首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Runoff is the key factor to understand the land degradation causing high risk of soil erosion and can reduce the water available for human societies and ecosystems. The dynamics of runoff and suspended sediment transport are not completely understood. In this study, we examined the trends, breaking point and regime changes for the runoff and sediment load at different temporal scales using 50 years of continuous observational data from a highly erodible sub‐catchment with an area of 7,325 km2 in the Beiluo River basin on the Loess Plateau, China. At the annual scale, the runoff and sediment load declined significantly (p < 0·05) with decreasing rates of −0·23 mm y−1 and −164·9 Mg km−2 y−1, respectively. Abrupt changes in the runoff and sediment load series were detected between 1979 and 1999; thus, the data were divided into intervals of 1960–1979, 1980–1999 and 2000–2009. The flow duration curve analysis indicated increasing low‐flow values and decreasing daily runoff and sediment discharge peaks, which suggested that soil and water conservation measures reduced the volume of runoff and the sediment load. This led to a more uniform runoff regime. At the flood event scale, we investigated the relationship between runoff and the suspended sediment load based on 123 flood events, which showed clearly that the magnitude and frequency of hyper‐concentrated sediment flows decreased in 2000–2009 compared with 1960–1999. The annual erosive rainfall exhibited non‐significant changes throughout the entire study period. We conclude that soil and water conservation measures (e.g. afforestation, grassing, terraces and check dams) have played major roles in the changes in runoff and the sediment load in the Beiluo River catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Soil erosion is a serious problem in the Loess Plateau of China, and assessment of soil erosion at large watershed scale is urgently need. This study used RUSLE and GIS to assess soil loss in the Yanhe watershed. All factors used in the RUSLE were calculated for the watershed using local data. RUSLE‐factor maps were made. The mean values of the R‐factor, K‐factor, LS‐factor, C‐factor and P‐factor were 970 209 MJ km−2 h−1 a−1, 0·0195 Mg h MJ−1 mm−1, 10·27, 0·33359 and 0·2135 respectively. The mean value of the annual average soil loss was found to be 14 458 Mg km−2 per year, and the soil loss rate in most areas was between 5000 and 20 000 Mg km−2 per year. There is more erosion in the centre and southeast than in the northwest of Yanhe watershed. Because of the limitations of the RUSLE and spatial heterogeneity, more work should be done on the RUSLE‐factor accuracy, scale effects, etc. Furthermore, it is necessary to apply some physical models in the future, to identify the transport and deposition processes of sediment at a large scale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The Fukushima Daiichi nuclear power plant accident caused radioactive pollution in northeastern Honshu Island, Japan. This study examined the influence of snowmelt and rainfall on soil erosion processes and siltation of small lakes in Miyagi Prefecture (150 km northwest of the power plant). Two sets of slopes and lakes, respectively in pasture and forest catchments, were examined. Snowpack thickness, soil infiltration, surface runoff volume, soil and sediment physicochemical properties, Cs concentration of precipitation, meltwater, and rainwater, and lake siltation rates were determined. The total radioactive Cs content in precipitation was 0.7–7.4 BqˑL−1 and was below the Japanese standard (10 BqˑL−1). Total radioactive Cs was at the allowable level in water flowing down the pasture catchment slope (0.1–9.2 BqˑL−1) during snowmelt and rainfall, as well as in pasture (0.9–8.8 BqˑL−1) and forest (0.7–5.2 BqˑL−1) catchment lake water. There was no soil erosion (surface runoff) in the forest catchment. Soil losses in the pasture catchment were 23 due to rainfall and 9 kg ha−1 yr−1 following spring snowmelt. After snowmelt, a 0.5 and 0.2 mm thick layer of silt was deposited in pasture and forest catchment lakes, respectively, and 1.4 and 0.6 mm were deposited during the rainfall period. Average siltation rates were 1.9 and 0.8 mmˑyr−1 for pasture and forest catchment lakes, respectively. The upper layer of lake bottom sediments is represented mainly by silt fractions (2–50 μm), with high organic matter (4.0–5.7%) and radiocesium (1100–1600 kgˑha−1) contents.  相似文献   

4.

