首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of varying hydrogel (0, 0.5, and 1.0% w/w) supply on some agro-physiological properties, such as dry matter, nutrient contents, chlorophyll contents, proline content, and ionic balance of bean plants in different salt sources and stress due to doses were investigated. Plants were treated with eight salt sources [sodium chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), calcium sulfate (CaSO4), potassium chloride (KCl), potassium sulfate (K2SO4), magnesium chloride (MgCl2), magnesium sulfate (MgSO4)] and four concentrations (0, 30, 60, and 120 mM doses) for 60 days in a growth media. Salt type, doses, and hydrogel (HG) affected the soil electrical conductivity. Soil salinity affected the parameters considered, and changed the nutrient balance of plants. High salt concentration caused substantial reduction in plant growth. Different salt concentrations negatively affected plant dry weight. The highest decrease of plant root dry weight was obtained with NaCl application followed by Na2SO4, CaCl2, CaSO4, MgCl2, MgSO4, KCl, and K2SO4, and similarly NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, and MgSO4 in root dry weight. Total chlorophyll and nitrate contents of plants decreased with increasing salt doses, and the lowest value was obtained for NaCl application. Proline contents of plants were increased with increasing salt doses, and the highest value was obtained with the NaCl application. The effects of salt concentrations in nitrogen (N), potassium (K), and phosphorus (P) content of plants were significant. The presence of salt in the growth medium induced an important decrease the macro nutrient of the root and shoot part of plant such as N, P, K, calcium (Ca), and magnesium (Mg) content, but the N and P content of root and shoot part of the plant were increased with increasing of the HG application doses. The highest N and P increases were obtained with the 1.0 HG application for all salt types for both the root and shoots of plants. The HG added to saline soil significantly improved the variables affected by high salinity and also increased plant N and P, reduced soil electricity conductivity, nitrate, proline, and electrolyte leakage of plants, enhanced plant root and shoot dry weight by allowing nutrients and water to release to the plant as needed. The results suggested that HG has great potential for use in alleviating salinity stress on plant growth and growth parameters in saline soils of arid and semi-arid areas. This HG appears to be highly effective for use as a soil conditioner in vegetable growing, to improve crop tolerance and growth in saline conditions. It is intended to confirm the results of these studies by field trials.  相似文献   

2.
Environmentally stressed plants frequently have elevated rates of ethylene evolution and high accumulation of free ammonium by their foliage. The objective of this study was to investigate ethylene evolution and ammonium accumulation by nutrient‐deficient and ammonium‐stressed tomato plants (Lycopersicon esculentum Mill. ‘Heinz 1350’ and neglecta‐1) grown in a greenhouse. In soil culture, ‘Heinz 1350’ was more sensitive to ammonium toxicity and had higher ethylene evolution than neglecta‐1. High ethylene evolution corresponded with appearance of ammonium toxicity symptoms in both lines. In sand culture, ‘Heinz 1350’ and neglecta‐1 grown with K, Ca, or Mg deficiency in NO3 ‐based nutrient solutions had higher ammonium accumulation and higher ethylene evolution than plants grown with complete nutrition. P‐deficient plants had elevated ammonium accumulation but low ethylene evolution. Plants grown on NH4 +‐based nutrition with pH buffering by CaCO3 had lower ethylene evolution and lower ammonium accumulation than plants grown in unbuffered solutions but had higher values than plants grown with NO3 ‐based nutrition. Adequate K nutrition suppressed ethylene evolution and ammonium accumulation for all plants regardless of nitrogen regimes. Ammonium accumulation and ethylene biosynthesis in plants appear to be related processes. They appear to be indicators of stress and may have roles in development of symptoms of nutritional stresses.  相似文献   

3.
Abstract

The efficiency of two modified Kjeldahl procedures (H2SO4‐H2‐O2‐Li2SO4‐Se and H2SO4‐Na2SO4) for digestion of plant tissue for analysis of P, K, Ca and Mg contents was compared with a conventional wet (HNO3‐HClO4) and a dry ashing procedure. Six plant tissues were chosen as test material: leaves of Malus pumila Mill., Medicago sativa L., Dactylis glomerata L., fruit and wood tissue of M. pumila and Nothofagus mensiesii Oerst. leaf litter. Apart from low P contents of M. pumila wood tissue by dry ashing, the mean P, K, Ca and Mg contents as determined after the four digestion procedures were in good agreement. Furthermore, the precision of the data for each element was generally quite similar for each of the digestion methods. The N contents determined by the two modified and a conventional Kjeldahl procedure (H2SO4‐K2SO4‐CuSO4‐Se) also agreed closely.  相似文献   

