首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An 18‐week study was conducted in 12, 0.1 ha ponds to evaluate the impacts of cyclic feeding regimes on hybrid striped bass (HSB) foodfish production and pond water quality. Approximately 840 HSB [mean weight (std.); 91.08 g (8.18)] were stocked into each pond (8400 fish ha?1; 3360 fish acre?1) and fed according to one of three feeding regimes. The three feeding regimes included a control (fed twice daily to apparent satiation), and cycles of 3 weeks feed deprivation followed by 3 or 6 weeks of feeding to apparent satiation (3/3 and 3/6 respectively). Compensatory growth (CG) was observed in both cyclic feeding treatments; however, the response was insufficient for the fish to completely regain lost weight. Final mean weight of control fish (477.9 g) exceeded (P<0.05) that of fish receiving the two cyclic treatments: 3/6 (404.7 g) and 3/3 (353.8 g). Specific growth rate (SGR) of fish in the 3/3 treatment increased during all three refeeding periods, and was significantly greater than controls during weeks 9–12 and weeks 15–18, which represent the refeeding phase of the second and third feeding cycles. Specific growth rate for fish in the 3/6 treatment was significantly higher than controls only during the first 3 weeks of the first feeding cycle. Hepatosomatic index and condition factor were highly responsive measures that closely followed the metabolic state of fish on the feeding cycle. Of the water quality variables measured, total phosphorus was 32% lower in ponds receiving cyclic feeding versus control ponds. Soluble reactive phosphorus was 41% and 24% lower in ponds offered the 3/3 and 3/6 cyclic feeding treatments, respectively, although, significant differences (P<0.10) were only observed between control and 3/3 treatment ponds. Overall, CG was observed in HSB foodfish grown in ponds, although 3 weeks of feed deprivation was excessive and did not allow for complete growth compensation. Weight loss during feed deprivation was influenced by pond water temperatures. Early season feed deprivation did not cause as much weight loss as during the second cycle later in the season. Further studies on shorter deprivation periods applied during moderate to low water temperatures are needed to identify feeding regimes that minimize weight loss and result in a complete CG response.  相似文献   

2.
Compensatory growth of red sea bream, Pagrus major, during feed deprivation and after refeeding was investigated. Groups of three fish each were allocated into 28 cages. Fish were fed by a commercial feed to satiation twice a day. Four feeding groups of fish were prepared: one group with continuous feeding (C) for 9 wk and three other groups with feed deprivation for 1 wk (F1) in Week 3, 2 wk (F2) from Week 2 to Week 3, and 3 wk (F3) from Week 1 to Week 3, respectively. All fish in the feed deprivation treatments resumed feeding in Week 4. The full compensatory growth was achieved in F1 and F2 fish after refeeding for the first 3 wk but in F3 fish after refeeding for the second 3 wk. Specific growth rate and feed conversion efficiency in all fish experiencing fasting were higher than those of control fish after first 3 wk of refeeding. At the end of feed deprivation in Week 3, crude protein, crude lipid, and energy content of all fish experiencing fasting were lower than those of the control fish. These results indicated that red sea bream experienced 1‐, 2‐, and 3‐wk fasting could achieve full compensatory growth in the 9‐wk feeding trial.  相似文献   

3.
Compensatory growth and changes in biochemical composition, hematocrit and body condition indices of juvenile flounder Paralichthys olivaceus were assessed during starvation and after refeeding. Twenty juvenile fish were stocked into each 200‐L flow‐through tank to give five treatments with three replicates per treatment: control group fish (C) were hand fed to apparent satiation twice daily for 8 wk, whereas the Sl, S2, S3, and S4 fish were hand fed to apparent satiation twice daily for 7, 6, 5, and 4 wk after 1, 2, 3, and 4 wk of starvation, respectively. During starvation, weight decreased linearly with periods of feed deprivation up to 3 wk. Survival was not significantly different among treatments. At the end of the feeding trial, weight gain (g/fish) and specific growth rate (SGR) of flounder in S2 was significantly (P < 0.05) higher than those of fish in S3 or S4, but not significantly different from those of fish in C or Sl. Feed consumption of flounder (g/fish) was proportional to duration of feeding except for that of fish in S2. Feed efficiency ratio (FER) and protein efficiency ratio (PER) values for flounder in S2 were significantly (P < 0.05) higher than those for fish in C, but not significantly different from those for fish in Sl, S3, or S4. During starvation, hepatosomatic index (HSI) and lipid content of flounder without liver decreased with periods of feed deprivation. However, HSI and condition factor (CF) for flounder in S2 were significantly (P < 0.05) higher than those for fish in Sl, S3, S4 and C except for CF in Sl at the end of the feeding trial. Proximate composition of flounder without the liver was not significantly different among treatments at the end of the feeding trial. In considering above results, juvenile flounder achieved compensatory growth with up to 2‐wk feed deprivation. Compensatory growth of flounder fed for 6 wk after 2‐wk feed deprivation was well supported by improvement in SGR, FER, and PER. HSI could be a good index to monitor changes in body condition during starvation and after refeeding.  相似文献   