Purpose

Closed erosion plots have been used extensively to investigate soil loss and its spatial variation within a watershed. However, erosion rates measured on closed plots at various locations within a watershed may not reflect the “real world” conditions due to plot boundary problems. The purpose of this study was to identify runoff and sediment sources in a semi-arid, complex terrain catchment by using the data collected from open plots, nested catchments, and tunnel systems.

Materials and methods

The study catchment, in the Loess Plateau of China, was partitioned into various-level geomorphic units. Runoff and sediment discharges were measured from 55 storm events between 1963 and 1968 on open plots and nested catchments. Storm flows were also monitored in 14 rainfall events from the tunnel systems between 1989 and 1990. This study combined the data collected from the two periods to investigate runoff and sediment sources from the different geomorphic units of the catchment.

Results and discussion

On the four open plots (S1, S2, S3, and S4) of the hill slope, total runoff depths of 128.5 mm (S1), 84.3 mm (S2), 101.92 mm (S3), and 141.73 mm (S4) were recorded from all the events over the first period, which correspondingly produced total sediment yields of 3.056 kg m?2 (S1), 9.058 kg m?2 (S1), 42.848 kg m?2 (S3), and 97.256 kg m?2 (S4). The number of runoff events also varied due to a non-uniformity in runoff generation among the different geomorphic units of the catchment. Tunnel flows generally had higher mean sediment concentrations than catchment outflows. Three nested catchments located from the headwaters (C1) to the mouth of the catchment (C3) generated total runoff depths of 120.02 mm (C1), 143.92 mm (C2), and 149.43 mm (C3), and correspondingly produced sediments yields of 62.01 kg m?2 (C1), 144.02 kg m?2 (C2), and 123.92 kg m?2 (C3) for the first period.

Conclusions

Significant variations in runoff and erosion existed within the catchment. The spatial variation of runoff generation on the hill slopes resulted from the variation of soil infiltration. Sediment produced from the lower hill slope zone was disproportionally higher than that from the upper hill slope zone. Nevertheless, a significant portion of the sediment eroded on the lower slope zone was caused by runoff generated from the upper slope zone. Tunnel erosion also played a significant role in sediment production.  相似文献   

5.
延河流域水土保持对径流泥沙的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
 采用Mann-Kendall统计检验方法和Pettitt系列显著性突变点的无参数识别方法分析延河流域径流和泥沙演变趋势及突变点,基于流量历时曲线分析延河流域突变点前后径流和泥沙变化特征,研究了水土保持措施对流域径流和泥沙的影响。结果表明:延河流域径流和输沙量均呈减少趋势,输沙量在1971和1996年有2个显著性的突变点,对于黄土高原丘陵沟壑区,水土保持措施减少河川径流量和输沙量。随着突变点后期水土保持措施力度的加大,水土保持措施拦蓄径流和泥沙的作用逐渐增强。水土保持措施使径流高流量部分减少,常流量和低流量部分增加,表明水土保持措施可削减汛期流量,增补枯季流量。突变点后期输沙量较之变化前期整体呈减少趋势。研究结果可为黄土高原丘陵沟壑区的水土保持和水资源管理工作提供一定参考。  相似文献   

6.

Purpose

The impact of agriculture on water resources has long been a problem associated with the formation of runoff, the siltation of lakes and reservoirs, and overall depletion of water quality. In Brazil, these problems are mainly related to soil degradation by water erosion. However, studies of catchment-scale erosion are still rare particularly in grain-producing regions which have adopted conservative tillage systems for soil protection. In order to contribute to a better understanding of the impact of conservation agriculture on water resources, this study determined the runoff coefficient and sediment yield for two agricultural catchments.