4.
The effects of different levels of arsenic (As) and salinity on bean plant (Phaseolus vulgaris L., cv. Buenos Aires) nutrition were investigated. We studied the processes of absorption and accumulation of macronutrient elements: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg). The experiment was performed in soilless culture at two levels of As: 2 and 5 mg AsL‐1 (added as sodium arsenite, NaAsO2), and three saline levels [only sodium chloride (NaCl) was added]: 1, 2, and 4 dS‐m‐1. Sodium arsenite and NaCl significantly affected macronutrients allocation within bean plant at concentration levels used in this study. Arsenite depressed K, Na, and Mg concentrations in root, whereas root N, and Ca levels were increased. Nitrogen, P, K, and Na concentrations were significantly higher in As‐stressed plants compared with controls. The addition of NaCl increased Ca concentration in roots and decreased that of K. Salinity tended to increase leaf concentrations of K, Na, Ca, and Mg; whereas leaf N and P levels decreased with increasing salinity.  相似文献   

5.
Forty-two-day-old wheat (Triticum aestivum L. var. Asakazekomugi) plants were treated with complete, K-free (—K), Ca-limited (—Ca), and Mg-free (—Mg) nutrient solutions for 10 days using 2 mM NH4NO3 as the nitrogen source, which was replaced with 4 mM 15 NH4C1 or Na15NO3 for the subsequent 2 days to investigate the absorption, translocation, and assimilation of inorganic nitrogen in relation to the mineral supply. In another experiment plants were grown on NO3 ?, NH4 +, NH4N03, and K-free and Ca-limited NH4N03 nutrient solutions for 10 days, and then in the latter three treatments the nitrogen source was replaced with NO3 ? and half of the —K plants received K for 6 days to examine the changes in the nitrate reductase activity (NRA).

Wheat plants absorbed NH4 ?N and NO3-N at a similar rate. Influence of K on the absorption of N03-N was stronger than that on the absorption of NH4-N in wheat plants. The supply of K to the —K plants increased the absorption of NO3-N, while the absorption of NH4-N still remained at a lower rate in spite of the addition of K. A limited supply of Ca and lack of Mg in nutrient media slightly affected the absorption of NH4-N. The influence of K was stronger on the translocation of nitrogen from roots to shoots, while Ca and Mg had little effect. When K was supplied again to the —K plants the translocation of NO3,-N was more accelerated than that of NH4-N. Incorporation of NH4-N into protein was higher than that of NO3-N in all the tissues; root, stem, and leaf. Assimilation of NH4-N and NO3-N decreased by the —K and —Mg treatments.

Leaf NRA of wheat plants decreased in the —K and —Ca plants. Higher leaf NRA was found when K was given again to the —K plants than when the plants were continuously grown in K-free media. Replacement of NO3 ? with NH4 + as the nitrogen source caused a decline of leaf NRA, while the supply of both NH4 ?N and NO3-N slightly affected the leaf NRA.  相似文献   

6.
The chile pepper plant seldom responds to N and P fertilizers on fertile soils. Surplus industrial H2SO4 and elemental S have created interest in “mining”; calcareous soils for additional supplies of P, Ca, Mg and micronutrients. The effect of variable S, on the growth of chile and broccoli was evaluated holding other nutrients constant. Growth of chile and broccoli plants was significantly increased in the greenhouse and chile yield increased in the field. Incremental S additions increased the water extractable and desorbable Ca + Mg and P contents of soil. The total N and K content of chile plant grown in the greenhouse increased, and then decreased, P decreased, as S rates increased. Yield of dry red chile with constant N peaked at 16.5 g S m‐2 and then decreased with increasing S in the field. Rroccoli responded more to S application than to directly applied foliar micronutrient solutions (Fe and 7n), and responded much better to (NH4)2SO4 + S than to Ca(NO3)2 at equivalent N rates. Increased soluble Ca + Mg content of the soil in the presence of S was thought to influence plant absorption of NH4 and/or K.  相似文献   

