首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An ergosterol-deficient mutant of Ustilago maydis was compared to the wild type in regard to morphology, growth rate, lipid content, and sensitivity to ergosterol biosynthetic inhibitors. Morphology of mutant sporidia is abnormal and resembles that of fenarimol-treated wild-type sporidia. Doubling time of mutant sporidia is 6.3 hr compared to 2.5 hr for the wild type. The mutant produces 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methylfecosterol; ergosterol is absent. The sterols of the mutant are the same as those which accumulate in wild-type sporidia treated with the sterol C-14 demethylation inhibitors fenarimol, etaconazole, and miconazole. The level of free fatty acids is higher in the mutant than in wild-type cells. Growth of mutant sporidia is not inhibited by fenarimol, etaconazole, and miconazole, or by the sterol Δ14-reductase inhibitor azasterol A25822B at low concentrations which inhibit growth of wild-type sporidia. The residual growth rate of wild-type sporidia treated with low concentrations of the sterol C-14 demethylation inhibitors is about the same as that of untreated mutant sporidia. Therefore, the mutant would not be recognized as resistant in a wild-type population. The mutant is deficient in sterol C-14 demethylation and is similar in all properties studied to wild-type sporidia treated with sterol C-14 demethylation inhibitors. These findings support the contention that inhibition of sterol C-14 demethylation in U. maydis is the primary mode of toxicity of fenarimol, etaconazole, and miconazole. A secondary mode of toxicity is evident for miconazole and etaconazole at higher concentrations but is doubtful for fenarimol.  相似文献   

2.
An enzymatic assay system has been developed to measure the relative potency of fungicides such as triadimefon, triarimol, triforine, and buthiobate as inhibitors of sterol 14-demethylation. The enzyme preparation used is the 8000g supernatant derived from a homogenate of an aerobically adapted, anaerobically grown, high sterol strain of Saccharomyces cerevisiae. After incubation of the enzyme with [2-14C]mevalonic acid and the fungicide the ratio, radioactivity in 4,4-dimethyl sterols/radioactivity in 4-demethyl sterols is determined. The higher this ratio is, the more efficient is the fungicide as an inhibitor of fungal sterol 14-demethylation. The ratio has been determined for a number of commercial fungicides and two series of triazole compounds. A similar assay system based on the 10,000g supernatant from a rat liver homogenate was also tested but gave an inaccurate assessment of the relative potency of fungicides as inhibitors of fungal sterol 14-demethylation.  相似文献   

3.
Resistance to azole fungicides in Ustilago maydis (DC) Corda has been examined using the mutant erg 40, a newly isolated mutant TriR-1 and erg 40 revertants. Azole-induced growth arrest of the wild type did not support an obvious role for 3,6-diol in the mode of action has is clear for Saccharomyces cerevisiae Meyer ex Hansen. The level of microsomal P450 of erg 40 was identical to that of the parent, and reversion analysis showed no evidence of mutation in the sterol Δ5(6) desaturase, as would be expected for a S. cerevisiae mutant accumulating 14α-methylfecosterol. Resistance appeared to be due to a single mutation in P450 14αdm. It is proposed that the orthologous forms of fungal sterol Δ5(6) desaturases have varied responses when attempting to utilise 14α-methylated substrates.  相似文献   

4.
The strains of Botrytis cinerea or Ustilago maydis selected on fenarimol, triarimol, or triadimefon were also resistant to the other inhibitors of sterol C-14 demethylation; the sterol composition of the strains was normal. Among the isolates of U. maydis resistant to dodemorph, fenpropidin, fenpropimorph and tridemorph, some were resistant to the 15-azasteroid A 25822B and did not contain ergosterol. The other strains remained sensitive to A 25822B and had a normal sterol composition. All the resistant isolates and the wild-type were inhibited to the same extent by nystatin and pimaricin.  相似文献   

5.
The ED50 values and resistance factors of 20 fungicides that all act as inhibitors of the C-14 demethylation of 24-methylenedihydrolanosterol were determined for one wild-type and four resistant strains of Ustilago avenae. All fungicides were cross-resistant to each other; however, the resistance factors varied considerably, ranging from 50 (triadimenol) to 2·2 (miconazole). A tentative structural requirement for low resistant factors was the presence of two phenyl rings separated from each other by at least three atoms. Labeling of lipids with [14C]acetate in the absence and presence of the inhibitors and subsequent sterol analysis revealed that the variable resistance factors were not related to the presence of a second target site. In spite of reported second modes of action of fenarimol, tebuconazole or miconazole, accumulation of C-14 sterol precursors in both sensitive and resistant isolates was necessary to accomplish growth inhibition.  相似文献   

