首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of 8 leguminous cover crops to phosphorus (P) application (7.5 mg P2O5 kg‐1 soil or 15 kg P2O5 ha‐1 to the depth of 15 cm) on soils with variable history was evaluated in a pot trial supplemented with a field experiment in 1993. The soil from a livestock farmer's field showed higher total organic carbon content and extractable cations compared to that from a non‐livestock farmer's field. In the pot trial, P application, on average, increased shoot, root, nodule dry matter and nitrogen (N) accumulation of the legumes by 82%, 45%, 871%, and 900%, respectively, compared to the control. Cajanus cajan, Crotalaria ochroleuca, Centrosema pascuorum, and white‐seeded Mucuna pruriens showed a higher P response than Centrosenza brasilianum and Chamaecrista rotundifolia. The legumes grown on the manured soil showed not only higher biomass and N accumulation, but also higher increase (110% and 117%) in total dry matter and N accumulation because of P application than those grown on the un‐manured soil (27% and 45%). In the field experiment, spreading legume groundcover at 16 weeks after planting was increased by 40% in the un‐manured soil and by 31% in the manured soil. Centrosema brasilimmm even showed a negative response of groundcover to P application. There was little response in erect legume height to P, except for measurements at 6 and 8 weeks after planting, when P increased plant height for Crotaktria on un‐manured soil. Results imply high returns can be expected when P is applied to leguminous cover crops in fairly fertile soil. The relatively low response under the field conditions, compared to pot, suggests caution is needed when P is recommended for legumes grown under environmentally stressed conditions.  相似文献   

2.
Isotopically exchangeable P (IEP) is usually considered to be completely plant‐available and the major source of P for plant uptake. The aim of the present study is to test whether plants can, besides IEP, also use non‐IEP and if part of the IEP has an equilibrium concentration in soil solution which is below the minimum concentration, CLmin, and can therefore not be taken up by plants. A pot experiment was carried out with maize for two years on two soils, an acid sandy and a neutral loamy soil, either without P fertilizer or fertilized with ten P sources of different solubility. Throughout both years of the study, pots were kept moist either without plants or planted twice with maize (Zea mays L., cv. Athletico). At the end of the experiment, plant P uptake, P concentration in the soil solution (CL), and P accessible to isotopic exchange within 5 d (E5d) were measured. Plant growth decreased the E5d which was about equal to P uptake by maize for most treatments in the acid soil. But for some treatments, i.e., five in the acid and eight in the neutral soil, P uptake was up to 50% larger than the decrease of E5d, indicating that plants had, besides IEP, also used P from non‐IEP sources. At adequate P supply, both soils had an E5d of about 100 mg P (kg soil)–1, but about 30 to 40 mg kg–1 of this IEP had an equilibrium P concentration in the soil solution below CLmin of 0.1 μmol L–1 at which P would actually not be plant‐available. This study shows that plants take up P mainly from IEP, but not the whole IEP is plant‐available. Furthermore, plants may also use P from non‐IEP sources.  相似文献   

3.
Intercropping trials were established in the sandy soils of the Benue River Basins of Nigeria to assess the effect of some food legumes used as cover crops in cassava, yam, and maize based cropping systems. The soil productivity and yield contributions of ground akidi (Sphenostylis stenocarpa), pigeon pea (Cajanus cajan), local (Kafanji), and improved (IAR‐355) cowpea (Vigna unguiculata) varieties to the main crops were assessed and presented on a fertilizer‐ equivalent basis. The cowpea varieties and ground akidi helped maize to increase the efficiency of nitrogen (N)‐phosphorus (P)‐potassium (K) fertilizer use by producing an additional 2.74 and 1.59 kg grains/kg, respectively. While an additional six tons of yam tubers was contributed by the kafanji intercrop per hectare, only about three tons was contributed by ground akidi. With the exception of pigeon pea, the test legumes were suitable for use as cover crops for cassava, yam, and maize in the Benue River Basins of Nigeria.  相似文献   