Materials and methods

Hydrological and sedimentological monitoring was conducted in two catchments: the Conceicao catchment is characterized by grain production in weathered soils and a gently sloping landscape, while the Guapore catchment is characterized by heterogeneous soils and topography. Both catchments have problems associated with water erosion.

Results and discussion

The magnitudes of annual runoff coefficients and sediment yield were high, even if compared to similar agricultural regions, including a catchment with widespread adoption of no-tillage. The sediment yield was 140 t km?2 year?1, and the runoff coefficient was 14 % for the Conceicao catchment, while the sediment yield was 270 t km?2 year?1, and the runoff coefficient was 31 % for the Guapore catchment. The results indicate that problems such as gullies, soil compaction, runoff, floods, siltation, and water quality depletion associated with the misuse of agricultural areas in terms of soil conservation and water use are still evident and important even in regions with widespread adoption of no-tillage systems.

Conclusions

The magnitudes of both runoff and sediment yield clearly indicate the need to adopt complementary practices of soil conservation measures, such as mechanical runoff control.  相似文献   

7.
Understanding the erosion and deposition rates is very important for designing soil and water conservation measures. However, existing methods of assessing the rates of soil loss present many limitations and are difficult to apply to in karst areas, and there is still very little data in this areas. Karst depressions comprise geomorphologically important sources and sinks for sediments and can provide the long‐term history records of environmental changes. But there have been few similar studies focused on its sediments in the world. In this paper, the Cs‐137 technique was employed to estimate the sediment deposition rate of karst depression to assess the surface erosion. The results indicate that the average deposition rate, deposition amount and specific deposit yield for the Yongkang catchments since 1963 were estimated to be 4·32 mm y−1, 3·16 t y−1and 20·53 t km−2 y−1, respectively. The results obtained were consistent with the actual monitoring data of local runoff plots, and confirm the validity of the overall approach. So it was suggested that the mean specific sediment yields of 20 t km−2 y−1 can be representative of the soil loss rates in the regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The sediment budget is a key concept and tool for characterizing the mobilization, transfer and storage of fine sediment within a catchment. Caesium‐137 measurements can provide valuable information on gross and net erosion rates associated with sheet and rill erosion that can be used to establish the slope component of a catchment sediment budget. However, there is a need to validate the use of 137Cs measurements for this purpose, because their reliability has sometimes been questioned. The study reported focuses on a small (3·04 ha) steepland (mean slope 37%) catchment in Southern Italy. It exploits the availability of information on the medium‐term sediment output from the catchment provided by the construction of a reservoir at its outlet in 1978 and the existence of estimates of soil redistribution rates derived from 137Cs measurements made on 68 replicate soil cores collected from the slopes of a substantial proportion of the catchment in 2001, to validate the use of 137Cs measurements to construct the slope component of the catchment sediment budget. An additional 50 replicate soil cores were collected from the catchment slopes for 137Cs analysis, to complement the data already available. Nine cores collected from the area occupied by the reservoir were used to estimate the mean annual sediment input to the reservoir. In the absence of evidence that the poorly developed channel system in the catchment was either a significant sediment source or sink, it was possible to directly compare the estimate of net soil loss from the catchment slopes (7·33 Mg ha−1 y−1) with the estimate of sediment output from the catchment provided by the reservoir deposits (7·52 Mg ha−1 y−1). Taking account of the uncertainties involved, the close agreement of the two values is seen as providing a convincing validation of the use of 137Cs measurements to both estimate soil redistribution rates and as a basis for constructing the slope component of the sediment budget