4.
The compensatory growth response of juvenile three‐keeled pond turtles, Chinemys reevesii, was investigated by food deprivation for 1–4 wk and then refeeding for 4 wk. After feeding resumed, only turtles that were deprived over 2 wk displayed higher specific growth rates than the continuously fed turtles for 1 wk, but their weights were lower than the control at the end of refeeding, showing a partial compensatory growth pattern. Their feeding rate, rather than the feed conversion efficiency and apparent digestibility of energy, was higher than the control during the compensatory phase, indicating that hyperphagia was responsible for the compensatory growth. As starvation intensified, protein concentrations of deprived turtles increased significantly, whereas the contents of fat tissues decreased sharply. After 4 wk of refeeding, the contents of fat tissues in deprived turtles returned to the control level, whereas protein concentrations did not, indicating that lipid rather than protein was the main fuel utilized during short‐term starvation for juvenile turtles aged over 2 mo.  相似文献   

5.
The role of offering a commercial pelleted diet has been characterized as both an expensive organic fertilizer and as a selected food item for larval hybrid striped bass (palmetto), Morone saxatilis × Morone chrysops, culture operations. In this study, we examined the effects of providing a commercial diet on fish production and zooplankton dynamics during phase I culture in plastic‐lined ponds. We also sought to estimate relative dietary contribution of a commercial fish feed relative to natural pond biota using stable isotope tissue analysis. Palmetto bass were stocked into six 0.04‐ha plastic‐lined ponds at a rate of 125,000/ha. During the 31‐d culture period, ponds were fertilized with alfalfa pellets at a rate of 112 kg/ha/wk. At 14 d post‐stock (dps), Silver Cup Trout Fry diet was offered at a rate of 13.6 kg/ha/d and fertilization was discontinued in three ponds. Although mean final fish length was significantly greater within the fed treatment, no other production parameters were found to be different (P < 0.1). Following feed application, copepod concentrations within the fed ponds were greater in magnitude by 24 dps. Through stable isotope tissue analysis, we found a significant enrichment in both 13C and 15ν of fish, zooplankton, and Chironomidae larvae within the fed ponds (P < 0.10). Using a three‐source mixing model, the mean (±SE) percent composition of feed in the fish's isotopic signature increased from 5% ±2 to 20% ±6 within 16 d. Although fish production was not greatly affected through the addition of a commercial fish feed, enriched 13C and 15ν of fish tissue indicate that palmetto bass fingerlings increasingly utilized the prepared diets over time. However, based on the isotopic values of fish and potential food sources, it can be estimated that natural pond biota likely accounted for up to 80% of nutrient assimilation in the hybrid striped bass.  相似文献   