4.
The plant‐availability of phosphorus (P) in fertilizers and soil can strongly influence the yield of agricultural crops. However, there are no methods to efficiently and satisfactorily analyze the plant‐availability of P in sewage sludge‐based P fertilizers except by undertaking time‐consuming and complex pot or field experiments. We employed the diffusive gradients in thin films (DGT) technique to quantify the plant P availability of various types of P fertilizers with a novel focus on sewage sludge‐based P fertilizers. Mixtures of fertilizer and soil were incubated for 3 weeks at 60% water holding capacity. DGT devices were deployed at the beginning of the incubation and again after 1, 2, and 3 weeks. Two weeks of incubation were sufficient for the formation of plant‐available P in the fertilizer/soil mixtures. In a pot experiment, the DGT technique predicted maize (Zea mays L.) biomass yield and P uptake significantly more accurately than standard chemical extraction tests for P fertilizers (e.g ., water, citric acid, and neutral ammonium citrate). Therefore, the DGT technique can be recommended as a reliable and robust method to screen the performance of different types of sewage sludge‐based P fertilizers for maize cultivation minimizing the need for time‐consuming and costly pot or field experiments.  相似文献   

5.
The study aimed at investigating effects of lime and mineral P fertilizers on P uptake and growth of maize (Zea mays subsp.) in greenhouse pot experiment. Combination of four P rates and four lime rates were applied to four highly acidic soil samples and the soils were incubated for a total of 112?days after which maize (Zea mays subsp.) was planted. The maize plants were harvested for analysis after 42?days of growth. Control experiments were also included. Available P (Bray I) and pH were significantly increased after incubation. Maximum available P was obtained in the soils that received the highest P rate and optimum lime rate. Levels of exchangeable acidity were significantly decreased in the P and lime treated soils compared to the control experiments. Plant biomasses and P uptake of maize increased significantly (p?≤?0.001) with application of P and lime compared to the control experiments.  相似文献   

6.
Abstract

The large variation in phosphorus acquisition efficiency of different crops provides opportunities for screening crop species that perform well on low phosphorus (P) soil. To explain the differences in P efficiency of winter maize (Zea mays L.), wheat (Triticum aestivum L.), and chickpea (Cicer arietinum L.), a green house pot experiment was conducted by using P‐deficient Typic ustochrept loamy sand soil (0.5 M NaHCO3‐extractable P 4.9 mg kg?1, pH 7.5, and organic carbon 2.7 g kg?1) treated with 0, 30, and 60 mg P kg?1 soil. Under P deficiency conditions, winter maize produced 76% of its maximum shoot dry weight (SDW) with 0.2% P in shoot, whereas chickpea and wheat produced about 30% of their maximum SDW with more than 0.25% P in shoot. Root length (RL) of winter maize, wheat, and chickpea were 83, 48, and 19% of their maximum RL, respectively. Considering relative shoot yield as a measure of efficiency, winter maize was more P efficient than wheat and chickpea. Winter maize had lower RL/SDW ratio than that of wheat, but it was more P efficient because it could maintain 2.2 times higher P influx even under P deficiency conditions. In addition, winter maize had low internal P requirement and 3.3 times higher shoot demand (i.e., higher amount of shoot produced per cm of root per second). Even though chickpea had 1.2 times higher P influx than winter maize, it was less P efficient because of few roots (i.e., less RL per unit SDW). Nutrient uptake model (NST 3.0) calculations satisfactorily predicted P influxes by all the three crops under sufficient P supply conditions (CLi 48 µM), and the calculated values of P influx were 81–99% of the measured values. However, in no‐P treatment (CLi 3.9 µM), under prediction of measured P influx indicated the importance of root exudates and/or mycorrhizae that increase P solubility in the rhizosphere. Sensitivity analysis showed that in low P soils, the initial soil solution P concentration (CLi) was the most sensitive factor controlling P influx in all the three crops.  相似文献   

7.
ABSTRACT

Cover crops are important components of a sustainable crop-production system in plantation crops such as cacao (theobroma cacao), coffee (Coffee arabica), oil palm (Elaeis Spp.), and banana (Musa Spp.). Optimal growth of cover crops in plantation agriculture is determined by adaptability of crop species, light intensity reaching their leaf canopies, and their nutrient-use efficiencies, including those of micronutrients. An experiment was conducted in a climatically controlled growth chamber to evaluate the influence of levels of light intensity on growth and micronutrient [boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)] uptake parameters in legume cover crops. Two photosynthetic photon flux density (PPFD, 200 and 400 μmol m?2 s?1) light treatments were imposed on nine legume species (joint vetch (Aeschynomene americana), sunhemp (Crotalaria juncea L.), Crotalaria rchroleuca, showy crotalaria (crotalaria spectabilis), hairy indigo (Indigofera hirsute L.), lab-lab (Lablab purpureus), sesbania (Sesbania microcarpa), Brazilian stylo (Stylosanthes guianensis), and cowpea (Vigna unguiculata)). Overall, light intensity significantly affected growth, micronutrient uptake, and use-efficiency ratios; with few exceptions, interactions between cover crop species and PPFD were also significant. Such PPFD × crop species interactions show that the cover crops used in this study differed in growth and nutrient-uptake parameters under the conditions imposed. Sunhemp, cowpea, sesbania, and lab-lab species were superior in producing shoot dry weight and in nutrient accumulation compared with other species at lower as well as at higher PPFD levels. Interspecific differences in nutrient influx and transport were observed. Influx and transport of micronutrients was in the order Mn > B > Fe > Zn > Cu. Overall, growth, nutrient uptake, and use-efficiency ratios were higher at higher PPFD than at lower PPFD. Results of this study indicate that the use of proper crop species at adequate light intensities is an important component of successful cultivation of cover crops in plantation agriculture.  相似文献   