of a small catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Man‐made and natural sediment sinks provide a practical means for reducing downstream reservoir sedimentation by decreasing soil erosion and enhancing the rate of sedimentation within a catchment. The Minizr catchment (20 km2) in the northwest Ethiopian highlands contains numerous man‐made soil and water conservation (SWC) structures such as soil bunds (Erken), fanya juu ridge (Cab) and micro‐trenches and natural sediment sinks such as wetlands, floodplains and grassed waterways. These sediment sinks reduce downstream sedimentation into the Koga reservoir, located at the catchment outlet, however, a large quantity of sediment is still reaching the reservoir. This study evaluates the function and effectiveness of both man‐made SWC structures and natural sediment sinks in reducing sediment export from the Minizr catchment. SWC structures and natural sediment sinks were digitized using Google Earth Imagery. Sediment pins and vertical sampling through the deposit were used to quantify the amount of deposited sediment. In addition, inflow and outflow of suspended sediment data were used to calculate the sediment‐trapping efficacies (STE) of man‐made SWC structures (soil bunds and fanya juu ridges) and natural sediment sinks. Results reveal that 144 km soil bunds and fanya juu ridges trapped 7,920 Mg y−1 (55 kg m−1 y−1) and micro‐trenches trapped 13·26 Mg y−1, each micro‐trench on average trapped 23 kg y−1. The 17 ha floodplain located in the centre of the catchment trapped 9,970 Mg y−1 (59 kg m−2 y−1), while a wetland with a surface area of 24 ha, located near the outlet of the catchment, trapped 8,715 Mg y−1 (36 kg m−2 y−1). The STEs of soil bunds and fanya juu ridges, wetlands and floodplains were 54%, 85% and 77%, respectively. Substantial differences were observed between the STE of grassed and un‐grassed waterways at 75% and 21%, respectively. Existing man‐made and natural sediment sinks played an important role in trapping sediment, with 38% (26,600 Mg y−1) of transported sediment being trapped, while 62% (43,000 Mg y−1) is exported from the catchment and thus enters the Koga reservoir. Therefore, additional catchment treatment measures are required as an integrated catchment scale sediment trapping approach to help reduce sediment loads entering Koga reservoir. Moreover, to maximize the effectiveness of sediment trapping measures, avoid structural failure and ensure their sustainability, regular maintenance is needed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Soil and surface water runoff are the major causes of cropland degradation in the hilly red soil region of China. Appropriate tillage practices are urgently needed to reduce erosion and protect the soil surface. In this study, five tillage systems [manure fertiliser (PM), straw mulch cover (PC), peanut–orange intercropping (PO), peanut–radish rotation (PR) and traditional farrow peanut (PF)] were compared in terms of soil infiltration and the capacity to generate runoff. Based on field‐plot monitoring and simulated experiments, this study revealed that the organic content of the soil in the PO (19.43 g kg−1), PC (18·63 g kg−1) and PM (18·18 g kg−1) treatments increased compared with those of the PF (15·64 g kg−1) and PR (17.17 g kg−1) treatments. Moreover, the three tillage practices also enhanced the soil's aggregate stability and infiltration capacity. The average annual runoff generation rates of the treatments were as follows: PR (3,141 m3 ha−1 a−1) > PF (2,189 m3 ha−1 a−1) > PC (755 m3 ha−1 a−1) > PM (514 m3 ha−1 a−1) > PO (388 m3 ha−1 a−1). The PO treatment reduced the runoff generation rate by approximately 82·3% compared with that of the PF treatment. Among the treatments, the PO treatment had the highest threshold rainfall depth (22 mm) for runoff generation. Regression analysis revealed that the threshold rainfall depths linearly increased with the infiltration rates. The results of this study could benefit local soil management and cropland conservation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
黄土高原典型支流淤地坝拦沙对输沙量减少的贡献   总被引:2,自引:0,他引:2  
为探明淤地坝拦沙作用对河流输沙量变化的影响,依据淤地坝作用年限、坝控面积、坝控流域侵蚀产沙模数及淤地坝排沙率,确定淤地坝拦沙量的估算方法,并结合2009年淤地坝安全大检查数据,分析黄土高原典型支流淤地坝拦沙对输沙量减少的贡献.延河与皇甫川淤地坝在不同年代的拦沙量分别在92.48万~854.35万t/a与36.47万~1 138.75万t/a之间,淤地坝拦沙量占人类活动影响的比例在一级和二级突变后分别为29.1%、28.5%与8.4%、18.2%;2000年以后延河与皇甫川输沙量减幅均达到85%以上,而淤地坝拦沙量的贡献率分别小于10%和20%.淤地坝的拦沙作用已不是目前输沙量减少的主要因素,但由于土壤侵蚀环境的不同,淤地坝在皇甫川对输沙量减少的贡献比在延河要大.  相似文献   