7.
Abstract

Calcium (Ca) uptake was studied by immersing the central tip of a trifoliate leaf in various concentrations of 45CaCl2 solutions and under moisture stress conditions during the seed‐filling period of soybean. Beta‐ray gauging and the diurnal leaf temperature variation showed similar characteristics for leaf water status. The activities of 45Ca were significantly higher (p < 0.0001) at 5, 10, 20, and 30 mM concentrations for water stressed and non‐stressed leaves compared with the control. Calcium (45Ca) activities at 5, 10, and 20 mM Ca concentrations between stressed and non‐stressed leaves were not significant, but the difference in their mean values at 30 mM Ca concentration was significant (p = 0.0159). The relationship between 45Ca uptake and Ca concentration was parabolic for both stressed (R2 = 0.77) and non‐stressed (R2 = 0.81) leaves. Autoradiographs indicated Ca movement through the mid‐rib and veins of the tip‐immersed trifoliate leaf but showed no activity in other plant parts. An activity gradient developed between seeds when a pod‐tip was immersed in the radioactive solution.  相似文献   

8.
The effects of varying fertilizer application rates [100–15–100 or 300–46–300 mg L‐1 of nitrogen (N)‐phosphorus (P)‐potassium (K)] and pinching dates on nutrient uptake patterns of poinsettias were studied. During the first seven weeks after potting, varying the N‐P‐K fertilization rate from 100–15–100 to 300–46–300 mg L‐1 N‐P‐K had no effect on plant height, dry weight, nutrient concentration, or nutrient content of poinsettias. The uptake ratios for NO3‐N, K, calcium (Ca), and magnesium (Mg) all were <40% of the amount that was available at the 100 mg L"1 N and K fertilization rate, indicating that poinsettias require lower levels of NO3‐N, K, Ca, and Mg than what was available from the 100–15–100 mg L"1 N‐P‐K fertilization rate. The higher uptake ratios of >60% and >70%, respectively, for NH4‐N and P at the 100 mg L"1 N and K fertilization rate indicated the plants utilized a higher percentage of the available NH4‐N and P, indicating that an application rate >18 mg L‐1 NH4‐N and >15 mg L‐1 P would be required by poinsettias from the week before the plants were pinched through three weeks after pinching. The 300–46–300 mg L‐1 N‐P‐K fertilization rate provided excessive nutrients that were not utilized by the plants during the early stages of plant growth.  相似文献   

9.
Excessive sodium (Na) accumulation in soil, which can be a problem for production agriculture in arid and semiarid regions, may be ameliorated by calcium (Ca). The mechanisms of Ca amelioration of Na stress in plants have received much more attention than has the effect of the anion of the Ca salt. Our objective was to determine the relative effects of the chloride (Cl) and sulfate (SO4 2‐) anions on Ca amelioration of Na stress. We exposed Phaseolus vulgaris L., cv. Contender seedlings growing in 1‐L styrofoam pots under greenhouse conditions to sodum chloride (NaCl) or sodium sulfate (Na2SO4) at concentrations of 0, 15, 30, 45, and 60 mmol/L combined with either 15 and 30 mmol/L of calcium sulfate (CaSO4) or calcium chloride (CaCl2). Plants in each styrofoam pot were irrigated with 300 mL of salt solution (leaching fraction = 0.25) every fourth day for four weeks. Increasing Na concentration decreased shoot dry weight, number and weight of pods, and number of nodules. The photo‐ synthesis rate was affected by all levels and types of Na salts. Calcium sulfate treatments ameliorated Na‐induced salinity in snapbeans more than did comparable CaCl2 treatments. The thermodynamic activity of Ca, Na, and Cl was linearly related to the tissue content of each ion.  相似文献   