8.
The organic matter supply can promote the dispersal and activity of applied plant growth–promoting rhizobacteria (PGPR), but the complementary effect of organic fertilization and PGPR application on the turnover of P is scarcely known. The effects of the application of two PGPR strains (Pseudomonas fluorescens strain DR54 and Enterobacter radicincitans sp. nov. strain DSM 16656) alone and in combination with organic fertilization (cattle manure and biowaste compost) on growth and P uptake of maize (Zea mays L.) and oilseed rape (Brassica napus L.) were investigated under semi–field conditions. Furthermore, P pools and phosphatase activities in soil and the arbuscular mycorrhizal colonization of maize were examined. The organic‐fertilizer amendments increased the growth and P uptake of both plant species and the soil P pools. The application of the E. radicincitans strain increased P uptake of oilseed rape when no organic fertilizer was added. Furthermore, the application of both bacterial strains increased the activities of phosphatases under both plant species. Here, the effect of the PGPR application even exceeded the effect of organic fertilization. The magnitude of this effect varied between the different fertilizing treatments and between the two bacterial strains. Phosphatase activities were increased to the greatest extent after application of P. fluorescens in the unfertilized soil. Under rape increases of 52% for acid phosphatase activities (ACP), 103% for alkaline phosphatase activities (ALP), and 133% for phosphodiesterase (PDE) were observed therewith. In the unfertilized soil, the application of P. fluorescens also resulted in a strong increase of the arbuscular mycorrhizal colonization of maize. We conclude that application of PGPR can promote the P mobilization and supply of crops in P‐deficient soils, however, in combination with organic fertilization these effects might be masked by a general improved P supply of the crops. Interactive effects of applied bacterial strains and organic fertilization depend on the sort of organic fertilizer and crop species used.  相似文献   

9.
In tropical regions with well‐defined wet and dry seasons, repeated wetting and drying cycles can harden exposed soils and inhibit root growth. While this phenomenon has been well documented, the relationships between plant productivity and chemical and physical soil parameters have not been well defined. The current study identifies the abiotic parameters that best relate to measures of plant development, specifically to corn productivity. The primary goal of this research was to provide information to improve agricultural sustainability in humid tropical ecosystems. The effects of using plant residues as a cover on a sandy soil were studied. Four leguminous species were planted in an alley cropping system, Leucaena leucocephala, Cajanus cajan, Clitoria fairchildiana and Acacia mangium, and corn was planted in January 2007 between legume rows. We measured the most important chemical and physical soil parameters. Yield indicators included cob weight and the weight of 100 kernels. The application of plant residues altered soil conditions and increased rootable soil volume. This change was associated with an increase by 10% in water retention above field capacity in the uppermost soil layer of the residue‐covered sections of the experiment. In the control sections cobs were up to three times lighter (31.43–93.38 g) in the bare soil control than those from residue‐covered sections of the experiment. Dynamic indicators related to nutrient absorption and crop evapotranspiration, such as the number of days with water stress and rootable soil volume, were the most suitable indicators for assessing soil quality. The response of corn was best related to complex physical indicators, including the amount of N applied via legume residues.  相似文献   

10.
Abstract

The volume of soil treated with P fertilizer affects P uptake by the crop. Earlier studies have shown that the stimulation of root growth in P‐fertilized soil was similar for both corn (Zea mays L.) and soybean (Glycine max L. Merr). The objective of this research was to determine the effect of fertilizer P placement on P uptake and shoot and root growth of spring wheat (Triticum vulgare L.). Wheat was grown for 34 days in Raub silt loam (Aquic Argiudolls) in a controlled climate chamber. One rate of phosphate per pot, 150 mg P per three kg of soil, was mixed with 2, 5, 10, 20, 40 and 100% of the soil in the pot. The P was equilibrated with moist soil for 5 days at 70°C followed by 21 days at 25° C before transplanting 8‐day‐old wheat plants into each 3 L pot. The P stimulation of root growth in the P‐treated soil was similar to that for corn and soybeans. The effect could be described by the equation y = x0.7 where y is the fraction of the root system in the P‐fertilized soil where P is mixed with x fraction of the soil. The greatest P uptake and plant growth occurred when added P was mixed with 20% of the soil.  相似文献   