6.
De‐oiled (<10 g/kg oil) carinata (Brassica carinata) meal is high (>400 g/kg) in protein, but its use in fish diets will likely be limited mainly by glucosinolates (GLS), sinapine and crude fibre. Two feeding experiments were conducted to determine the response of hybrid striped bass (Morone chrysops ♀ X M. saxatilis ♂, HSB) to inclusion of cold‐pressed carinata meal (CPCM) in diets. Cook extrusion reduced an average of 44% and 57% of GLS and sinapine concentrations in diets, respectively. In experiment 1, diets containing 0.71–2.71 μmoles of GLS and 0.034–0.181 mg of sinapine/g did not significantly (p > .05) reduce feed consumption, utilization or growth, resulting in similar concentrations of thyroxines and consequently no effect on deiodinase enzymes. In experiment 2, there was a significantly reduced (p < .05) feed consumption in fish fed diets containing 5.58–9.52 μmoles of GLS and 0.54–0.75 mg of sinapine/g, resulting in HSB exhibiting lethargic swimming and feeding behaviours, and consequently poor feed utilization and growth. Cook extrusion reduced about half of GLS and sinapine, and HSB tolerated ≤2.71 μmoles of GLS and ≤0.31 mg of sinapine/g of diet without affecting feed consumption and utilization, growth and thyroid metabolism.  相似文献   

7.
The efficacy of replacing fish meal with petfood‐grade poultry by‐product meal (PBM) on an ideal protein basis in commercial diets for hybrid striped bass (HSB) was evaluated under production conditions in pond culture. A generic production diet (GEN) for HSB was formulated to contain 45% protein, 12% lipid, and 3.7 kcal/kg. Protein in the generic diet was supplied by a mix of animal and plant sources typically used by the industry that included more than 20% select menhaden fish meal and less than 10% PBM. A positive control diet (GEN + AA) was formulated by supplementing the generic diet with feed‐grade Met and Lys to match the level of those amino acids in HSB muscle at 40% digestible protein. Substitution diets were formulated by replacing 35, 70, or 100% of fish meal in the GEN diet with PBM on a digestible protein basis and then supplementing with Met and Lys (designated 35PBM, 70PBM, and 100PBM, respectively) as needed to maintain concentrations equal to those in the GEN + AA diet. Diet formulation and extrusion were conducted by a commercial mill, and all diets met or exceeded known nutritional requirements for HSB. Twenty 0.10‐ha ponds (4 ponds/diet) were randomly stocked with juvenile HSB (76 ± 10 g; mean ± SD) at a density of 7400/ha and fed for 600 d (October 2004 to May 2006). Diets were fed once daily to apparent satiation to a maximum of 95 kg feed/ha. Total weight and number of fish in each pond were determined at harvest. Weight distributions in each pond were estimated by selecting every 15th fish during harvest. Subsets of ten fish from each of these samples were selected randomly for the determination of body composition and nutrient and energy retention. The availability of indispensable amino acids as well as ammonia production from the commercial test diets were determined in separate tank trials. Most production characteristics were not statistically different (P > 0.10) among dietary treatments. Distributions of individual fish weights from each of the ponds were not affected by poultry by‐product level in the diet. Multivariate analysis of body compositional indices grouped diets into two clusters composed of GEN, GEN + AA, 35PBM vs. 70PBM, and 100PBM mainly because fish fed the 70PBM and 100PBM diets had greater (P = 0.001) body fat (visceral somatic indices) than fish fed the other diets. Ammonia production in tanks was not different among diets and peaked 6–8 h after feeding when fish were fed at 1.5% of body weight; ammonia‐N excretion ranged from 197 to 212 mg/kg/d and 18.5–21.5% of nitrogen intake. Some imbalances in the levels and ratios of selected amino acids to Lys were found in the diets containing higher amounts of PBM and were attributed to a lack of accurate availability coefficients during formulation for some dietary proteins. These imbalances in essential amino acids may have been the predominant factor in the somewhat fattier fish observed fed diets containing the two highest levels of PBM. Nevertheless, these results from fish stocked at commercial densities and raised to market size in ponds suggest that formulating diets on an available amino acid basis for all protein sources while balancing limiting amino acids, particularly Met, Lys, Thr, and Trp, on an ideal protein basis will yield significant improvements in HSB performance when fed commercial diets in which all fish meal is replaced with PBM.  相似文献   