10.
Abstract

The effects of irrigating with saline water on native soil fertility and nutrient relationships are not well understood. In a laboratory experiment, we determined the extent of indigenous nutrient [calcium (Ca), magnesium (Mg), potassium (K), manganese (Mn), and zinc (Zn)] release in salt-saturated soils. Soils were saturated with 0, 75, and 150 mmolc L?1 sodium chloride (NaCl) solution and incubated for 1, 5, 10, and 15 days. The saturation extracts were analyzed for pH, ECe, and water‐soluble Ca, Mg, K, Mn, and Zn, and the remainder soil samples were analyzed for exchangeable forms of these elements. In a subexperiment, three soil types (masa, red‐yellow, and andosol) were saturated individually either with 100 mmolc L?1 of NaCl, sodium nitrate (NaNO3), or sodium sulfate (Na2SO4) salt. These salts were also compared for nutrient release. Soils treated with NaCl released higher amounts of water‐soluble than exchangeable nutrients. Except for Zn, the average concentrations of these nutrients in the soil solution increased significantly with time of incubation, but concentrations of the exchangeable forms varied inversely with time of incubation. The masa soil exhibited the highest concentrations of Ca and Mg, whereas K was highest in andosol. The extract from soils treated with NaCl contained greater amounts of soluble cations, whereas soils treated with Na2SO4 produced the lowest concentration of these elements irrespective of the type of soil used.  相似文献   

11.
The decrease in anthropogenic deposition, namely SO42— and SO2, in European forest ecosystems during the last 20 years has raised questions concerning the recovery of forest ecosystems. The aim of this study was to evaluate if the long term data of element concentrations at the Fichtelgebirge (NE‐Bavaria, Germany) monitoring site indicates a relationship between the nutrient content of needles and the state of soil solution acidity. The soil at the site is very acidic and has relatively small pools of exchangeable Ca and Mg. The trees show medium to severe nutrient deficiency symptoms such as needle loss and needle yellowing. The Ca and Mg concentrations in throughfall decreased significantly during the last 12 years parallel to the significant decline in the throughfall of H+ and SO42— concentrations. Soil solution concentrations of SO42—, Ca and Mg generally decreased while the pH value remained stable. Aluminum concentrations decreased slightly, but only at a depth of 90 cm. Simultaneously a decrease in the molar Ca/Al and Mg/Al ratios in the soil solution was observed. Ca and Mg contents in the spruce needles decreased, emphasizing the relevance of soil solution changes for tree nutrition. The reasons for the delay in ecosystem recovery are due to a combination of the following two factors: (1) the continued high concentrations of NO3 and SO42— in the soil solution leading to high Al concentrations and low pH values and, (2) the decreased rates of Ca and Mg deposition cause a correlated decrease in the concentration of Ca and Mg in the soil solution, since little Ca and Mg is present in the soil's exchangeable cation pools. It is our conclusion that detrimental soil conditions with respect to Mg and Ca nutrition as well as to Al stress are not easily reversed by the decreasing deposition of H+ and SO42—. Thus, forest management is still confronted with the necessity of frequent liming to counteract the nutrient depletion in soils and subsequent nutrient deficiencies in trees.  相似文献   

12.
The effects of salinity due to sodium chloride (NaCl) and nitrogen (N) concentration in the nutrient solution were studied with sweet pepper plants. Four saline treatments combined with two N fertilization were used. Nitrate‐nitrogen (NO3 ‐N) presence in the nutrient solution produced an increase of sodium (Na) and potassium (K) contents in leaves as well as N. Salinity promoted a reduction of K, phosphorus (P) and Ca and increased the Na concentration in leaves. Calcium (Ca) concentrations were lower in the higher NO3 ‐N treatment although N level was reached adding calcium nitrate and salinity increased P, K, Na, Ca, and magnesium (Mg) contents in fruits. Yield was increased in the highest N treatment.  相似文献   

13.
Although there are a variety of ions occurring in the soil throughout most of North America, the majority of halophyte literature focuses on the effects of NaCl on plants. In this study, a comparison is made of the effects of NaCl, KC1, Na2SO4, and K2SO4, on growth of the halophyte Atriplex prostrata Boucher ex DC (SYN: A. triangularis Willd.) at 0, ‐0.75, ‐1.00, and ‐1.50 MPa. Plant survival, height, number of leaves, nodes, and branches were recorded weekly. Photosynthesis was measured once before plants were harvested and dry mass was determined after one month. Content of Na+, K+,‐Mg2+, and Cl in plant tissue was also measured. A general trend observed was that all plant growth parameters decreased with a lowering of the medium osmotic potential, and that K+ salts were more inhibitory than Na+ salts. Ion content of plant tissue generally increased with a lowering of osmotic potential. Our data indicated that K+, a plant macronutrient, was more inhibitory to plant growth than Na+. It is possible that halophytes such as Atriplex prostrata could use Na+ as an osmoticum to adjust the vacuolar water potential, but were unable to use K+ for this function because of a specific ion toxicity. The inhibitory effect of salt on plant growth parameters and survival follow the pattern; K2SO4 >KCl>Na2SO4=NaCl.  相似文献   