12.
13.
Distributed erosion and sediment yield models are being increasingly used for predicting soil erosion and sediment yields in agricultural catchments. In most applications, validation of such models has commonly been restricted to comparison of the predicted and measured sediment output from a catchment, because spatially distributed information on rates and patterns of soil redistribution within the catchment has been lacking. However, such spatially distributed data are needed for rigorous model testing, in order to validate the internal functioning of a model and its applicability at different spatial scales. The study reported in this paper uses two approaches to test the performance of the agricultural non-point source pollution (AGNPS) and areal non-point source watershed environmental response simulation (ANSWERS) erosion and sediment yield models in two small catchments in Devon, UK. These involve, firstly, comparison of observed and predicted runoff and sediment output data for individual storm events monitored at the basin outlets and, secondly, information on the spatial pattern of soil redistribution within the catchments derived from 137Cs measurements. The results obtained indicate that catchment outputs simulated by both models are reasonably consistent with the recorded values, although the AGNPS model appears to provide closer agreement between observed and predicted values. However, the spatial patterns of soil redistribution and the sediment delivery ratios predicted for the two catchments by the AGNPS and ANSWERS models differ significantly. Comparison of the catchment sediment delivery ratios and the pattern of soil redistribution in individual fields predicted by the models with equivalent information derived from 137Cs measurements indicates that the AGNPS model provides more meaningful predictions of erosion and sediment yield under UK conditions than the ANSWERS model and emphasises the importance of using information on both catchment output and sediment redistribution within the catchment for model validation.  相似文献   