8.
A 6‐wk feeding trial was conducted to evaluate the effects of different dietary lipid levels and feeding frequencies on the growth performance, feed utilization, and body composition of juvenile spotted seabass, Lateolabrax maculatus. Two experimental diets were prepared with two different dietary lipid contents, low lipid (7%; LL) and high lipid (14%; HL). Each diet was fed to triplicate groups of fish (5.5 ± 0.01 g) to apparent satiation at three meals per day, two meals per day, one meal per day, and one meal every 2 d, respectively, for 6 wk. Fish growth performance in terms of weight gain (WG) and specific growth rate (SGR) was significantly affected by frequency of feeding, with increasing values as feeding frequency increased up to twice daily, regardless of dietary lipid content. In addition, fish fed the diet with the HL level (14%) showed significantly higher WG and SGR than those fed the LL diet (7%) at all the feeding frequencies tested. Feed efficiency (FE) and protein efficiency ratio (PER) were affected by both dietary lipid level and feeding frequency. FE and PER values were significantly higher in fish fed the HL diet and/or when fish were fed twice or thrice a day. However, daily feed intake and daily energy intake were significantly affected only by feeding frequency and were significantly reduced when the fish were fed only once every 2 d compared with those fed more frequently. Whole‐body moisture content of fish tended to decrease with increasing dietary lipid level and frequency of feeding. In contrast, whole‐body lipid content increased in fish as dietary lipid level and feeding frequency increased. Consequently, we can conclude that feeding spotted seabass twice daily to apparent satiation is acceptable and sufficient to achieve good growth and FE, as fish performance was not significantly enhanced when feeding was increased from two to three times daily.  相似文献   

9.
A 12-week experiment was carried out to evaluate compensatory growth of 6.6 g Nile tilapia Oreochromis niloticus L. under three cyclical regimes of feed deprivation and refeeding. The deprivation and refeeding regimes included four cycles of 1 week of deprivation and 2 weeks of refeeding (S1F2), two cycles of 2 weeks of deprivation and 4 weeks of refeeding (S2F4) and one cycle of 4 weeks of deprivation and 8 weeks of refeeding (S4F8). A group of fish fed to satiation twice daily throughout the experiment served as control. At the end of the refeeding periods, fish deprived and refed cyclically had higher feed intake and specific growth rates (SGR), but lower body weight, than that of the control fish. There was no significant difference in feed efficiency ratio (FER) between the control and fish subjected to feed deprivation during the refeeding periods, and nitrogen retention efficiency (NRE) was not different between any two treatments throughout the experiment. At the end of the experiment, fish subjected to feed deprivation had lower body weight but similar body composition, relative to those of the control fish. No significant differences were found in final body weight, NRE and body composition between the fish subjected to different cycles of deprivation and refeeding, but the fish subjected to one cycle of deprivation and refeeding exhibited high mortality. Our results indicate that partial growth compensation induced by various cycles of feed deprivation and refeeding does not confer a huge advantage in terms of enhancing the production efficiency and reducing the nitrogen waste output in Nile tilapia farming 29–30 °C.  相似文献   

10.
Abstract.— In an effort to feed sunshine bass Morone chrysops × M. saxatilis efficiently, promote optimal growth, and reduce labor costs associated with feeding, sunshine bass were grown in cages and fed one of four feeding frequencies: once/d, twice/d, once every other day (I X/EOD), and twice every other day (2X/EOD) for 21 wk. Juvenile sunshine bass were fed a commercial floating diet containing 40% protein and 11.5% lipid. One hundred fish were hand-counted and stocked into each of 12 3.5-m3 cages with three replications per treatment. At the conclusion of the study, percentage weight gain of sunshine bass fed twice/d was significantly (P < 0.05) higher (1,850%) compared to fish fed all other feeding frequencies. Specific growth rate (SGR) of fish fed twice/d was significantly higher (2.1%/d) compared to fish fed all other feeding regimes, while fish fed once/d had a higher SGR (2.0%/d) compared to fish fed I X/EOD (1.6%/d) and 2X/EOD (1.8%/d). Percentage survival was not significantly different (P > 0.05) among all treatments and averaged 70.4%r. Feed conversion ratio (FCR) of fish fed twice/d was significantly higher (2.40) compared to fish fed all other feeding regimes. Percentage fillet weight of fish fed twice/d was significantly higher (27.8%) compared to all other treatments. Percentage moisture, protein, lipid, and ash in fillet were not significantly different among all treatments and averaged 75.7%, 19.4%, 3.5%, and 1.2%n, respectively (wet-weight basis). Based upon data from the present study, it appears that producers growing juvenile sunshine bass in cages may want to feed fish twice daily. This feeding regimen allows for higher growth rates, without adverse effects on body or fillet compositions. However, economic analysis needs to be conducted to determine if feeding twice/d is profitable.  相似文献   

