首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To investigate the correlation of individual heterozygosity and heterosis of three traits in crossbred F1 pig populations, the F1 populations were built by random mating Yorkshire x Meishan (YM, n = 82), and its reciprocal (MY, n =47) and two straightbred populations (Yorkshire = 34, Meishan = 55) were used as control groups. The heterosis of birth weight (BWT), average daily gain (ADG), and feed conversion ratio (FCR) were acquired as well. In the research, the significant marker loci for the heterosis of the three traits were observed by one-way ANOVA (P〈0.01) in a total of 39 marker loci on SSC4, SSC6, SSC7, SSC8, and SSC13, and the numbers of the significant marker loci were 12 (BWT), 18 (ADG), and 17 (FCR), respectively, based on which the general heterozygosity (GH) was divided into significant marker loci heterozygosity (SH) and insignificant marker loci heterozygosity (IH). Furthermore, the trends of alteration in heterosis with the stepwise increase in heterozygosity by 0.05 were explored. This was done by the regression analysis of the three kinds of heterozygosity against heterosis of the three traits. The results showed that, for BWT, the heterosis increased with the increase in GH (r=0.9337, P=0.0021) and SH (r=0.9165, P=0.0102); for ADG, the heterosis increased with the increase in IH (r=0.7012, P=0.0353) and GH (r=0.7470, P=0.0537, near significant); for FCR, the heterosis of feed efficiency increased with the increase in IH (r=0.8721, P=0.0022). The results indicated that the correlation was not always higher or more significant for SH with heterosis than it was for IH or GH with heterosis, and it might be because of the reciprocal cancellation of the positive effect and negative effect of QTL linked to the significant marker loci.  相似文献   

2.
 【目的】鉴定影响猪重要经济性状的QTL。【方法】利用中国地方猪种蓝塘猪(16头母猪)与外来品种长白猪(8头公猪)建立了资源家系,对257头F2代个体的11个活体性状进行测定。根据美国肉畜中心(USDA-MARC 2.0)公布的猪连锁图谱,在1、4和8号染色体上大约每间隔10—20 cM选择一个微卫星标记,共21个标记,采用ABI 377 DNA序列分析仪进行微卫星基因分型,运用QTL Express 软件包在http://latte.cap.ed.ac.uk网站在线分析,进行QTL定位分析。【结果】体高(body height,BodyHh)的QTL定位于SSC1的68 cM处,与标记SW2185(67.6cM)紧密联锁,达到染色体显著水平(P<0.05),解释表型变异的2.22%。体长(body length,BodyLh)的QTL定位于SSC4上的72cM处,位于标记SW839—SW0214,达到染色体显著水平(P<0.05)。【结论】在猪1和4号染色体上分别检测到一个影响体高和体长的QTL,为今后的QTL精细定位、大片段功能基因的克隆分析、以及猪分子育种技术的应用提供参考依据。  相似文献   

3.
 【目的】通过全基因组扫描,鉴别影响猪四肢骨骨骼长度,股骨和肱骨的骨髓腔长度、骨髓腔直径以及股骨骨壁厚度的数量性状位点(QTL)。【方法】在白色杜洛克×二花脸资源群体中测定132头240日龄阉割公猪29类四肢骨骨骼的长度、6类四肢骨骨骼直径以及股骨和肱骨骨壁厚度、骨髓腔长度和骨髓腔直径等表型性状。选择多态信息含量丰富并覆盖猪全基因组19条染色体的183个微卫星标记,采用最小二乘区间定位法进行猪全基因组扫描,定位猪四肢骨骼各性状QTL。【结果】在39个表型性状中定位到14个基因组1%显著水平QTL,14个基因组5%显著水平QTL和47个染色体5%显著水平QTL。除SSC11没有检测到QTL外,其它各染色体都存在影响四肢骨骼QTL。【结论】定位75个影响猪四肢骨骼性状QTL,在SSC7上57~59 cM 发现影响多种骨骼生长的QTL。  相似文献   