14.
Abstract

Although over 40% of excretal S is returned to intensively sheep ‐grazed pastures as faecal S, limited information is available on faecal S fractions, their water solubility and temporal distribution. This study reports results obtained from sheep faeces returned to grazed pastures which have received long‐term annual sulphate applications for 15–20 years. Five freshly‐voided sheep faecal samples (<100 g moist faeces per sample) per sampling were randomly collected at approximately one month intervals over a one‐year growing season. Faeces were fractionated into total S, inorganic SO4 2‐, ester SO4 2‐, Hi‐reducible S and C‐bonded S. Results obtained showed that faecal total S, ester SO4 2‐ Hi‐reducible S and C‐bonded S fractions varied significantly throughout the year. Carbon‐bonded S was the dominant (>80%) faecal S fraction, regardless of faecal total S content or the time of year faecal samples were deposited. Faecal ester SO4 2‐ and inorganic _SO4 2‐fractions accounted for 3.3–7.1% and 0.1–14% of faecal total S respectively. Thus approximately 3.4–21.1% of faecal total S was estimated to be potentially leached or readily available to pasture plants. The Hi‐reducible faecal S fraction was significantly‐correlated (r = 0.59***; *** = P 0.001) with HCl‐extractable faecal inorganic S, which was considered to represent faecal total SO4 2‐ (ester SO4 2‐ and inorganic SO4 2‐ fractions).

The solubility of different faecal S fractions was determined by sequential extraction of ground (< 1 mm) faeces three times (30 minutes per extraction) with water or 0.01 M Ca(H2PO4)2 solution (1: 5 ratio of faecal DM: extractant). Both amounts of water‐extractable and Ca(H2PO4)‐extractable faecal S fractions were found to vary significantly throughout the year. Ca(H2PO4)2 tended to extract more inorganic faecal S than water, attributed to the presence of phosphate and the low pH (pH=4) of Ca(H2PO4)2 extractant. A significant proportion (15–25%) of faecal S was extracted by water and most (70%) of this water‐extractable faecal S was in the organic S fraction. Water‐extractable inorganic faecal S probably originated from the faecal total SO4 2‐ fraction as shown by their significant correlation (r = 0.45** ‐0.63***; ** = P≤ 0.01; *** = P≤ 0.001). Some of the faecal S in water extracts may also originate from the faecal C‐bonded S fraction, as a significant correlation was obtained between C‐bonded faecal S and either water‐extractable faecal organic S (r = 0.53–0.57***; *** = P ≤ 0.001) or water‐extractable faecal inorganic S (r = 0.40–0.41*; * = P ≤ 0.05).

Significant amounts of faecal inorganic SO4 2‐ and ester SO4 2‐ fractions were removed by Ca(H2PO4)2 extractant. The Ca(H2PO4)2‐extractable faecal inorganic S was significantly correlated (r = 0.73***; *** = P 0.001) with water‐extractable faecal inorganic S.  相似文献   

15.
Ion relations, water content, leaf water potential, and osmotic adjustment were determined for cultivated barley (cv Harrington) and wild barley grown under mixed sulphate (SO4) salts with varied calcium (Ca) supply using a hydroponic system. Salinity induced significant increases of leaf, stem and root sodium (Na) concentrations in both species. Salt‐stressed wild barley roots accumulated more Na than shoots, and transport of Na from roots to shoots was low compared to Harrington. Cultivated barley had lower Ca concentrations than wild barley, especially in the low Ca salt treatment. Although potassium (K/Na) and Ca/Na ratios were higher in control wild barley plants than in Harrington, they declined under salt stress, irrespective of Ca supply. Major osmotica in wild barley leaves were K, sugars, organic acids, and quaternary ammonium compounds, while in Harrington they were cations, including Na, K and Mg, and anions such as phosphate (PO4) and SO4. Wild barley maintained better water status than Harrington under low Ca salt treatment. Supplemental Ca improved water status more in Harrington than in wild barley. Lack of osmotic adjustment to salinity in wild barley apparently resulted from its ion exclusion. Low Ca salt treatment caused Ca deficiency, Na toxicity, and loss of turgor in Harrington. In the high Ca salt treatment, Harrington had improved water and ion relations, as well as positive turgor.  相似文献   