11.
Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes of fish during fasting and after refeeding were investigated during the summer season. Groups of 25 fish each (initial body weight of 16 g) were randomly distributed into fifteen 180‐L flow‐through tanks. Fish were fed the experimental diet containing crude protein 46.9% and crude lipid 8.0% with estimated energy level of 14.6 kJ/g diet for 6 d/wk. Five treatments in triplicate were prepared for this study: C, S1, S2, S3, and S4. Fish in the control group (C) were hand‐fed to apparent satiation twice daily. Fish in treatments S1, S2, S3, and S4 experienced 1, 2, 3, and 4 wk of starvation and were then hand‐fed to apparent satiation twice daily during the remaining 7, 6, 5, and 4 wk of the experiment, respectively. A group of starved fish in the similar size was stocked and fasted throughout the 8‐wk feeding trial for chemical and blood analysis. The feeding trial lasted for 8 wk. Weight of fish linearly decreased with week of starvation (P < 0.0001). Linear relationship between condition factor (CF) and hepatosomatic index (HSI) against week of starvation was observed in the starved group of fish. Survival was not significantly (P > 0.05) affected by feeding strategy. However, weight gain and specific growth rate (SGR) of olive flounder in C, S1, and S2 were significantly (P < 0.05) higher than those of fish in S3 and S4. The poorest weight gain and specific growth rate (SGR) were obtained in fish of S4. Feed consumption of olive flounder in C, S1, and S2 was significantly (P < 0.05) higher than that of fish in S3 and S4. Feed efficiency, protein efficiency ratio, and protein retention of olive flounder in C and S1 were not significantly (P > 0.05) different from those of fish in S2 but significantly (P < 0.05) higher than those of fish in S3 and S4. Hematocrit, CF, and HSI of olive flounder were not significantly (P > 0.05) affected by feeding strategy. Chemical composition of fish was not significantly (P > 0.05) affected by feeding strategy. In considering these results, it can be concluded that juvenile olive flounder have the ability to fully compensate for 2‐wk feed deprivation during the summer season. Besides, feed efficiency in fish fed for 7 and 6 wk after 1‐ and 2‐wk feed deprivation was comparable to that in fish fed for 8 wk.  相似文献   

12.
A feeding trial was undertaken to evaluate compensatory growth in channel catfish and to chronicle the changes in body condition associated with the imposed feeding strategy. Four 1200-L circular tanks were each stocked with approximately 600 fingerling channel catfish (mean initial weight 32 g). Two tanks represented control fish which were fed to apparent satiation once daily throughout the trial. The two remaining tanks of fish were unfed for 4 wk and subsequently refed daily to apparent satiation for the following 10 wk in order to elicit a compensatory growth response. Fish fed to apparent satiation during the first 4 wk of the trial had a 41% increase in body weight, while the fasted fish decreased in weight by 20%. During the subsequent refeeding period, previously unfed fish were not able to increase growth rates sufficiently to overcome weight loss imposed by the 4-wk feed restriction. However, after 8 wk of refeeding, total increase in body weight of the previously unfed fish was 179 % of initial weight and similar to that of control fish which gained 231 % of initial weight. Hepatosomatic index (HSI) and condition factor decreased rapidly during the fasting period and increased rapidly to control levels during subsequent refeeding. The intraperitoneal fat (1PF) ratio and muscle ratio responded more slowly to feed restriction with IPF ratio decreasing consistently after 2 wk feed restriction. Muscle ratio showed little effect from the 4-wk period of feed deprivation. It appears that not feeding channel catfish fingerlings for 4 wk is too long to induce a compensatory growth response that is optimal for aquaculture; however, HSI may be the index of choice for detecting when refeeding should begin to maximize compensatory growth.  相似文献   

