首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
For clarifying the hierarchical patterns of population structure of soybean landraces in China, the seven clusters previously identified using Bayesian clustering of 1 504 soybean landraces based on SSR markers genotyping data were further analyzed. Using the largest value of AK, these landraces could be split into 20 sub-clusters, which was supported by highly significant pairwise Fst-values and generally in accordance with the geographic origin and sowing types. The autumn-sowing types ended up in one distinct sub-cluster from the otherwise summer-sowing type, where the autumn- sowing types are most likely derived from. The division into 20 sub-clusters explained 7.3% of the genetic variation, next to 9.7% present among the seven clusters, 81.1% residing among landraces within sub-clusters, and 1.9% within the landraces. The distribution pattern of genetic diversity among the sub-clusters of each cluster was uneven, with two HSuM sub-clusters (Central China) and some South China sub-clusters showing significantly higher level of genetic diversity.  相似文献   

2.
It was helpful for the wheat improvement to evaluate the genetic resources of Triticum turgidum L. ssp. turgidum landraces. In this study, 68 turgidum landraces accessions, belonging to four geographic populations in China, were investigated by using EST-SSR markers. A total of 63 alleles were detected on 22 EST-SSR loci, and the number of alleles on each locus ranged from 1 to 5, with an average of 2.9. The results of the analysis of molecular variance (AMOVA) indicated that 92.5% of the total variations was attributed to the genetic variations within population, whereas only 7.5% variations among populations. Although the four populations had similar genetic diversity parameters, Sichuan population was yet distinguished from other populations when comparing the population samples in pairs. Significant correlations were detected by the statistic analysis among six genetic diversity parameters among each other. The selection difference between heterozygosty and homozygosty was also observed among different EST-SSR locus. The genetic similarity (GS) ranged from 0.18 to 0.98, with the mean of 0.72, and all accessions could be clustered into 7 groups. The dendrogram suggested that the genetic relationships among turgidum accessions evaluated by EST-SSR markers were unrelated to their geographic distributions. These results implied that turgidum landraces from China had the unique characters of genetic diversity.  相似文献   

3.
Maize landraces White Dent and Golden Queen played a very important role in the pre-hybrid era of maize production in China. However, dozens of accessions with the same names of White Dent and Golden Queen are preserved in China National Genebank (CNG). The present study investigated the genetic diversity of these two important groups of maize landraces, as well as the relationships within and among them. Thirty-four landrace accessions with the name of White Dent and 10 with Golden Queen preserved in CNG were fingerprinted with 52 simple sequence repeats with tailed primer M13. Summary statistics including average number of alleles per locus, gene diversity/expected heterozygosity, and observed heterozygosity were carried out using PowerMarker ver. 3.25 software. The test of Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium (LD) of all the 44 maize landrace accessions were also performed by PowerMarker. We observed a significant differentiation in terms of the average number of alleles between White Dent and Golden Queen (6.44 alleles per locus in White Dent, 4.48 in Golden Queen), while both groups of maize landraces had a relatively high but similar gene diversity (0.61 of White Dent, 0.63 of Golden Queen). The fixation index (FST) was only 0.0044, while the percentage of loci deviated from Hardy-Weinberg equilibrium within these two groups of White Dent and Golden Queen was 32.69 and 3.92%, respectively. The rather high genetic diversity and average number of alleles per locus confirmed that both groups of landraces had a rather broad germplasm base. The extremely low fixation index showed that there was little genetic variation between White Dent and Golden Queen and the molecular variation within these two groups was remarkably high, indicating no genetic drift between White Dent and Golden Queen and suggesting different improvement approaches to these two important groups of landraces. Hardy-Weinberg equilibrium test revealed that the group of White Dent was deviated from HWE, whereas Golden Queen was under HWE.  相似文献   