11.
Low available phosphorus (P) is a serious constraint for crop production in acidic tropical soils. Economical yields in these environments require application of large amounts of costly nitrogen (N) and P fertilizers. Although phosphate rock (PR) has been proposed as a less expensive P source, the slow P release to the soil limits its use for annual crops. The objective of this work was to examine the effect of inoculating a nonsterile acidic soil with vesicular arbuscular mycorrhizal (VAM) Gigaspora margarita on PR dissolution and P uptake by aluminum (Al)–tolerant maize inbreds. Three maize inbreds from CIMMYT, at Cali, Colombia, ranked as Al‐tolerant and one local breed ranked as Al‐susceptible were seeded in 4‐kg pots filled with a soil of pH 4.1 and 2.5 mg kg?1 available P. Inoculants (Gigaspora margarita and indigenous VAM), P fertilizer (Riecito phosphate rock and triple superphosphate), and the four inbreds were arrainged in a factorial design (2 × 2 × 4) with four replications. Plants were harvested 35 days after seeding, and P was determined in shoots. Four 2.5‐cm‐diameter soil cores were obtained from each pot to determine root length (two cores), root colonization (one core), and available P (one core). The inoculation with Gigaspora margarita caused a reduction in root length but better root colonization, 55% increase in P uptake, and 27% increase in shoot growth. When PR was used as fertilizer, plant growth was reduced in both roots and shoots. However, when PR was used in the presence of Gigaspora margarita, inbreds had 13% longer roots and shoot growth was the same as shoots fertilized with triple superphosphate. Our data suggest that inbreds exhibit different abilities to acquire P from PR under the influence of Gigaspora margarita fungi.  相似文献   

12.
Previous research, mostly in temperate agricultural systems, has shown that management practices such as fallow period, tillage, crop rotation, and phosphorus (P) fertilizer applications can influence the abundance of arbuscular mycorrhizal fungi (AMF), but relatively little is known about their effect in smallholder farmers’ fields in sub-Saharan Africa. In this study, we evaluated the effect of four subsistence crops that form associations with AMF, moderate P fertilization, tillage, and fallow period on the subsequent AMF abundance on three contrasting low fertility soils in south-western Zimbabwe. Arbuscular mycorrhizal fungal abundance was estimated based on early mycorrhizal colonization of maize (Zea mays L.) or lablab (Lablab purpureus L.) following the various treatments. The previously grown crop significantly affected AMF abundance (p < 0.001). It was highest after lablab followed by pigeonpea (Cajanus cajan L.), maize, and groundnut (Arachis hypogaea L.), and there were significant positive correlations between AMF abundance and aboveground biomass of pigeonpea, lablab, and maize. Contrary to much previous research, P fertilization, fallowing, and tillage did not significantly decrease AMF abundance. In smallholder farmers’ fields in the semi-arid tropics of sub-Saharan Africa, therefore, growing vigorous mycorrhizal plants prior to the dry season could be more important than minimizing P fertilizer applications, fallow periods, and tillage to maintain or increase AMF abundance.  相似文献   

13.
In no-tillage systems (NTS), cover crops are recommended to increase the productivity of agricultural systems. Furthermore, a greater diversity of cover crops in NTS favours an increase in soil carbon (C) stocks. However, there are scarce published data on the relationship between the chemical composition of cover crops and the accumulation of labile and stable fractions of SOM. We evaluated the relationship between the chemical composition of cover crops and SOM fractions, C stocks and maize yield. Hemicellulose, cellulose and lignin contents were determined for Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan and Sorghum bicolor, cultivated in the off-season of maize. Canavalia brasiliensis had high N (20.96 g kg−1) and hemicellulose (185.67 g kg−1) contents, lower lignin content (39.50 g kg−1) and high dry matter yield (3,251 kg ha−1). All these characteristics resulted in a better SOM quality. Urochloa ruziziensis, with higher hemicellulose and lower lignin contents, and low lignin/N ratio, was associated with accumulation of TOC (19.95 and 18.33 g kg−1 in 0- to 10-cm and 10- to 20-cm layers, respectively) and mineral-associated organic C (on average, 16.68 g kg−1) in the soil. Cover plants with N:lignin ratio lower than 2.0 are fundamental for soil C sequestration. In conclusion, it is recommended the adoption of Urochloa ruziziensis and Canavalia brasiliensis as cover plants improve maize production, soil organic matter quality and C sequestration in the Cerrado region.  相似文献   