13.
This study was performed to determine compensatory growth of juvenile olive flounder fed the extruded pellet (EP) with different feeding regimes. Seven treatments with triplicates of different feeding regimes were prepared; α fish was daily fed for 6 d a week throughout 8 wk (8WF); α fish was starved for 1 wk and then fed for 3 wk twice [(1WS + 3WF) × 2]; β fish was starved for 2 wk and then fed for 6 wk (2WS + 6WF); χ fish was starved for 5 d and then fed for 9 d four times [(5DS + 9DF) × 4]; δ fish was starved for 10 d and then fed for 18 d twice [(10DS + 18DF) × 2]; δ fish was starved for 2 d, fed for 5 d, starved for 3 d, and then fed for 4 d four times [(2DS + 5DF + 3DS + 4DF) × 4]; and φ fish was starved for 4 d, fed for 10 d, starved for 6 d, and then fed for 8 d twice [(4DS + 10DF + 6DS + 8DF) × 2], respectively. Total feeding day was all same, 36 d except for control group (48 d). Weight gain of flounder in the 8WF treatment was higher than that of fish in other treatments. And weight gain of flounder in the 2WS + 6WF treatment was higher than that of fish in the (5DS + 9DF) × 4 and (4DS + 10DF + 6DS + 8DF) × 2 treatments. Feed consumption of flounder in the 8WF treatment was higher than that of fish experienced feed deprivation. Feed efficiency ratio (FER), protein efficiency ratio (PER), and protein retention (PR) were not significantly different among treatments. Chemical composition of the whole body of fish with and without liver, except for moisture content of liver, was not different among treatments. T3 level of fish in the 8WF and 2WS + 6WF treatments was higher than that of fish in the (5DS + 9DF) × 4 treatment. It can be concluded that juvenile olive flounder achieved better compensatory growth at 6‐wk refeeding after 2‐wk feed deprivation compared with that of fish with different feeding regimes. And T3 level of fish seemed to partially play an important role in achieving compensatory growth.  相似文献   

14.
Two studies were conducted in 110‐L flow‐through aquaria and 0.4‐ha ponds to evaluate effects of periodic feed deprivation on the growth performance of channel catfish Ictalurus punctatus. Fish were deprived of feed 0, 1, 2, or 3 consecutive d/wk, l d per 5‐d period, or 3 consecutive d per 10‐d period and fed to satiation on days fish were fed. In Experiment 1, fish fed less frequently than daily consumed significantly less feed (over the experimental period) and gained significantly less weight than fish fed daily, except that feed consumption of fish deprived of feed 1 d/wk was not significantly different from that of fish fed daily. Compared with fish fed daily, fish deprived of feed 2 d/wk had significantly lower feed conversion ratio (FCR). Visceral fat of fish deprived of feed 1 or 2 d/wk was similar to that of fish fed daily, but fish deprived of feed for longer periods had significantly lower visceral fat than fish fed daily. Regression analysis indicated that feed consumption, weight gain, and visceral fat increased linearly as the number of days that fish were fed increased. In Experiment 2, there were no significant differences in the amount of feed fed between fish deprived of feed 1 d/wk and those fed daily. Net production of fish deprived of feed 1 or 2 d/wk or 1 d per 5‐d period was not significantly different from that of fish fed daily, but fish deprived of feed for longer periods had significantly lower net production than fish fed daily. Visceral fat of fish deprived of feed 1 d/wk or 1 d per 5‐d period was similar to that of fish fed daily, but fish on other treatments had significantly lower visceral fat than fish fed daily. Regression analysis showed that as the number of days fed increased the amount of feed fed and net production increased quadratically. Feed conversion ratio, carcass yield, visceral fat, and fillet fat increased, while fillet moisture decreased linearly as the number of days fed increased. Although feeding less frequently than daily may improve feed efficiency, and fish deprived of feed may demonstrate compensatory growth when a full feeding regime is resumed, it may be difficult to provide enough feed to satiate all size‐classes of fish under a multiple‐batch cropping system without causing water quality problems. Under normal economic conditions, fish should be fed daily to apparent satiation without waste and without causing water quality problems. However, during periods of unfavorable economic conditions, channel catfish raised from advanced fingerlings to market size may be fed less frequently than daily to reduce production cost. Results from the present study indicated that feeding channel catfish to satiation 5 or 6 d/wk (not feeding on one or two weekend days) could provide some benefits in reducing production cost through reduced feed and labor costs for food‐sized channel catfish during periods of low fish prices and high feed prices.  相似文献   