4.
【目的】通过Meta分析,利用数学模型整合与优化猪后腿腿臀质量、腿臀肉质量和腿臀比性状的QTL,提高QTL定位的准确度和有效性,为猪后腿性状QTL的精细定位和分子辅助育种奠定基础。【方法】收集猪后腿腿臀质量,腿臀肉质量和腿臀比性状的QTL及其相关信息,利用BioMercator2.1,将原始QTL映射到美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱,构建新的整合图谱,分析得到QTL簇。进一步对各QTL簇进行Meta分析,定位“真实”QTL(MQTL),缩短95%置信区间,减少定位误差。【结果】收集了93个猪后腿性状的QTL及其相关信息,经比对、映射,构建了新的整合图谱,发现19个QTL簇。通过Meta分析,得到19个MQTL,其图距比原平均图距缩短16.19%~78.96%,其中,MQTL1、MQTL5、MQTL6、MQTL8、MQTL9、MQTL10、MQTL11、MQTL12和MQTL17等9个MQTL图距的缩短比例均超过50%。【结论】Meta分析得到的MQTL图距均有不同程度缩短,最小的仅1.75 cM,缩短比例最大可达78.96%,提高了QTL定位的准确度和有效性。  相似文献   

5.
 【目的】通过测量猪体长、体高、管围、胸围、胸宽、胸深、腹围和腿臀围等8个体尺性状,应用全基因组扫描定位影响猪体尺性状的数量性状位点(QTL)。【方法】在210日龄,活体测量白色杜洛克×二花脸资源群体129头F2个体的上述8个体尺性状,利用分布于猪18条常染色体和X染色体上的183个微卫星标记,对这129头F2个体及其父母和祖代亲本进行基因型检测。应用基于最小二乘线性回归分析的复合区间作图法在QTL Express进行在线QTL定位分析,并通过1 000次的Permutation来确定不同显著水平的临界值。【结果】在8条染色体上共检测到19个影响猪体尺性状的QTL,其中位于4和7号染色体上的5个QTL达到基因组1%显著水平,位于2和7号染色体上的2个QTL达基因组5%显著水平,但是没有检测到影响胸深的QTL。【结论】影响猪体尺性状的QTL位点大多数分布于不同染色体区域,QTL所解释的表型方差介于5.23%—41.58%。白色杜洛克和二花脸中均存在增加表型值的有利等位基因。  相似文献   

6.
黄瓜植株高度遗传分析及其分子标记   总被引:6,自引:1,他引:5  
以129、D9419和602、D0462共4个黄瓜品种为亲本,按照Griffing方法I配制双列杂交组合,对亲本、F1株高,采用加性-显性-上位性(ADAA)模型进行遗传分析。结果表明,黄瓜株高属于数量性状,以加性效应为主,狭义遗传力和广义遗传力分别为51.321%和67.888%。以高株129与矮株D0462两个亲本杂交的F2分离群体为基础,采用SSR分子标记构建遗传连锁图谱,利用复合区间定位方法对植株高度性状进行QTL定位。结果表明,CWGATT01A、CSWGATT01C和CSWTAAA013个标记位于同一连锁群上,连锁群长约51.5cM;检测到株高的两个QTL,两个QTL距离最近标记的图距分别为4.0cM和7.0cM;贡献率分别为23.02%和8.36%;加性效应分别为38.64%和28.13%。  相似文献   