14.
This study aims to demonstrate that the SWAT model can be used to predict discharge and sediment yield values in reservoir contributing catchments helping also to define the main factors that determine sedimentation rates in semi‐arid Mediterranean environments. This aim was achieved by comparing SWAT simulation results with water flows (over 29 years) and sediment deposition (over 47 years) volumes collected (by a campaign of bathymetric surveys) in a Sicilian reservoir. The mean monthly runoff coefficient calculated for the period 1980–2008 was 0·17. The mean sedimentation volume in the reservoir during the period 1963–2009 was 51,000 m3 year−1. Field surveys and collection of spatially distributed databases of soil, topography and climate were carried out in order to characterize the contributing catchment. The SWAT model was applied to simulate sediment volumes cumulated over group of years as well as water flow volumes reaching annual and monthly the reservoir. The performance of the hydrological and erosion components of the model was evaluated by a combination of both summary and difference statistical measures after a sensitivity analysis and a calibration/validation process. The model was able to simulate observed runoff volumes at both annual and monthly scale. The mean sedimentation volume simulated by SWAT during the whole period was 8·1% lower than the value obtained by the bathymetric measurements (equal to 72·103 Mg) with very good values of the efficiency coefficient (equal to 0·91). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Unpaved roads play an important role in soil loss in small watersheds. In order to assess the impact of these unpaved roads in the Loess Plateau of China, runoff and sediment yields from road‐related sources must be quantified. Field rainfall simulation experiments were conducted under three slope gradients and five rainfall intensities on unpaved loess roads in a small watershed. Results showed that the runoff generation was very fast in loess road surface (time to runoff < 1 min) and produced a high runoff coefficient (mean value > 0·8). Soil loss rates were decreased as surface loose materials were washed away during a rainstorm. Rainfall intensity, initial soil moisture, and slope gradient are key factors to model surface runoff and sediment yield. Soil loss on loess road surface could be estimated by a linear function of stream power (R2 = 0·907). Four commonly interrill erosion models were evaluated and compared, and the interrill erodibility adopted in the Water Erosion Prediction Project model was determined as 1·34 × 106 (kg s m−4). A new equation taking into account different parameters like rainfall intensity, surface flow discharge, and slope gradient was established. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This research aims to improve erosion control practice in the Loess Plateau, by studying the surface erosion processes, including splash, sheet/interrill and rill erosion in four contrasting soils under high rainfall intensity (120 mm h−1) with three-scale indoor artificial experiments. Four contrasting soils as sandy loam, sandy clay loam, clay loam and loamy clay were collected from different parts of the Loess Plateau. The results showed that sediment load was significantly impacted by soil properties in all three sub-processes. Splash rate (4.0–21.6 g m−2∙min−1) was highest in sandy loam from the north part of the Loess Plateau and showed a negative power relation with the mean weight diameter of aggregates after 20 min of rainfall duration. The average sediment load by sheet/interrill erosion (6.94–42.86 g m−2∙min−1) was highest in clay loam from middle part of the Loess Plateau, and the stable sediment load after 20 min showed a positive power relation with the silt content in soil. The average sediment load increased dramatically by rill and interrill erosion (21.03–432.16 g m−2∙min−1), which was highest in loamy clay from south part of the Loess Plateau. The average sediment load after the occurrence of rill showed a positive power relation with clay content and a negative power relation with soil organic matter content. The impacts of slope gradient on the runoff rate and sediment load also changed with soil properties. The critical factors varied for different processes, which were the aggregate size for splash erosion, the content of silt particles and slope gradient for sheet/interrill erosion, and the content of clay particles, soil organic matter and slope gradient for rill erosion. Based on the results of the experiments, specific erosion control practices were proposed by targeting certain erosion processes in areas with different soil texture and different distribution of slope gradient. The findings from this study should support the improvement of erosion prediction and cropland management in different regions of the Loess Plateau.  相似文献   

17.
Rill is a major type of erosion on upland slopes. Continuous rainfall is commonly used in laboratory studies on rill erosion despite the fact the rainfall was often discontinuous in the field; this is particularly true in the Chinese Loess Plateau. This study compares rill erosion under continuous and intermittent rainfalls by using laboratory experiments. The experiments include two rainfall‐intensity treatments (90 and 120 mm h−1) and two rainfall‐pattern treatments (continuous and intermittent). The results indicate that rill formation had a significant effect on runoff and sediment concentration. For continuous and intermittent rainfall at the rainfall intensity of 90 mm h−1, the mean sediment concentrations were 1·91 and 1·73 times after rill initiation than those before rill initiation, respectively, and the rill erosion accounted for 75·5% and 77·7% of runoff duration, respectively. For continuous and intermittent rainfall at the rainfall intensity of 120 mm h−1, the mean sediment concentrations after rill initiation were 1·38 and 1·32 times that those before rill initiation, respectively, and the rill erosion represented 88·7% and 78·8% of the total runoff duration, respectively. We observed sediment sorting under all treatments; however, the low rainfall intensity boosted but the high rainfall intensity lowered the clay fraction; in contrast, the sorting remained roughly the same between the rainfall‐pattern treatments. The runoff velocity also affected the sediment sorting. Our empirical results indicated the important significance of the rainfall intermittence in predicting rill erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Extensive afforestation using Pinus and Eucalyptus has taken place in Calabria since the early 1960's to control expansion of calanchi and biancane. In 1978 three small catchments were established near Crotone to monitor the effect of afforestation on hydrological response and sediment yield. In 1992, rainfall simulation experiments were carried out on plots in these catchments to determine more precisely the effect of tree and ground vegetation on surface runoff and erosional response. Most experiments were carried out in a logged catchment with slopes ranging from 20 to 30° and aspects from SW to NE. Results showed complex runoff generation and sediment production, reflecting the effect of microclimate and subtle variations in vegetation on infiltration characteristics. On south-facing slopes with little ground vegetation runoff generation was rapid with runoff coefficients from 27 to 37% and peak sediment concentrations reaching 83.7 g · 1−1. On north-facing slopes with good tree cover, little grass, but continuous leaf litter, runoff coefficients reached 21%, but peak sediment concentration was only 3.6 g · 1−1, while on recently logged north-facing slopes with dense grass cover the highest runoff coefficient was only 5.5% runoff coefficient, and there was virtually no sediment production. Implications of results for forest management and soil conservation are discussed.  相似文献   