15.
Effects of feed restriction on compensatory growth (CG) performance of Indian major carps, sediment loading and water productivity in a carp–prawn grow‐out production system were examined. The overall growth and crop performance were in the similar line in both T1 (regular feeding, 2 times a day) and T2 (4‐week feeding followed by 2‐week no feed). However, between T1 and T3 (8‐week feeding followed by 2‐week no feed), there was a significant (P < 0.05) variation in the overall growth and crop performance. This was probably due to the longer refeeding periods after cyclic food deprivation that successfully triggered compensatory growth response in T3 (CG Index: 98–104%). Treatment‐wise sediment load ranged between 59.2 and 69.6 m3 t?1 biomass. Higher the apparent feed conversion ratios, higher was the sedimentation rate. Higher the feed input, higher were the water exchange requirement, total water use and consumptive water use index. Cyclic food deprivation and refeeding also helped in maintaining water quality due to the restricted feed input (10.5% in T2 and 2.0% in T3), thus minimizes the input cost and improves production efficiency. Keeping the growth and yield performance, water productivity and economic efficiency in view, T3 is considered the best feed management protocol followed by T2 and T1.  相似文献   

16.
Four treatment groups that received repeating cycles of fixed feed deprivation for either 0, 1, 2, or 3 d (control, treatment 1, treatment 2, and treatment 3, respectively), followed by periods of refeeding with a 36% protein commercial catfish feed once daily as long as the active phase of compensatory growth (CG) persisted, were assessed in flow-through aquaria. No-feed periods elicited the CG state and were immediately followed by days of ad libatum refeeding. At the end of 10 wk, average growth rate (AGR) of fish was higher ( P < 0.05) than the control by 40%, 180%, and 191% for treatment 1, treatment 2, and treatment 3, respectively. The average weight of fish in treatment 3 was heavier ( P < 0.05) than the average control group at the end of the study period. Mean daily feed consumption was 3.91%, 5.03%, 5.36%, and 5.98% for control, treatment 1, treatment 2, and treatment 3, respectively. Mean feed consumption per fish per day was 24%, 71.3%, and 70.7% higher than the control in treatment 1, treatment 2, and treatment 3, respectively. Restricted feeding is one of the effective methods to contain ESC-related losses in commercial channel catfish fingerling operations. The mean cumulative survival of treatment groups registered higher ( P < 0.05) survival to Edwardsiella ictaluri infection compared to the daily fed control fish. Results from this study show that compensatory growth response triggered by periodic non-feeding days can improve growth rate, feed consumption, and improved survival to ESC infections in channel catfish fingerlings.  相似文献   

17.
Many organisms exhibit compensatory growth (CG), an accelerated growth rate during recovery from periods of low nutrient resources. Despite numerous studies, many aspects of CG, particularly fine‐scale temporal effects early in life, remain poorly understood. We manipulated early‐life feeding regimens in threespine stickleback (Gasterosteus aculeatus) to study compensatory responses in growth rate and lipid storage during the first growing season. Laboratory‐reared stickleback, including ancestral oceanic and derived freshwater populations, were divided into three age‐specific dietary treatment groups – DPR1, DPR2 and DPR3 – which were exposed to a half‐ration nutrient deprivation for 30 days at the onset of 2, 3 and 4 months of age, respectively. We hypothesised that these month‐long periods of nutrient deprivation would result in strong, yet variable CG responses across stickleback populations and dietary treatments following a return to optimal ration levels. The youngest two age classes of fish (DPR1 &and DPR2) exhibited strong CG responses, matching growth rates and lipid generation levels seen in control fish fed an ad libitum diet. The oldest nutrient‐deprived group (DPR3) showed a reduced CG response, with body growth recovering only partially, and lipid levels exhibiting even less recovery. Our results demonstrate that compensatory growth responses in juvenile stickleback depend on the timing of deprivation during the first growing season and further that responses to late‐season deprivation have favoured development of a larger body frame entering the overwintering season over lipid regeneration.  相似文献   