14.
Many of the soils in Santa Cruz Department, Bolivia, are degraded by serious weed infestation, subsoil compaction, and low organic matter and nitrogen contents. Fallow periods with cover crops are frequently used to recuperate the fertility of degraded soils, but little information exists on the desired characteristics of cover crops for this purpose. The aim of this study was to describe those characteristics, believed to be most relevant to the rehabilitation of degraded soils in Santa Cruz, of 14 cover crops, which included three grasses, nine legumes, and two winter cover crops sown after summer soybean (Glycine max). The cover crop characteristics, evaluated over two years, were ease of establishment, competitiveness against weeds, tolerance to drought, dry matter production and nutrient contents of the above-and below-ground residues, nodulation, rooting density and root diameters. The three grasses Tobiata (Panicum maximum var. Tobiatd), Centenario (Panicum maximum var. Centenario) and Brizantha (Brachiaria brizantha) appeared to be the most promising for increasing soil organic matter contents, and the three grasses and groundnuts (Arachis hypogaea)/pigeon pea (Cajanus cajan) for the recuperation of subsoil structure. Mucuna deeringiana and Lablab (Dolichos lablab) were the most promising for increasing soil N status. All of these cover crops competed successfully with weeds.  相似文献   

15.
Aspergillus tubingensis and A. niger were isolated from the landfills of rock phosphate mines and tested for their efficacy to solubilize rock phosphate (RP), and improve plant growth and phosphate (P) uptake by plants grown in soil amended with RP. The results showed that they effectively solubilized RP in Pikovskaya's (PKV) liquid medium and released significantly higher amounts of P into the medium. A. tubingensis solubilized and released 380.8 μg P mL?1, A. niger showed better efficiency and produced 403.8 μg P mL?1. Field experiments with two consecutive crops in alkaline agricultural soil showed that inoculation of these fungi along with RP fertilization significantly increased yield and nutrient uptake of wheat and maize plants compared with control soil. P uptake by wheat and maize plants and the available P increased significantly in the RP-amended soil inoculated with fungi compared with control. These results suggest that the fertilizer value of RP can be increased, especially in alkaline soils, by inoculating P-solubilizing fungi.  相似文献   

16.
In our previous studies, pigeonpea (Cajanus cajan L.), groundnut (Arachis hypogaea L.), and rice (Oryza sativa L.) were found to have a higher ability to take up Fe- or Al-bound phosphorus (P) than soybean (Glycine max L.) and sorghum (Sorghum bicolor L.). Phosphorus absorption characteristics like I max, K m, C min, and FeIII reduction activity of roots, and root exudates in various crops were examined with a view to analyzing the mechanisms of P uptake. Phosphorus uptake ability was largely unrelated to variations in I max, K m, C min, and FeIII reduction activity of roots. Phosphorus-solubilizing activity in anionic fractions of root exudates was detected in pigeonpea but not in rice or groundnut. Malonic acid was the major component followed by oxalic and piscidic acid. These organic acids were able to release P from FePO4 and A1PO4. The higher P uptake ability of pigeonpea in soils with low P fertility presumably depends on the secretion of such organic acids from roots.  相似文献   