7.
超级杂交稻两优培九产量杂种优势标记与QTL分析   总被引:1,自引:0,他引:1  
辛业芸  袁隆平 《中国农业科学》2014,47(14):2699-2714
【目的】对超级杂交稻两优培九影响产量及其构成因素性状的杂种优势位点进行定位,在此基础上探讨亲本培矮64S和9311的遗传差异与水稻产量性状的杂种优势间的关系,以探明水稻产量杂种优势的分子预测途径。【方法】应用经单粒传法获得后续世代的219个培矮64S×9311 F8重组自交系(RILs)株系材料与亲本培矮64S回交,并选用151个分布于水稻基因组12条染色体上的SSR多态性标记,构建回交群体RILs BCF1;构建基因组总长为1 617.7 cM、标记间平均距离10.93 cM和含151个分子标记的遗传图谱;采用分子标记技术和自由度不等的单向分组方差两组法、三组法分析,用SAS软件ANOVA分析、混合线性模型复合区间作图等方法,对回交RILs BCF1群体的产量性状及其构成因素的F1表型值进行相关分析、优势预测与QTL定位。【结果】本回交杂种群体RILs BCF1具备多种基因型,遗传变异丰富,性状平均值均显著高于亲本群体重组自交系RILs F8,共筛选到影响RILs BCF1群体产量及其构成因素性状杂种优势的阳性、增效位点74个;其中,三组法所筛选的阳性、增效位点数高于两组法,用这些阳性、增效位点所预测的遗传距离与产量F1性状值的相关性也显著提高;三组法所筛选产量性状的增效位点与两组法所筛选的增效位点完全一致;连锁紧密的位点有成簇分布的现象,每穗空粒数、每穗实粒数、结实率有6个杂种优势位点相同,并与3个产量杂种优势位点重叠,且均处在第7染色体上;通过逐步回归建立了对4个产量性状进行预测的回归方程模型;筛选到28个杂合型的特异性标记,它们与产量性状的表型值显著相关,使用特异性标记可使遗传距离与产量F1性状值的相关系数由全部标记的0.335提高到0.617;定位到3个与产量杂种优势相关的QTL和3个影响每穗实粒数杂种优势的QTL。其中,在第7染色体上影响每穗实粒数和产量杂种优势的QTL QGpp7和QHy7与影响每穗实粒数和产量杂种优势的增效位点的结果相符。【结论】通过增加筛选产量杂种优势阳性位点或增效位点数量、筛选影响杂种优势特异性分子标记的方法,可显著提高分子标记遗传距离与产量F1性状值的相关性,有效提高用分子标记遗传距离对杂种优势预测效率。定位了3个影响产量杂种优势的QTL及3个影响每穗总粒数杂种优势的QTL,分别在第2、3、7、11和12染色体上,其中,影响产量杂种优势的数量性状位点QHy7,贡献率为7.48%,可用于杂种优势的预测和杂交组合的选配。定位于第3染色体RM293-RM468的表型贡献率为14.9%的抽穗期QTL可用于早熟高产水稻的选育。  相似文献   

8.
 【目的】检测定位猪10号染色体上影响血常规指标的数量性状位点。【方法】以3个品种(大白猪、长白猪、松辽黑猪)16个公猪家系共计368头试验猪组成资源群体,在猪10号染色体上共选取13个微卫星标记,采用基于线性混合模型方法,对影响与猪白细胞、红细胞和血小板相关的共计18项血常规指标的数量性状基因座(quantitative trait loci,QTL)进行了检测。通过似然比检验,利用置换法确定显著性阈值。【结果】()13个标记在群体中绝大多数的微卫星属于中度多态的遗传标记,所有微卫星标记在3个品种中的平均等位基因数为3.1754,平均杂合度为0.5215,平均多态信息含量为0.5999,平均香浓指数为1.3222。(2)达到了染色体极显著水平的3个QTL(P<0.01),分别是影响着红细胞压积(HCT)、血红蛋白含量(HGB)和平均红细胞体积(MCV),影响血小板总数(PLT)的QTL也达到染色体显著水平(P<0.05)。【结论】定位的4个影响猪血常规的QTL集中在10号染色体81—136cM区域,临近的标记分别为SW249、SWR136、S0070和SW1894。  相似文献   