4.
Waxy maize landraces are abundant inYunnan and Guizhou of China. Genetic diversity of waxy maize landraces from Yunnan and Guizhou were analyzed using SSR markers. We screened 38 landraces with 50 primers that generated 3 to 6 polymorphic bands, with an average of 4.13 bands. Shannon's information indices for genetic diversity of the 14 waxy maize landraces from Yunnan varied from 4.9571 to 42.1138 and averaged 26.5252; Shannon's information indices for genetic diversity of the 24 waxy maize landraces from Guizhou varied from 22.0066 to 40.6320 and averaged 32.3156. For the 14 waxy maize landraces from Yunnan, the within-landrace genetic diversity accounted for 45.40% and the among-landrace genetic diversity accounted for 54.60% of the total genetic diversity observed. For the 24 waxy maize landraces from Guizhou, the within-landrace genetic diversity accounted for 50.76% and the among-landrace genetic diversity accounted for 49.24% of the total observed. Some individual landraces possessed as much as 96.86% of the total genetic diversity occurring among landraces within origins. Differentiation between geographic origins accounted for only 3.14% of the total genetic diversity. Both Yunnan and Guizhou would be the diversity centers and the original centers of waxy maize.  相似文献   

5.
Genetic Diversity Based on AIIozyme Alleles of Chinese Cultivated Rice   总被引:1,自引:0,他引:1  
Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Amp1, Amp2, Amp3, Amp4, Sdhl, Adhl, Estl, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O. sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, mid Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modem cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.  相似文献   

6.
Based on the genetic clustering from 42 microsatellite (SSR) markers with a combination of their geographic origin and germplasm characteristics, 124 maize landraces from Wuling Mountain region in China were used for constructing a core collection. Four evaluating parameters for maize landrace core collection, including mean difference percentage (MD), variance difference percentage (VD), coincidence rate of range (CR), and variable rate of coefficient of variation (VR), were assessed With 20 quantitative traits. It was shown that genetic relationships among landraces in Wuling Mountain region had the tendency to associate with their geographic origins. The 124 landraces were clustered into 18 subgroups when the coefficient of genetic similarity (GS) is 0.28. Eighteen landraces, each of which was from one subgroup, were applied to construct the core collection with a sampling percentage of 15%. Comparison of the initial and core collection indicated that there existed no significant differences in most quantitative traits. An average of 6.3 and 6.5 alleles were detected in the initial and core collection, respectively. Mean polymorphism information content in the core collection (0.75) was higher than that in the initial one (0.72). MD was lesser than 20% and CR was more than 80%. The results showed that the sampling strategy would be feasible for constructing the core collection that well represents the genetic diversity of the initial one.  相似文献   

7.
To estimate genetic variation in rhizome lotus (Nelumbo nucifera Gaertn. ssp. nucifera) germplasms in China, a total of 94 rhizome lotus germplasms collected from 18 provinces in China were assessed. The RAPD (randomly amplified polymorphic DNA) marker was employed. The selected 17 random primers detected 139 polymorphic alleles out of a total 207 (67.15%). Nei's gene diversity statistics and region differentiation parameters indicated that all germplasms had a relatively high level of genetic diversity with ne = 1.3202, h = 0.1937, I= 0.2982 and the gene flow among all regions was Nrn = 5.5742. The UPGMA dendrogram clustered all 94 germplasms into two clusters: One contained eight commercial cultivars and major landraces, and the other included the wild and some special landraces from five regions, and the PCA analysis exhibited the similar result. Those germplasms from southwestern and eastern China had higher genetic diversity than those from the southern, northern and central China. Predominant proportion of genetic variation (95.61%) was found significant within rather than among (4.39%) regions, as revealed by AMOVA analysis. The data analysis also revealed that the genetic diversity of rhizome lotus germplasms among different regions is positively related to their geographic distances, though it is ambiguous to find the trend from the UPGMA dendrogram and the PCA analysis. A relatively high genetic diversity and gene flow resided in the root lotus germplasms; about 96% of the variation was found within region; accessions from southwest and eastern China have higher genetic diversity than those from the southern, northern and central China.  相似文献   