6.
A survey of fungicide resistance in Mycosphaerella graminicola and Tapesia acuformis, two major pathogens of winter wheat in France, respectively responsible for speckled leaf blotch and eyespot, led to the characterization of two types of resistant strains to sterol 14α-demethylation inhibitors (DMIs). Most of the strains of M. graminicola collected in France in 1997–1998 were resistant to all DMIs, and only in a few strains was the resistance to several triazoles associated with increased susceptibility to pyrimidine derivatives (i.e., fenarimol, nuarimol) and triflumizole. On the other hand, in T. acuformis the most prevalent strains were those which exhibited negative-cross resistance between DMIs. In both fungi such a phenomenon could be related to changes in cytochrome P450 sterol 14α-demethylase, the target site of these fungicides. For Botryotinia fuckeliana, the causal agent of grey mould, the extensive monitoring conducted in French vineyards before the marketing of fenhexamid revealed the presence of highly resistant strains to this promising botryticide (only in tests involving mycelial growth measurements). Negative cross-resistance to edifenphos and several sterol biosynthesis inhibitors, such as prochloraz and fenpropimorph, was observed in fenhexamid resistant strains. Synergism of the antifungal action of fenhexamid by cytochrome P450 inhibitors, such as the DMI fungicides, was only recorded in fenhexamid resistant strains. These data and those previously obtained with edifenphos resistant strains of Magnaporthe grisea (rice blast pathogen) suggest that in fenhexamid resistant strains of B. fuckeliana the same cytochrome P450 monooxygenase could be involved in detoxification of fenhexamid and activation of edifenphos. Received 6 September 1999/ Accepted in revised form 13 September 1999  相似文献   

7.
The chemical diversity of fungicides and antimycotics interfering with the C-14 demethylation of fungal sterols indicates a rather high structural flexibility of the sterol binding site at the specific cytochrome P-450 mixed-function oxygenase. The structural flexibility, however, is opposed by a remarkable stereochemical selectivity. A similar, though not identical, stereochemical discrimination is observed with a group of plant growth regulators chemically related to the fungicidal demethylation inhibitors. The relationship between chemical structure and stereochemical requirements is discussed for both biological activities.  相似文献   

8.
Of five cotton allelochemicals, (+)-α-pinene, β-caryophyllene, gossypol, umbelliferone, and scopoletin, all except gossypol induced cytochrome P-450 content, N-demethylation, and epoxidation activities more in tobacco budworm larval midguts than in adult or larval boll weevils. All except gossypol also induced glutathione transferase activity in tobacco budworm larval midguts and adult boll weevils. Microsomal esterase activity was unaffected or suppressed by all five allelochemicals. Soluble esterase activities were unaffected, or induced only in boll weevil larvae. The contrast in insecticide resistance development between the tobacco budworm and the boll weevil may be, in part, related to superior inducibility of cytochrome P-450 and associated activities in the former species in addition to overall higher uninduced activities (26).  相似文献   

9.
The effects of the sterol biosynthesis inhibitor (SBI) fungicides fenarimol, fenpropimorph, imazalil, prochloraz, propiconazole and triadimenol on growth and sterol composition of Ustilago maydis, Botrytis cinerea and Pyrenophora teres, grown from spores or sporidia in liquid culture, were determined. Growth of U. maydis was only slightly inhibited by SBI fungicides at concentrations which caused considerable changes in both sterol content and composition. Conversely, in B. cinerea and P. teres, growth was strongly inhibited under conditions where ergosterol was still the predominant sterol, suggesting that, in these two fungi, growth may be more sensitive to SBI fungicides than overall sterol production. Demethylase inhibitor fungicides behaved as a homogeneous group in their effects on growth and on sterol profiles of the three fungi studied.  相似文献   