19.
Field runoff plots were established in 1984 to evaluate the effects of slope length on runoff, soil erosion and crop yields on newly cleared land for four consecutive years (1984–1987) on an Alfisol at Ibadan, Nigeria. The experimental treatments involved six slope lengths (60 m to 10 m at 10-m increments) and two tillage methods (plough-based conventional tillage and a herbicide-based no-till method) of seedbed preparation. A uniform crop rotation of maize (Zea mays)/cowpeas (Vigna unguiculata) was adopted for all four years. An uncropped and ploughed plot of 25 m length was used as a control. The water runoff from the conventional tillage treatment was not significantly affected by slope length, but runoff from the no-till treatment significantly increased with a decrease in slope length. The average runoff from the no-till treatment was 1·85 per cent of rainfall for 60 m, 2·25 per cent for 40 m, 2·95 per cent for 30 m, 4·7 per cent for 20 m and 5·15 per cent for 10 m slope length. In contrast to runoff, soil erosion in the conventional tillage treatment decreased significantly with a decrease in slope length. For conventional tillage, the average soil erosion was 9·59 Mg ha−1 for 60 m, 9·88 Mg ha−1 for 50 m, 6·84 Mg ha−1 for 40 m, 5·69 Mg ha−1 for 30 m, 1·27 Mg ha−1 for 20 m and 2·19 Mg ha−1 for 10 m slope length. Because the no-till method was extremely effective in reducing soil erosion, there were no definite trends in erosion with regard to slope length. The average sediment load (erosion:runoff ratio) also decreased with a decrease in slope length from 66·3 kg ha−1 mm−1 for 60 m to 36·3 kg ha−1 mm−1 for 10 m slope length. The mean C factor (ratio of soil erosion from cropped land to uncropped control) also decreased with a decrease in slope length. Similarly, the erosion:crop yield ratio decreased with a decrease in slope length, and the relative decrease was more drastic in conventional tillage than in the no-till treatment. The slope length (L) and erosion relationship fits a polynomial function (Y=c+aL+bL2). Formulae are proposed for computing the optimum terrace spacing in relation to slope gradient and tillage method. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Land degradation due to soil erosion is the major problem facing Ethiopia today. In the Lake Alemaya catchment soil erosion is caused by the intense rainfall, steep topography, and poor vegetation cover coupled with cultivation of steep lands, and inadequate conservation practices. Sediment from the catchment has affected the storage capacity of Lake Alemaya. This study has integrated the Agricultural Non‐point Source Pollution Model (AGNPS) and the technique of the Gographic Information System (GIS) to quantify soil erosion in the Lake Alemaya catchment. After application of the AGNPS, it appears that 66 per cent of the catchment has a soil erosion rate of 10 to more than 80 t ha−1 y−1. The annual soil loss is estimated at 31 t ha−1, which is more than the permissible value of 1–16 t ha−1 for different agro‐ecological zones of Ethiopia. The sediment yield of the catchment is about 10 148 ton with a delivery ratio of 6·82 per cent. Therefore, an effective management plan is needed for the conservation and rehabilitation of the catchment and to maintain the storage capacity of Lake Alemaya. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号