17.
Cover crops are important components of copping systems due to their beneficial effects on soil physical, chemical, and biological properties. A greenhouse experiment was conducted to evaluate influence of phosphorus (P) fertilization on nutrient-use efficiency of 14 tropical cover crops. The P levels tested were 0 (low), 100 (medium), and 200 (high) mg kg?1 of soil. The cover crops tested were Crotalaria breviflora, Crotalaria breviflora, Crotalaria spectabilis Roth, Crotalaria ochroleuca G. Don, Crotalaria juncea L., Crotalaria mucronata, Calapogonium mucunoides, Pueraria phaseoloides Roxb., Pueraria phaseoloides Roxb., Cajanus cajan L. Millspaugh, Dolichos lablab L., Mucuna deeringiana (Bort) Merr., Mucuna cinereum L., and Canavalia ensiformis L. DC. Agronomic efficiency (shoot dry weight per unit P applied), physiological efficiency (shoot dry weight per unit of nutrient uptake), and apparent recovery efficiency (nutrient uptake in the shoot per unit nutrient applied) were significantly varied among cover crops. Agronomic efficiency decreased with increasing P levels. Overall, physiological efficiency of nutrient uptake was in the order of P > sulfur (S) > magnesium (Mg) > calcium (Ca) > potassium (K) > nitrogen (N). Similarly, apparent recovery efficiency was in the order of N > K > Ca > Mg > P > S. Different recovery efficiency in cover crops can be useful in selecting cover crops with high recovery efficiency, which may be beneficial to succeeding crops in the cropping systems. The P × cover crops interactions were significant for soil extractable Ca2+, P, cation exchange capacity (CEC), Ca saturation, Ca/K ratio, and K/Mg ratio, indicating that cover crops change these soil property differently under different P levels. Thus, cover crops selection for different P levels is an important strategy for using cover crops in cropping systems in Brazilian Oxisols. Optimal values of soil pH, soil Ca and Mg contents, hydrogen (H) + aluminum (Al), P, CEC, base saturation, Ca saturation, Mg saturation, and K saturation were established for tropical cover crops grown on an Oxisol.  相似文献   

18.
Effects of weed fallow and of three grasses and five leguminous cover crops were investigated on soil structure of an eroded Alfisol. Crop growth and yields of subsequently grown arable crops were assessed under strip-tillage through the mechanically or chemically suppressed sods. Cover crops and fallowing improved soil organic matter content, total N, water retention and transmission properties, and decreased bulk density only in the top 0–10 cm depth. The improvements rendered were, however, slight. Grasses were difficult to suppress with paraquat or mechanical mowing, which resulted in low or negligible yield of maize, cowpea, and cassava. Leguminous covers were easily suppressed with paraquat application, and resulted in good yield of maize and cowpea. Mechanical mowing was as successful as herbicide application for suppressing Stylosanthes guianensis and resulted in satisfactory yield of maize and cowpea. Yield of cassava tubers was extremely low due to shallow surface soil, compacted sub-soil horizons, and competition from weeds and regrown cover crops. Results are discussed in terms of the amelioration of eroded and degraded soil.  相似文献   

19.
A pot experiment was conducted to investigate factors contributing to phosphorous (P) efficiency of ornamental plants. Marigold (Tagetes patula) and poinsettia (Euphorbia pulcherima) were cultivated in a peat substrate (black peat 80% + mineral component 20% on a volume basis), treated with P rates of 0, 10, 35, 100, and 170 mg (L substrate)–1. During the cultivation period, plants were fertigated with a complete nutrient solution (including 18 mg P L–1) every 2 d. Both poinsettia and marigold attained their optimum yield at the rate of 35 mg P (L substrate)–1 and the critical level of P in shoot dry matter of both crops was 5–6 mg g–1. After planting, plant‐available P increased at lower P rates to a higher level for poinsettia than for marigold, but no significant change was observed at higher P rates. Balance sheet calculations indicated that at lower P rates more P was fertigated than was taken up by the plants. Root‐length density, root‐to‐shoot ratio, and root‐hair length of marigold were doubled compared to that of poinsettia. Root‐length density increased with crop growth, and 10 d after planting the mean half distance between roots exceeded the P‐depletion zone around roots by a factor of 3 and 1.5 for poinsettia and marigold, respectively. Thus, at this early stage poinsettia exploited only 10% of the substrate volume whereas marigold utilized 43%. Later in the cultivation period, the depletion zones around roots overlapped for both crops. Taking into account P uptake via root hairs, the simulation revealed that this was more important for marigold compared to poinsettia especially at low P‐supply levels. However, increase of P uptake due to root hairs was only 10%–20% at optimum P supply. For the two lower P levels, the P‐depletion profile around roots calculated for 10 d after planting showed that after 2 d of depletion the concentration at the root surface was below the assumed Km value (5 μM) and the concentration gradient was insufficient to fit the demand. A higher content of plant‐available P in the substrate was observed for poinsettia compared to marigold in the treatment with P application adequate for optimum growth, because more fertigated P was accumulated during early stages of cultivation due to lower root‐length density of poinsettia. The observed difference of root morphological parameters did not contribute significantly to P‐uptake efficiency, since P mobility in the peat substrate was high.  相似文献   

20.
菌根对紫色土上间作玉米生长及磷素累积的影响   总被引:4,自引:2,他引:4  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号