8.
Bulk-SSR method was used to analyze the genetic diversity of 44 open-pollinated varieties collected from Henan, Shandong, Shanxi, and Jilin provinces and Guangxi Zhuang Autonomous Region, China using 70 pairs of SSR primers. The purposes of this study were to (1) compare the genetic diversity among 44 Chinese maize open-pollinated varieties; (2) estimate the minimum number of alleles for construction of a stable dendrogram; and (3) trace the genetic relationships among local germplasm from different regions of China. In total, these 70 SSR primers yielded 292 alleles in 176 samples (4×44) analyzed. The number of alleles per locus was 4.17 on average and ranged from 2 to 8. The highest number of alleles per open-pollinated variety (55.25) was detected in Shanxi germplasm, which indicated that open-pollinated varieties from Shanxi possessed the largest genetic diversity among those from the five locations. The correlation coefficients between different genetic similarity matrices suggested that 200 alleles were sufficient for analysis of the genetic diversity of these 44 open-pollinated varieties. The cluster analysis showed that 44 open-pollinated varieties collected from three growing regions in China were accurately classified into three groups that were highly consistent with their geographic origins, and there is no correlation between GS and geographic distance in this study.  相似文献   

9.
Understanding genetic diversity and population structure of landraces is important in utilization of these germplasm in breeding programs. In the present study, a total of 143 core maize landraces from the South Maize Region (SR) of China, which can represent the general profile of the genetic diversity in the landraces germplasm of SR, were genotyped by 54 DNA microsatellite markers. Totally, 517 alleles (ranging from 4 to 22) were detected among these landraces, with an average of 9.57 alleles per locus. The total gene diversity of these core landraces was 0.61, suggesting a rather higher level of genetic diversity. Analysis of population structure based on Bayesian method obtained the samilar result as the phylogeny neighbor-joining (N J) method. The results indicated that the whole set of 143 core landraces could be clustered into two distinct groups. All landraces from Guangdong, Hainan, and 15 landraces from Jiangxi were clustered into group 1, while those from the other regions of SR formed the group 2. The results from the analysis of genetic diversity showed that both of groups possessed a similar gene diversity, but group 1 possessed relatively lower mean alleles per locus (6.63) and distinct alleles (91) than group 2 (7.94 and 110, respectively). The relatively high richness of total alleles and distinct alleles preserved in the core landraces from SR suggested that all these germplasm could be useful resources in germplasm enhancement and maize breeding in China.  相似文献   

10.
Invasion of the oriental fruit lfy, Bactrocera dorsalis, into new niches containing different food sources (a process referred to as host shift), may cause population genetic differentiation and sympatric speciation. To attempt to infer that experimentally, test populations were established by transferring a subset of the original populations, which had been grown on banana for many generations, onto navel orange, and then subculturing the navel orange population and banana population for at least 20 generations. Four pairs of SSR primers with high polymorphism on laboratory strains were used to detect population genetic differentiation. All six tested populations (the 5th, 10th and 15th generations of B. dorsalis fed on banana and navel orange, respectively) were found to have low genetic diversity. Furthermore, the genetic diversity of the navel orange populations was found to decline after being crossed for several generations. Populations initially were deviated from Hardy-Weinberg equilibrium, however, equilibrium was achieved with increasing numbers of generations in both of the host populations. Limited gene lfows were found among the six populations. The Nei’s standard genetic distances between the two host populations of the same generation were initially low, but increased with generation number. Genetic distances between banana and navel orange populations of the same generation were lower than genetic distances between different generations grown on the same host plant. Analysis of molecular distance (AMOVA) results based on generation groups and host groups demonstrated that genetic variation among generations was greater than that between the two host populations. The results indicated that population genetic differentiation occurred after the host shift, albeit at low level. Biogeography and taxonomy of the B. dorsalis complex revealed that speciation of B. dorsalis might be tightly associated with host shift or host specialization of B. dorsalis following dispersal.  相似文献   