9.
利用BC_3F_1群体定位和分析甘蓝型油菜A7-含油量QTL   总被引:2,自引:0,他引:2  
【目的】通过构建BC3F1群体对第7连锁群上一个影响油菜籽油分含量的主效QTL(A7-QTL)进行定位确认。【方法】在用SG-DH群体初定位基础上以欧洲品种Sollux为轮回亲本、目标区段含中国亲本Gaoyou等位基因片段的DH系为供体构建近等基因系。用1700个BC3F1单株基因型和其种子(BC3F2)表现型,采用WinQTLCartographer2.5和SPSS11.5软件对A7-QTL进行精细定位以及标记和性状的关联分析。【结果】含油量QTL的置信区间在标记ZAAS849s-R131之间,范围在21.7cM左右,其LOD峰值为9.71,距离两侧最近标记RPSaA3和ZAAS839分别为0.9和2.1cM,QTL的加性效应值是0.75;QTL区段内的单标记方差分析表明:目标区段内4个标记各3种基因型的含油量之间存在极显著差异,标记ZAAS839处的差异最显著(P=1.2×10-10);通过比较含油量和4个标记之间的对应关系,进一步推断QTL最可能位于标记RPSaA3和ZAAS839之间或临近。【结论】用BC3F1群体定位的QTL区间与DH群体分析结果相重叠,但置信区间明显缩小;定位结果进一步确认了A7连锁群上存在油分QTL的真实性,增加了在该区域存有参与控制油菜含油量基因的可靠性;QTL可能存在于标记RPSaA3和ZAAS839临近区域,两标记间距约3cM。  相似文献   

10.
A resource population constructed by F2 design with Landrace and Chinese indigenous Lantang pigs was used in this study. Seven microsatellite DNA markers on chromosome 6 and USDA2.6 pig genetic linkage map were used for interval QTL mapping, The results revealed that at the position of 38- 41 cM there was a chromosome-wide highly significant QTL affecting carcass backfat A thickness (P<0.01), which was closely linked with MN007 and the ratio of QTL additive variance to F2 phenotypic variance was 5.90%. At the position of 60-70 cM there were two chromosome-wide significant QTLs affecting carcass lean percentage (P<0.01) and skin and fat percentage (P<0.05), which were closely linked with MN003 and the ratio of QTL additive variance to F2 phenotypic variance were 18.44 and 3.75%, respectively. At the same position, there was a single-point QTL also closely linked with MN003 and highly significantly (P<0.01) affecting carcass lean. In addition, there were two chromosome-wide highly significant (P<0.01) QTLs affecting meat color and marbling, which were closely linked with MN13 at the position of 70-75 cM and the ratio of QTL additive variance to F2 phenotypic variance were 14.05 and 1.77%, respectively.  相似文献   

11.
【目的】通过Meta分析,用数学模型分析与优化定位分散的猪肌内脂肪QTL,提高QTL定位的准确度和有效性,为猪肌内脂肪相关基因的精细定位和基因挖掘奠定基础。【方法】收集猪肌内脂肪QTL及其相关信息,以美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱为参考图谱,利用BioMercator2.1将各QTL映射到参考图谱上,构建新的整合图谱,得到QTL簇。对得到的QTL簇进行Meta分析,缩短置信区间,定位“真实”QTL(MQTL),减少QTL的定位误差。【结果】收集了67个猪肌内脂肪QTL及相关信息,经比对、映射,构建新的整合图谱,发现了12个QTL簇。通过Meta分析,得到12个MQTL(MQTL1~MQTL12),其图距比原平均图距缩小29.16%~87.40%,其中,MQTL3、MQTL5、MQTL6、MQTL7、MQTL9、MQTL12图距较原平均图距缩小比例均超过50%,其图距分别为7.76,6.72,5.20,19.45,15.61,9.37 cM。【结论】得到了12个猪IMF的MQTL,其图距比原平均图距均有不同程度缩小,最小仅5.20 cM,图距缩小比例最大可达87.40%,提高了QTL定位的准确度和有效性。  相似文献   