16.
In order to assess the effectiveness of foliar‐applied potassium (K+, 1.25%) using different salts (KCl, KOH, K2CO3, KNO3, KH2PO4, and K2SO4) in ameliorating the inhibitory effect of salt stress on sunflower plants, a greenhouse experiment was conducted. Sodium chloride (150 mM) was applied through the rooting medium to 18 d–old plants and after 1 week of salt treatment; different K+‐containing salts were applied twice in 1‐week interval as a foliar spray. Salt stress adversely affected the growth, yield components, gas exchange, and water relations, and also caused nutrient imbalance in sunflower plants. However, foliar‐applied different sources of potassium improved shoot and root fresh and shoot dry weights, achene yield, 100‐achene weight, photosynthetic rate, transpiration rate, stomatal conductance, water‐use efficiency, relative water content, and leaf and root K+ concentrations of sunflower plants grown under saline conditions. Under nonsaline conditions, improvement in shoot fresh weight, achene yield, 100‐achene weight, photosynthetic and transpiration rates, and root Na+ concentration was observed due to foliar‐applied different K sources. Of the different salts, K2SO4, KH2PO4, KNO3, and K2CO3 were more effective than KCl and KOH in improving growth and some key physiological processes of sunflower plants.  相似文献   

17.
Abstract

Effects of salt (NaCl?:?Na2SO4) and alkali (NaHCO3?:?Na2CO3) stresses on the contents of inorganic ions and organic solutes in wheat shoots were compared to explore the physiological responses and adaptive strategies of wheat to these stresses. Wheat significantly accumulated Na+ and simultaneously accumulated Cl?, soluble sugars and proline to maintain osmotic and ionic balance under salt stress. Compared with salt stress, the high pH from alkali stress enhanced Na+ accumulation and affected the absorption of inorganic anions. To maintain ionic and osmotic balance, wheat accumulated organic acids, soluble sugars and proline. The accumulation of Cl? and organic acids was the main difference in the physiological responses and adaptive mechanisms to salt and alkali stresses, respectively.  相似文献   

18.
Background and aims : Most physiological and biochemical studies on salt stress are NaCl‐based. However, other ions (e.g., K+, Ca2+, Mg2+, and SO 4 2 - ) also contribute to salt stress in special circumstances. In this study, salt stress induced by various salts was investigated for a better understanding of salinity. Methods : Arabidopsis thaliana plants were stepwise acclimated to five iso‐osmotic salts as follows: NaCl, KCl, Na2SO4, K2SO4, and CaCl2. Results and Conclusions : Exposure to KCl and K2SO4 led to more severe toxicity symptoms, smaller biomass, and lower level of chlorophyll than exposure to NaCl and Na2SO4, indicating that Arabidopsis plants are more sensitive to potassium salts. The strongly reduced growth was negatively correlated with the accumulation of soluble sugars observed in KCl‐ and K2SO4‐treated plants, suggesting a blockage in the utilization of sugars for growth. We found that exposure to KCl and K2SO4 suppressed or even blocked sucrose degradation, thus leading to strong accumulation of sucrose in shoots, which then probably inhibited photosynthesis via feedback inhibition. Moreover, K+ was more accumulated in shoots than Na+ after corresponding potassium or sodium salt treatments, thus resulting in decreased Ca2+ and Mg2+ concentrations in response to KCl and K2SO4. However, K2SO4 caused more severe toxicity symptoms than iso‐osmotic KCl, even when the K+ level was lower in K2SO4‐treated plants. We found that Na2SO4 and K2SO4 induced strong accumulation of tricarboxylic acid intermediates, especially fumarate and succinate which might induce oxidative stress. Thus, the severe toxicity symptoms found in K2SO4‐treated plants were also attributed to SO 4 2 - in addition to the massive accumulation of K+.  相似文献   