11.
以40个西南地区玉米地方品种为材料,通过细胞学鉴定分析其主要核型参数,并采用最长距离法对其进行聚类分析。结果表明,40个玉米地方品种的全组染色体长度、最长染色体长度、最短染色体长度、长度比、平均着丝点指数、平均臂比和核不对称系数平均值分别为89.56μm、5.84μm、2.64μm、2.46、35.62%、1.48和59.06%,其对应变幅分别为61.51~103.82μm、3.62~7.50μm、0.98~4.33μm、1.41~5.21、26.93%~40.33%、1.05~2.43和51.20%~70.90%,其中,17份玉米地方品种存在B染色体;40个玉米地方品种的平均遗传距离为10.05,变幅为3.09~46.57。基于7个核型参数可将40个玉米地方品种在遗传距离15.98处划分为6类,第Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ类分别包含3、9、4、14、8、2个品种。40个玉米地方品种供试材料间存在较大的核型差异,这在细胞水平上表明西南地区玉米地方品种具有丰富的遗传变异。  相似文献   

12.
【目的】了解我国西南地区不同玉米地方品种的遗传多样性,为合理利用这些玉米种质资源提供参考。【方法】以西南地区12份玉米地方品种为材料,对Glb1基因片段进行克隆、测序及序列比对,分析其遗传多样性。【结果】12份玉米材料Glb1基因序列长度为1138-1149 bp,其序列一致性为96.21%。12份材料Glb1基因序列间存在较多的变异位点,大于等于3 bp的插入/缺失有8个,主要位于第81-84、122-128、161-164、368-371、428-442、668-680、966-976和1003-1011 bp。不同玉米地方品种材料间的遗传相似系数为96.50%-100.00%,平均为98.58%。根据聚类分析结果可将12份材料分为五大类,且来源于同一地区的玉米材料趋向于聚为一类。【结论】Glb1基因具有较高的保守性,所选材料间Glb1基因序列存在一定的遗传多样性,利用Glb1基因序列可作为鉴定不同玉米地方品种的一种理想分子标记。  相似文献   

13.
【目的】分析B染色体形态及数量多态性,从细胞水平评价西南地区玉米地方品种的遗传多样性,为中国玉米引进途径提供佐证。【方法】以来自西南地区四川、重庆、云南和贵州4省(市)的30个玉米地方品种群体为材料,各品种群体取50个单株,各单株统计镜检10个细胞,共统计镜检15 000(30 × 50 × 10)个细胞,在光学显微镜下进行B染色体细胞学鉴定;各品种群体取10个单株,制作10张染色体制片,采用改良的Giemsa染色法进行染色体C-带显带分析。【结果】细胞学鉴定结果表明,除10对常染色体外,西南地区玉米地方品种还存在3类形态的B染色体:中间着丝点B染色体(BM)、近端着丝点B染色体(BST)和呈点状的微小B染色体(BS),BM形态上与玉米的第1染色体相似,BST与BM大小相近,BS呈圆点状,无可见着丝点。在来自四川的7个玉米地方品种群体中检测到BM、BST和BS3类B染色体,在重庆玉米地方品种群体中检测到BM和BST、BST和BS存在于云南玉米地方品种群体,而在来自贵州的9个玉米地方品种群体中仅检测到1类B染色体(BST)。BM、BST和BS的平均长度分别为2.82、2.78和0.9 µm,与第1常染色体比较,它们的平均相对长度分别为43%、45%和15%,相对长度变幅分别为34%-52%、32%-58%和13%-18%,BM、BST和BS的平均臂比分别为1.19、1.98和1.00。在供试的30个品种群体中有18个含B染色体,分别有7个、5个、4个和2个来自四川、重庆、云南和贵州,在含B染色体的18个群体中有421个单株含B染色体,421个单株中共存在487条B染色体,具有B染色体植株的频率变幅为0-90%,平均频率为29.6%,四川玉米地方品种在群体和个体水平上表现较高的B染色体频率。细胞内B染色体数最多2个,绝大多数细胞不含B染色体,0B类、1B类和2B类细胞的平均频率分别为97.04%、2.81%和0.15%。BST是玉米地方品种B染色体的主要类型,占B染色体总数的比率为67%,其次是BM(19%),BS比率最低(14%),表明BST是原始的B染色体,BM和BS是BST的变异类型,BM和BS在较小的时间和空间尺度上形成与演化。Giemsa染色显示,BM和BST富含GC、高度异染色质化,在染色体结构上二者共享部分同源DNA序列,形态上与A染色体区别明显。0B类、1B类和2B类细胞A染色体平均C-带数变幅分别为11.0-20.6、10.8-19.4和10.5-18.6,玉米地方品种B染色体数与A染色体C-带数负相关。【结论】西南地区玉米地方品种在细胞水平上表现较高的遗传多样性,其B染色体具有形态和数量多态性,由B染色体分布所决定的西南地区玉米地方品种的地理中心是四川省。  相似文献   