18.
Many fish species display compensatory growth (CG), a phenomenon by which fasted fish grow faster during refeeding. However, most studies use a group‐housed fish approach that could be problematic in social fish when interaction between individuals is not considered or eliminated. Additionally, the growth hormone (GH)/insulin‐like growth factors’ (IGF‐1 and IGF‐2) axis is implicated in postnatal growth in vertebrates, but its relevance in CG is not fully understood. Thus, the aim of this work was to determine whether CG occurs in a social fish, Cichlasoma dimerus, using an individually held fish approach and secondly, to evaluate the GH/IGFs expression profile during refeeding by 3 days and 3 weeks. C. dimerus showed partial CG. The feed conversion efficiency (FCE) was higher in three‐day‐refed fish, which presented higher GH plasma and mRNA levels than controls but shown no differences in liver and muscle GH receptors (GHR1 and GHR2) and IGFs mRNA levels. Surprisingly, three‐week‐refed fish exhibited GHR1 and IGF‐2 increments, but a reduction in GHR2 expression in muscle. These results show a strong association between GH levels, growth rate and FCE during refeeding, and a long‐lasting effect of refeeding on muscular expression of GHRs and IGF‐2.  相似文献   

19.
To quantitatively define relationships among stocking densities, feeding rates, water quality, and production costs for channel catfish, Ictalurus punctatus, grown in multiple‐batch systems, twelve 0.1‐ha earthen ponds were stocked at 8,600, 17,300, 26,000, or 34,600 fingerlings/ha along with 2,268 kg/ha of carryover fish. Fish in all ponds were fed daily to apparent satiation using 32% protein floating feed. Temperature and dissolved oxygen in each pond were monitored twice daily; pH weekly; nitrite‐N, total ammonia nitrogen, and Secchi disk visibility every 2 wk; nitrate‐N, chlorophyll a, total nitrogen, total phosphorus, and chemical oxygen demand monthly; and chloride every other month. The costs of producing channel catfish at different stocking densities were estimated. There were no significant differences (P > 0.05) as a result of stocking density among treatment means of (1) gross or net yields, (2) mean weights at harvest, and (3) growth or survival of fingerlings (24–36%) and carryover fish (77–94%). Mean and maximum daily feeding rates ranged from 40 to 53 kg/ha/d and 123 to 188 kg/ha/d, respectively, and feed conversion ratios averaged 1.75. There were no differences in any feed‐related parameter as a result of density. Water quality variables showed few differences among densities at samplings and no differences when averaged across the production season. Yield of fingerlings increased as stocking density increased with significant differences between the two highest and the two lowest stocking densities. Breakeven prices were lower at the higher stocking densities as a result of the higher yield of understocked fish and similar mean individual fish weights produced at these higher stocking densities. Overall, varying stocking densities of fingerlings in multiple‐batch systems had little effect on production efficiency and water quality. Additional research on managing the population structure of carryover fish in commercial catfish ponds may be warranted.  相似文献   

20.
ABSTRACT:   Compensatory growth, feeding rate, feed efficiency and chemical composition of juvenile black rockfish (mean weight 1.43 g) were investigated for 35 days after a 14-day feed deprivation treatment under four feeding conditions: one group continuously fed (control) and the other three groups fasted for 5 days (F5), 10 days (F10) and 14 days (F14). All fasted fish were re-fed from day 15. Only F5 achieved the same body weight as the control, indicating that complete compensation occurred in F5. The specific growth rate (SGR) of F5 was the highest at day 21 and then decreased thereafter, showing higher values than the control at days 21, 28 and 42. In contrast, although SGRs of F10 and F14 were higher than that of the control during the whole refeeding period except day 21, they did not catch up the control in body mass, indicating that only partial compensation occurred in F10 and F14. The feeding rate (FR) of all groups except F14 changed in a pattern similar to SGR (Spearman's rank correlation, r s > 0.9), suggesting that SGR varied depending on FR. Similar feeding efficiencies (FEs) were found in the four groups and they did not vary significantly during the whole refeeding period, suggesting that FE was not the factor affecting SGR. At day 14, the ratios of lipid to lean body mass in F10 and F14 were lower than those in the control and F5, and there was no difference between the control and F5. At day 49, however, only F14 showed a lower value than the other three groups, and there was no difference among the three groups. These results indicate that juvenile black rockfish fasted for 5–14 days can exhibit compensatory growth after refeeding, but timing and degree vary depending on the duration of feed deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号