12.
利用株型差异显著的特大粒粳稻品系TD70和籼稻小粒品种Kasalath为亲本配制组合,以单粒传方法构建含240个株系的重组自交系(RIL)群体。选用838对SSR引物进行亲本多态性筛选,共检测到302对具有多态性的引物,频率为36.04%。从中选择带型清晰且在基因组中均匀分布的141个SSR标记对RIL群体进行基因型分析,结果表明:群体中父母本基因频率分别为53%和47%,群体结构平衡性好。构建的水稻分子连锁图谱共包含141个标记座位,总图距约1 832.47 cM,标记间平均图距为12.7 cM,标记间图距范围为0.43~36.11 cM,符合QTL作图的基本要求。除第1、第8染色体个别标记位置外,其他染色体上标记顺序和位置与已公布的日本晴遗传图谱序列基本一致。以该群体为材料,对分蘖角度进行了QTL检测,共检测到控制分蘖角度的3个QTL位点,分别是qTA8、qTA9和qTA11,贡献率分别为4.10%、26.08%和4.35%,其中qTA9包含控制水稻分蘖角度基因TAC1。该图谱的构建为研究籼粳交后代各种性状的遗传规律及QTL定位打下了基础。  相似文献   

13.
长白-蓝塘猪资源群第6号染色体的QTL检测   总被引:2,自引:4,他引:2  
 以国外猪种长白猪和华南地区优良地方猪种蓝塘猪为亲本 ,建立了用于QTL定位研究的F2 资源群。应用 6号染色体上的 7个微卫星遗传标记和USDA MARC 2 .6公、母猪平均遗传连锁图谱 ,采用区间定位方法进行基因组扫描。结果表明 ,在 38~ 4 1cM间发现影响猪胴体A点膘厚的QTL ,达到染色体极显著水平 (P <0 .0 1) ,该QTL与MN0 0 7标记紧密连锁 ,其加性方差解释F2 表型方差的比例为 5 .90 %。 6 0~ 6 5cM间发现影响猪胴体瘦肉率的QTL ,达到染色体极显著水平  相似文献   

14.
 【目的】通过全基因组扫描,鉴别影响猪肉滴水损失数量性状位点(QTL)。【方法】采用EZ-滴水损失测定法和袋测定法,测定了白色杜洛克×二花脸资源群体884头F2代个体的背最长肌和半膜肌在采样后24和48 h的滴水损失。利用SAS软件分析了6个滴水损失性状间的相关性,以及滴水损失与其它肉质性状的相关性。检测了3个世代个体在19条染色体上194个微卫星的基因型。据此,应用QTL Express在线进行了影响滴水损失QTL的定位分析。【结果】滴水损失在两种肌肉间或两种测定方法间有较高的相关性(r = 0.50—0.58,P<0.01),而在两个连续测定时间点间相关性更高(r = 0.72,P<0.01)。滴水损失与24 h的pH、肉的亮度(Minolta L),肉色评分、大理石纹、水分含量及肌内脂肪含量呈中等或较低的显著相关(r = 0.09—0.35,P<0.05)。QTL分析共检测到9个影响滴水损失相关性状的QTL,6个背最长肌滴水损失QTL,分别位于SSC1、SSC10和SSC12,其中SSC10上的QTL达到5%基因组显著水平;影响半膜肌滴水损失的3个QTL分别位于SSC2、SSC6和SSC17上。【结论】在SSC6、SSC10、SSC12及SSC17上首次检测到滴水损失QTL。多个滴水损失QTL与早先定位的pH QTL或肌内脂肪含量QTL的置信区间重叠。检测到的QTL无一个既影响背最长肌滴水损失,又影响半膜肌滴水损失。大部分QTL有利等位基因(减少滴水损失)源自二花脸猪。  相似文献   

