 mg P kg‐1 soil. Evaluation of the P sources was conducted for 12 weeks in incubation study, and five weeks in the greenhouse using maize as test crop. Evaluation of direct application of SSP and SRP on an oxic paleudult was carried out in the field for three years. The results of incubation studies revealed in general, that P availability increased as fertilizer rates increased. The P availability was, however, greater when SSP was applied on the Alfisol than on the Oxisol and Ultisol. The rock phosphates on the other hand were more efficient on acid soils than on soils neutral in pH. Optimum P availability from the fertilizers was observed to occur predominantly between four and eight weeks of incubation. In the greenhouse study, SSP gave the highest cumulative P uptake and optimum rate of application was 200 mg P kg‐1 soil, while optimum rate for rock phosphate was 400 mg P kg‐1 soil. The agronomic effectiveness (EA) of the rock phosphates was about 40% relative to SSP on the Alfisol. The EA, however, for TRP and SRP was 120% and 160%, respectively, on the Oxisol, while on the Ultisol, SRP was equally effective as SSP and TRP had 65% effectiveness. The results of the field trial indicated that the SRP had 54%, 83%, and 107% agronomic effectiveness of SSP, respectively, in the first, second, and third year of cropping. Optimum rate for SSP and SRP application was considered to be 50 and 75 kg P2O5 ha‐1, respectively.  相似文献   

14.
Abstract

The agronomic effectiveness of Mussoorie phosphate rock (MPR) from India and a 2:1 mixture of MPR and single superphosphate (SSP) was compared against SSP as phosphate fertilizers for crops. The experiment was conducted for three seasons and was designed to study the response of crops to current application as well as residual effects of the various P fertilizers. Three crops were grown in sequence: finger millet (Eleusine coracana), maize (Zea mays L.), and blackgram (Phaseolus mungo) on a calcareous soil under irrigated conditions. The phosphate fertilizers were applied to finger millet and/or maize but not to the blackgram. Soil samples were collected at intervals and analysed for Olsen bicarbonate‐extractable P. The agronomic effectiveness of fertilizers relative to SSP (RAE) were calculated from the fertilizer substitution ratios. When used on finger millet, the RAE of MPR, calculated at a yield which corresponded to 90% of calculated maximum yield on applying SSP, was 42%. For the mixture of MPR and SSP the RAE was 68%. On maize, yield in MPR treatment plateaued at too low a level (about 80% of calculated maximum yield for SSP) to calculate RAE but for MPR/SSP the RAE was 80%. The residual effectiveness of fertilizers on the second crop, compared against freshly applied SSP was 41% for SSP, 49% for MPR, and 73% for MPR/SSP. Olsen bicarbonate‐extractable P values determined one month after fertilizer application increased over control by about 55% in MPR and 86% in MPR/SSP treatments relative to SSP. Economic calculations indicated that, application of MPR is of equal value to SSP for the cropping sequence whereas MPR/SSP for the cropping sequence as well as for individual crops.  相似文献   

15.
锌腐酸肥料对冬小麦群体、产量及品质的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
通过大田微喷灌节水灌溉方式研究锌腐酸肥料对冬小麦群体、产量及品质的影响。采用磷肥种类为锌腐酸磷酸二铵和普通磷酸二铵;氮肥种类为锌腐酸尿素和普通尿素;不施肥为对照。结果表明:底施普通尿素和磷酸二铵处理的拔节期总茎数和单株茎数均较高;底施普通尿素和磷酸二铵,拔节期追施锌腐酸尿素产量最高,达6 730.5 kg/hm~2。拔节期追施锌腐酸尿素处理的籽粒产量均高于追施普通尿素,增产主要与成穗数和穗粒数增加有关;底施锌腐酸尿素和锌腐酸磷酸二铵,追施锌腐酸尿素的小麦籽粒品质指标最高,拔节期追施锌腐酸尿素的提质效果优于普通尿素。  相似文献   

16.
Abstract

Partially acidulated rock phosphate or compacted soluble phosphate‐rock phosphate mixture has been suggested as an alternative phosphorus (P) source for plants in acidic soils. Interaction between the soluble and the insoluble fractions would be conducive to plant utilization of both P sources in the fertilizer material. Direct evidence supports the beneficial reactions between the two P sources, however, was still insufficient. A pot experiment was hence conducted to evaluate the possible interaction of 32P‐labeled single superphosphate (SSP) and a less reactive rock phosphate (RP) from Jinxiang mine, China. In the experiment, SSP and RP were applied to two acidic red soils (typic Hapludults) in a manner that would favor or diminish their interaction either by distributing both P sources homogeneously within the whole volume of the pot soil (uniform placement) or by separating them vertically with each being applied to half of the soil volume (fraction placement). The reference treatments of SSP and RP were arranged in similar manners. Two successive harvests of ryegrass were made during a 2‐month period. Results indicated that uniform placement of SSP and RP significantly enhanced plant growth and P uptake, and that P recovery of SSP‐P in the higher P‐fixing soil was almost twice that of the fraction placement. The data of plant PdfL% (percentage of P derived from labeled‐P), which indicated that >80% of plant P was derived from SSP, however, failed to support the idea that soluble P had increased plant utilization of RP. Alternatively, it is considered that the low grade RP had increased plant utilization of both SSP‐P and soil‐P. Uniform placement of RP and SSP also strikingly improved plant calcium (Ca) and magnesium (Mg) nutrition. The phenomenon suggested that SSP‐RP mixture might be a good P source on similar acidic soils in subtropical China.  相似文献   