14.
采用完全随机试验设计,研究了76份西南高原生态区玉米地方种质的农艺性状遗传多样性,并进行聚类分析。结果表明,供试材料的株高、穗位高、叶片数、生育期、穗长、穗粗、百粒重、穗行数、行粒数和穗粒质量等性状具有较高的遗传多样性,Shannon-Weaver指数为1.74~2.07。根据欧式距离,按类平均法进行系统聚类,结果将76份地方种质划分为4个类群,分别为黄色角质硬粒型、白色角质马齿形、白色蜡质马齿形和白色半角质马齿形品种。以上研究表明,西南生态区玉米地方种质资源具有丰富的遗传变异,因此有较高的保护和利用潜力。  相似文献   

15.
利用RAPD标记研究中国芥菜型油菜遗传多样性   总被引:13,自引:0,他引:13  
利用RAPD标记,对以我国西北和西南为主的68个芥菜型油菜地方品种和4个加拿大引进品种(系)的遗传多样性进行了研究。通过31个随机引物的RAPD分析,表明选用的72个品种(系)间存在广泛的遗传变异,多态性位点比率达85.31%。经UPGMA聚类分析将它们划分为6大类群,从聚类图可得如下结论:(1)地理差异和生态环境对遗传差异有重要影响,即来自同一省份的品种基本上聚在同一类群中。(2)我国冬播和春播  相似文献   

16.
以贵州和云南的9个糯玉米地方品种和5个普通玉米地方品种为材料,用79对SSR引物共检测出330个等位变异,平均每个位点上的等位基因变异为4 18个,聚类分析结果表明在分子水平上糯玉米的确与普通玉米存在较大遗传差异,这种差异不仅仅表现在wax基因及其相关位点,而且遍布整个基因组。  相似文献   

17.
The intelligent exploitation of maize landraces for maize breeding requires a detailed knowledge of genetic and historical relationships among these populations and an understanding of the partitioning of genetic diversity among populations. In this study, the diversity of 102 maize landraces from Hubei Province was evaluated on the basis of phenotype data (collected over two years) and simple sequence repeat (SSR) data. The results showed that significant differences in important traits were present among the landraces, especially in kernel weight and ear height. The comparison of the yield components of two elite populations, BSSSC9 and Suwan2, with those of landraces indicated that the ear length of 28 landraces, the kernel weight of 35 landraces, the row number per ear of 11 landraces, and the kernel number of 3 landraces were better than those of the two elite populations, implicating that abundant genetic diversity and favorable genes were accumulated within these landraces. Thirty-six SSR markers revealed a total of 179 alleles in 102 landraces, with an average of 4.97 alleles per loci, and 0.4362 polymorphism information content (ranging from 0.3141 to 0.5601). Cluster analysis based on the phenotypic data and SSR data divided the 102 landraces into two or three major groups. Integrating the phenotypic data and SSR diversity, we suggested that abundant genetic variability and specific alleles were contained within the set of landraces. A few landraces (including Batangbai, Bairihui, Dongjingbai, and Huangyumi) with large genetic diversity and specific favorable characteristics could be selected for further research and utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号