15.
大豆对大豆花叶病毒Sa株系抗扩展特性的遗传分析   总被引:1,自引:1,他引:0  
作物抗性遗传研究可为抗性育种提供理论基础.在溧水中子黄豆×南农493-1杂交组合的244个F2∶3家系中,随机取171个F2∶3家系为材料,用150对SSR分子标记,通过JoinMap30软件构建了包括70对分子标记的25个连锁群;采用平均病级和综合病情指数两种指标,用Win QTL Cartographer V25软件的多区间作图法进行QTL定位.结果表明:大豆对大豆花叶病毒Sa株系的抗扩展平均病级和综合病情指数均有4个QTL,其中在C2-b连锁群的satt422-satt640标记间和D2-a连锁群有共同的QTL,两性状的4个和5个互作QTL可分别解释表型变异的1514%和526%.这些结果为抗性性状的遗传剖析和标记辅助育种提供理论依据.  相似文献   

16.
【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb. et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max (L.) Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改进以野生大豆N24852为供体,栽培大豆NN1138-2为受体的染色体片段代换系(CSSL)群体SojaCSSLP1;对改进后的群体(SojaCSSLP2)进行3年2点田间试验,通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等4种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与大豆开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的野生片段。【结果】改进后的群体(SojaCSSLP2)由150个CSSL构成,其中,有130个家系与SojaCSSLP1相同;在原遗传图谱上,新增40个SSR标记,相邻标记间平均遗传距离由16.15 cM变为12.91 cM,大于20 cM的区段由32个减少至17个,标记覆盖遗传距离总长度较原图谱(2 063.04 cM)增加103.52 cM;群体NN1138-2背景回复率变幅为79.45%-99.70%,平均为94.62%。利用SojaCSSLP2群体,分别鉴定到与开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的4、5、5、7、14和3个工作QTL(working QTL)/片段,其中有15个工作QTL/片段能在多个环境下检测到,属共性工作QTL(joint working QTL);除片段Sct_190-Sat_293上的主茎节数位点外,野生等位变异具有的加性效应方向与双亲表型差异方向一致;单个位点分别能解释5%-64%的表型变异;同时,分别检测到3、2和2个与地点存在互作的株高、主茎节数和单株荚数QTL/片段,其中与凤阳环境的互作均具有增加表型的效应,这可能与凤阳较南京所处纬度高有关;这些位点/片段分布在26个染色体片段上,其中有7个片段与2个及以上性状相关,可能是性状相关的遗传基础;与前人结果比较,有3个开花期、3个株高、2个主茎节数、2个单株荚数、8个百粒重、2个单株粒重位点能在其他遗传背景栽培大豆中检测到,说明在这些位点上野生大豆和栽培大豆间及栽培大豆间均存在遗传差异;另外18个位点(片段)为本研究利用野生大豆的新发现。【结论】大豆开花期、株高和主茎节数的遗传基础较百粒重简单,前者均存在效应较大位点/片段,后者多由小效应位点控制,遗传基础极为复杂;野生大豆中蕴藏着新的等位变异,能拓宽栽培大豆遗传基础。  相似文献   

17.
 采用计算机模拟方法系统比较了目标数量性状的遗传力和标记密度对F2设计下单个性状数量性状座位(QTL)区间定位效果的影响。研究结果表明:随着性状遗传力的升高,QTL的检测效率以及QTL位置估计的准确性和精确性也提高,但对QTL加性效应和显性效应估计的效果则无明显影响;在一定范围内提高遗传图谱上的标记密度对保证QTL的定位效果具有积极的意义,但当相邻标记间的图距缩小到一定程度(5~10 cM)时,进一步增加标记密度并不能改进QTL定位的效果。同时,对遗传力过低的性状实施QTL定位,单纯增加标记密度无益于改进QTL定位的效果。  相似文献   