17.
邱慧珍  张福锁 《土壤通报》2002,33(4):295-299
用土培方法研究了两种磷肥 (枸溶性钙镁磷肥CMP和水溶性磷肥过磷酸钙SSP)和两种非水溶性磷肥活化剂(无机矿物活化剂IA和有机活化剂OA)在石灰性土壤中对不同磷效率小麦苗期生长和基因型差异以及磷效率的影响。结果表明 ,SSP和CMP对不同磷效率基因型小麦生长的影响无显著差异 ,但对植株磷效率的影响效果明显不同。SSP可提高植株的磷吸收效率 ,CMP对提高植株的磷利用效率更有效。不同磷效率小麦生长的基因型差异在所有磷肥处理中均表现 ,但在CMP处理中的差异最大 ,不同溶解性磷肥品种可作为小麦磷效率基因型的鉴定材料。两种非水溶性磷肥活化剂对钙镁磷肥均有效 ,但作用大小和方向因小麦基因型不同而异 ,OA有利于磷高效基因型小麦的生长 ,IA对磷低效基因型小麦的生长则更加有利 ,其效果甚至超过水溶性磷肥。经IA处理的CMP能明显提高小麦植株的磷含量和吸磷量 ,并能显著增加土壤的有效磷含量  相似文献   

18.
Abstract

Inoculation effect of arbuscular mycorrhizal fungi (AMF) on phosphorus (P) transfer from composted dung of cattle with a diet supplemented with powdered rock phosphate (RP) and their successive uptake by mung bean plants was assessed in alkaline soil. The efficacy of composted RP fed dung alone or/and in combination with AMF inoculums containing six different species were compared with SSP in six replicates per treatment in pots. The results showed that the association of AMF with composted RP fed dung had a positive effect on mung bean shoot (3.04?g) and root (2.62?g) biomass, chlorophyll (a, b), carotenoid contents and N (58.38?mg plant?1) and P (4.61?mg plant?1) uptake. Similarly, the percent roots colonization (56%) and nodulation of mung bean plant roots and their post-harvest soil properties were also improved by the inoculation of AMF together with composted RP fed dung. It is concluded that the combined application of AMF with composted RP fed dung has almost the same effect as SSP for improving mung bean plants growth and their nutrients uptake. Moreover, AMF inoculants can be used as a suitable biofertilizer in combination with locally available organic sources of fertilizers for improving P status and growth of plants in alkaline soils.  相似文献   

19.
The stability of the phosphate ester linkage in phosphoserine (PS) and phosphoethanolamine (PE) was evaluated after incorporation of these compounds into model humic polymers. Humic polymers prepared by oxidation of a mixture of substituted phenols in the presence of either PS or PE resulted in model humic materials containing from 0.25 to 0.94% P, values within the range found for organic P in natural soil humic materials. The organic P contained in model humic polymers was resistant to hydrolysis with 1 n HC1 and 1 n NaOH and resistance of the P ester to hydrolysis with 6 n HCl was increased through incorporation into model humic polymers. Organic P in model humic polymers was also stabilized towards hydrolysis with acid and alkaline phosphomonoesterases. Less than 11% of the organic P in polymers containing PS and PE was hydrolyzed by acid or alkaline phosphatase. The incorporation of PE into a model humic polymer markedly reduced the amount of P mineralized during incubation in soil when compared to P mineralized in soils treated with PE. For all environmental conditions imposed during soil incubations (i.e. pH, aeration, temperature), only 20% of the P in model humic polymer containing PE was released during a 16-week period. In contrast, > 60% of the P in either PS and PE added individually to soils or PS and PE intimately mixed with preformed model humic polymer and then added to soils was released during the initial 7 days of soil incubation. The results suggest that a portion of the unidentified organic P in soils may arise from the incorporation of organic compounds containing both amine and phosphate ester functional groups into humic materials and that the organic P thus formed is resistant to both chemical and enzymatic hydrolysis.  相似文献   

20.

Effect of poultry manure (PM) and four inorganic phosphorus (P) fertilizers sources, i.e., diammonium phosphate (DAP), single super phosphate (SSP), nitrophos (NP) and triple super phosphate (TSP) on crop production and P utilization efficiency (PUE) of maize was studied. Both inorganic P fertilizers and PM applied alone or combined in 50:50 proportions at equivalent rate of 90 kg P2O5 ha?1. Results indicated that inorganic P sources with PM significantly increased plant height, leaf area and chlorophyll content. Average values showed that combined application of inorganic P with PM increased grain yield by 19 and 41% over inorganic P and PM alone, respectively. Similarly, increase in P-uptake due to the combined application of inorganic P + PM was 17% compared to sole inorganic P. Phosphorus utilization efficiency of inorganic P was increased with PM and the highest PUE was recorded in DAP + PM. Generally, combination of DAP + PM proved superior over the remaining P fertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号