19.
Abstract

Nitrogen‐form effect on nutrient uptake and the subsequent concentration of nutrients in turfgrass plant tissue has not been thoroughly investigated. This study evaluated the effects of clipping regime and N‐form on the tissue concentration of macronutrients and micronutrients and macronutrient uptake in ‘Penncross’ creeping bentgrass (Agrostis palustris Huds.). Turfgrass plugs were grown under greenhouse conditions in a modified Hoagland's solution with a combination of three nutrient solutions (100% NO3 ?, 100% NH4 +, and 50:50 ratio of NH4 +:NO3 ?) and two cutting regimes (cut and uncut). Concentrations of macronutrients and micronutrients were determined for shoot, root and verdure. Nutrient uptake was determined weekly. Uncut NO3 ?‐treated plants accumulated higher concentrations of K, Ca, Mg, B and Cu in the shoot tissue; P, K, Ca, Mg, B, Cu, Mn and Zn in the root tissue; and P, Ca, Mg, B, Fe and Mn in the verdure compared to uncut NN4 +‐treated plants. Nitrate uptake was greater with uncut NO3 ?‐treated plants than was NH4 + absorption with uncut NH4 +‐treated plants. Plants grown with the uncut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with the uncut NO3 ? and 50:50 treatments adsorbed higher amounts of P, K, and Ca compared to the NH4 + treatment. The cut NO3 ?‐treated plants accumulated higher concentrations of K in the shoot tissue; P, Ca, Mg, B, Cu, Fe and Mn in the root tissue; and B in the verdure than did the cut NH4 +‐treated plants. Cut NO3 ?‐treated plants adsorbed less NO3 ? than did cut NH4 +‐treated plants adsorbed NH4 +. The cut 50:50 treatment adsorbed more NH4 + than NO3 ?. Plants grown with NO3 ? and 50:50 treatments, under both cutting regimes, resulted in higher concentrations of most macro‐ and micronutrients and greater nutrient uptake compared to the NH4 +‐treated plants.  相似文献   

20.
Plants grown in salt‐affected soils may suffer from limited available water, ion toxicity, and essential plant nutrient deficiency, leading to reduced growth. The present experiment was initiated to evaluate how salinity and soil zinc (Zn) fertilization would affects growth and chemical and biochemical composition of broad bean grown in a calcareous soil low in available Zn. The broad bean was subjected to five sodium chloride (NaCl) levels (0, 10, 20, 30, and 40 m mol kg?1 soil) and three Zn rates [0, 5, and 10 mg kg?1 as Zn sulfate (ZnSO4) or Zn ethylenediaminetetraaceticacid (EDTA)] under greenhouse conditions. The experiment was arranged in a factorial manner in a completely randomized design with three replications. Sodium chloride significantly decreased shoot dry weight, leaf area, and chlorophyll concentration, whereas Zn treatment strongly increased these plant growth parameters. The suppressing effect of soil salinity on the shoot dry weight and leaf area were alleviated by soil Zn fertilization, but the stimulating effect became less pronounced at higher NaCl levels. Moreover, rice seedlings treated with ZnSO4 produced more shoot dry weight and had greater leaf area and chlorophyll concentration than those treated with Zn EDTA. In the present study, plant chloride and sodium accumulations were significantly increased and those of potassium (K), calcium (Ca), and magnesium (Mg) strongly decreased as NaCl concentrations in the soil were increased. Moreover, changes in rice shoot Cl?, Na+, and K+ concentrations were primarily affected by the changes in NaCl rate and to a lesser degree were related to Zn levels. The concentrations of Cl? and Na+ associated with 50% shoot growth suppression were greater with Zn‐treated plants than untreated ones, suggesting that Zn fertilization might increase the plant tolerance to high Cl? and Na+ accumulations in rice shoot. Zinc application markedly increased Zn concentration of broad bean shoots, whereas plants grown on NaCl‐treated soil contained significantly less Zn than those grown on NaCl‐untreated soil. Our study showed a consistent increase in praline content and a significant decrease in reducing sugar concentration with increasing salinity and Zn rates. However, Zn‐treated broad bean contained less proline and reducing sugars than Zn‐untreated plants, and the depressing impact of applied Zn as Zn EDTA on reducing sugar concentration was greater than that of ZnSO4. In conclusion, it appears that when broad bean is to be grown in salt‐affected soils, it is highly advisable to supply plants with adequate available Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号