18.
 【目的】利用二花脸×沙子岭家系定位影响仔猪45日龄断奶体重的数量性状位点(quantitative trait loci,QTL)并搜寻QTL区间内与表型相关的位置候选基因,为最终鉴别因果基因奠定前期工作基础。【方法】构建二花脸×沙子岭猪F2资源家系,利用Illumina porcine 60k DNA芯片判定F2个体的基因型,对45日龄断奶体重表型进行全基因组连锁分析,定位影响二花脸×沙子岭家系F2家系仔猪45日龄断奶体重的QTL。在Ensemble(EMBL-EBI)和NCBI(National Center for Biotechnology Information)网站基因组数据库中搜寻相应的位置候选基因。【结果】在猪的2号染色体(sus scrofa chromosome 2,SSC2)上定位到了1个5%基因组水平显著的QTL,在猪的5号染色体(sus scrofa chromosome 5,SSC5)和猪的14号染色体(sus scrofa chromosome 14,SSC14)上分别定位到了1个1%基因组水平显著的QTL。在上述3个QTL区域内搜寻到了5个与仔猪45日龄断奶体重相关的候选基因,分别是SSC2上的CYP2R1、COPB1、PDE3B基因和SSC5上的NOP2、GDF3基因。【结论】本研究将影响二花脸×沙子岭家系仔猪45日龄断奶体重的QTL定位于SSC2、SSC5和SSC14,并揭示出5个与仔猪45日龄断奶体重相关的候选基因。  相似文献   

19.
基于高密度遗传图谱的玉米籽粒灌浆特性遗传解析   总被引:2,自引:2,他引:0  
【目的】灌浆是玉米籽粒形成的重要生理过程,直接决定了籽粒的最终产量。了解玉米籽粒灌浆特性相关性状对粒重形成的作用,解析灌浆特性的遗传基础,为玉米高产育种实践提供指导。【方法】以中国玉米骨干自交系黄早四(HZS)、旅28(Lv28)为亲本构建的包含172个家系的重组自交系(recombination inbred line,RIL)群体为试验材料。首先,利用Logistic模型与Richards模型,进行玉米籽粒灌浆过程拟合度的比较分析。其次,利用方差分析、相关性分析及回归分析分别比较亲本籽粒灌浆特性的差异,研究群体中不同灌浆特性相关性状的关系及其对百粒重的贡献。然后,利用GBS方法,对群体进行基因型分型,选择亲本间多态性标记,构建遗传图谱。最后,利用完备区间作图法(inclusive composite interval mapping,ICIM)进行灌浆特性与生育期相关性状的QTL分析。【结果】籽粒灌浆一般呈现慢-快-慢的变化趋势,可分为缓增期、快增期以及减缓期3个阶段。通过比较不同灌浆模型的拟合度发现,基于Richards模型的预测值与表型值间的决定系数显著高于Logistic模型。比较亲本间灌浆特性的差异发现,黄早四的平均灌浆速率为旅28的1.28倍,但旅28的灌浆持续时间为黄早四的1.07倍,亲本之间在灌浆特性方面差异明显。群体表型相关性分析发现,除缓增期灌浆持续时间(T1)外,其他灌浆特性相关性状均与百粒重(HKW)存在显著的正相关关系。回归分析发现,快增期灌浆持续时间(T2)与灌浆速率(G2)可分别解释百粒重表型变异的57.50%和30.00%。利用多态性SNP标记构建了全长为1 471 c M,标记间平均遗传图距为1 c M的遗传图谱。多个环境下共检测到26个灌浆特性相关QTL、3个百粒重相关QTL及14个生育期相关的QTL,分布在玉米除第7染色体外的其他染色体上,LOD值介于3.27—9.05,单个QTL贡献率为5.97%—21.16%。同时,利用联合环境分析发现,控制不同性状的QTL定位在染色体相同或相近的位置,形成了多个分布于玉米基因组bin 1.05、bin 2.03、bin 4.05、bin 4.06、bin 7.04、bin 9.04的QTL富集区域。其中,在位于bin 4.05(48.24 Mb—135.73 Mb)和bin 9.04(110.40 Mb—114.73 Mb)的区间之内,共定位到多个仅与灌浆速率相关的主效QTL。【结论】Richards模型能够更好地模拟玉米籽粒的灌浆过程。在灌浆特性相关性状中,快增期灌浆速率与灌浆持续时间对于玉米粒重的增加具有重要作用。单环境检测发现,灌浆持续时间相关位点仅能在单环境中得以检测,表现为环境敏感类型。联合环境分析发现,在bin 4.05和bin 9.04区间内分别检测到仅与灌浆速率相关的主效QTL,可作为玉米籽粒灌浆研究的重点区域。  相似文献   

20.
西瓜遗传图谱构建及果实相关性状QTL分析   总被引:2,自引:0,他引:2  
刘传奇  高鹏  栾非时 《中国农业科学》2014,47(14):2814-2829
【目的】利用CAPS及SSR标记构建西瓜遗传图谱,对西瓜果实相关性状进行QTL分析,为西瓜果实性状改良、主效基因精细定位及克隆奠定基础。【方法】授粉后40 d对母本PI186490、父本LSW-177以及两者杂交获得的F2群体的果实进行采摘,对每个果实的果形指数、中心和边缘可溶性固形物、中心和边缘果肉硬度、果皮硬度、种子长度、种子宽度、种子厚度以及种子百粒重进行调查,将所得数据用软件SPSS19进行统计分析。通过Illumina HiSeq 2000高通量测序平台对两亲本材料进行基因组重测序,每样品产出10 G数据量,覆盖西瓜基因组20×以上,所得数据以已经发布的基因组数据为参考基因组,用bwa软件进行基因组组装,组装后利用Samtools软件进行SNP发掘,利用perl语言自编脚本提取SNP位点前后1 000 bp的序列,将SNP及其侧翼序列输入软件SNP2CAPS以转化为CAPS标记。在每条染色体上平均选取20个CAPS酶切位点,利用Primer Premier 5软件在突变位点上下游100-500 bp左右设计CAPS引物,进行PCR扩增和酶切检验,酶切产物用1%琼脂糖凝胶电泳检测。SSR引物来源于前人发表文献,PCR扩增产物用聚丙烯酰胺凝胶电泳检测。对所有分子数据进行卡方检验,在其中选择符合1﹕2﹕1比例的标记用于构建遗传连锁图谱。利用Mapmaker/Exp version 3.0软件构建遗传连锁图谱,用Group命令对标记进行连锁分组,标记数目少于8的连锁群用Compare命令进行排序优化,标记数多于8的连锁群用Try命令排序。绘制遗传图谱使用Map Chart 2.1软件。QTL分析运用QTL Network 2.0软件,利用置换测验做1 000次重复,临界阈值为P=0.005,采用复合区间作图法,在每条染色体上以1.0 cM步行速度在全基因组范围内扫描,分析QTL加性效应和上位效应。【结果】本遗传连锁图谱共包含16个连锁群,涉及CAPS标记87个,SSR标记9个,覆盖基因组1 484.3 cM,平均图距15.46 cM。利用QTL Network 2.0分析,检测到6个西瓜果实相关性状的8个QTL位点和1对上位效应位点,其中包括果形指数QFSI 1、中心可溶性固形物QCBR、中心果肉硬度QCFF、边缘果肉硬度QEFF、种子长度QSL各1个,种子宽度QSWD 1、QSWD 2、QSWD 3 3个;上位效应位点包括果形指数FSI 2、FSI 3。表型贡献率大于等于10%的QTL有6个,可解释11.7%-18.8%的遗传变异。【结论】以CAPS标记为主要标记构建西瓜遗传图谱,并且定位了控制西瓜果实相关性状的8个加性QTL与1对上位性QTL,可用于进一步精细定位与克隆西瓜果实优良性状基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号