10.
Development and phenobarbital (PB) induction of microsomal cytochrome P-450, NADPH-cytochrome c (P-450) reductase, two epoxidation, and two O-demethylation activities were examined in chronologically timed populations of female black blow flies (Phormia regina, Meigen). Measurements of these enzymes started with the pharate adult stage and ended 5 days following eclosion. Induction occurred in all enzymes, even at 0.005% PB, and was maximum at 0.15%. Dramatic induction of the O-demethylation of 7-methoxy-4-methylcoumarin was observed in flies dosed with the maximum concentration of the drug. This monooxygenase activity increased to nearly 1400 times the level in control flies, whereas the other O-demethylation (methoxyresorufin) and the two epoxidation reactions exhibited considerably less change. Induction of the structural enzymes of this enzyme system were 10-fold for cytochrome P-450 and 5-fold for NADPH-cytochrome c (P-450) reductase. These data suggest that PB induces several P-450's in the blow fly, particularly one bearing a high degree of specificity for 7-methoxy-4-methycoumarin.  相似文献   

11.
Resistance to DMI fungicides is a problem in both agriculture and medicine. Several mechanisms of resistance exist, but, as yet, few have been characterised in field resistant strains of plant pathogens. One approach to evaluating the role of mutations in the sterol 14α demethylase (14DM) target site requires cloning this gene and confirming its identity by complementation in an appropriate mutant. The azole‐resistant mutant, Erg 40, of Ustilago maydis which is totally blocked at the 14α demethylation step in sterol biosynthesis seems to be suitable for such expression studies. Transformation of Erg 40 with a plasmid containing the yeast 14α demethylase (CYP51A1) gene removed the block in sterol biosynthesis and generated azole‐sensitive transformants. Detailed analysis of these transformants failed to detect the presence of the yeast gene and suggested, instead, that changes in sterol biosynthesis resulted simply from the transformation protocol and not from the incorporation of extracellular DNA. Subsequent sequence analysis has revealed a mutation in the 14α demethylase gene of Erg 40. The results suggest that azole resistance in Erg 40 is not simply controlled by this mutation but involves some additional regulatory function, and consequently Erg 40 is not suitable for complementation studies with CYP51A1 genes. © 2000 Society of Chemical Industry  相似文献   

12.
Triarimol and triforine inhibit ergosterol biosynthesis in fungi and cause accumulation of free fatty acids, 24-methylenedihydrolanosterol, obtusifoliol and 14α-methyl-δ8,24(28)-ergostadienol. Triparanol also inhibits ergosterol synthesis and causes accumulation of free fatty acids, but not of the latter 3 sterols. Triparanol appears to inhibit prior to lanosterol in the sterol biosynthetic pathway of Ustilago maydis and at unidentified sites subsequent to lanosterol which lead to the accumulation of a sterol which migrates with desmethylsterols on TLC plates. Quantitative abnormalities in sterols and free fatty acids in U. maydis are not produced by the fungicides carbendazim, chloroneb, carboxin and cycloheximide. A deficiency in nitrogen leads to a marked increase in triglycerides, but a normal distribution pattern for other lipids.Inhibition of oxidative demethylation of the sterol 14α-methyl group is probably the prime mechanism of inhibition of ergosterol biosynthesis by triarimol. Rates of formation of obtusifoliol and 14α-methyl-δ8,24(28)-ergostadienol in triarimol-treated U. maydis cells suggest that C-4 demethylation occurs along an abnormal pathway which operates effectively only at high substrate concentrations. The growth retardant action of triarimol and ancymidol in higher plants most likely results from inhibition of a reaction in the gibberellin biosynthetic pathway analogous to sterol C-14 demethylation.Free fatty acid accumulation in U. maydis cells treated with inhibitors of sterol synthesis are derived mainly from polar lipid degradation and from de novo synthesis as a consequence of the disproportionality between fatty acid synthesis and utilization. The free fatty acids may play a significant role in the lethality of these inhibitors in this organism.  相似文献   

13.
Resistance to a number of inhibitors of sterol C-14 demethylation, (clotrimazole, imazalil, miconazole, fenarimol, nuarimol and triadimefon), as well as resistance to inhibitors of sterol C-14(15) double bond reduction, (tridemorph and fenpropi-morph), was readily induced in Ustilago maydis. Resistant mutants were obtained after mutagenic treatment by ultraviolet irradiation, or by treatment with 1-methyl-3-nitro-1-nitrosoguanidine, of sporidia of the wild-type strain, followed by selection in the presence of the toxicant. The level of resistance of these mutants varied appreciably. Although not always reciprocal, cross-resistance to fungicides which inhibit ergosterol biosynthesis (EBIs) appeared to be present in most cases. Several of the U. maydis mutants which were resistant to inhibitors of sterol C-14 demethylation lacked cross-resistance to tridemorph and fenpropimorph, or displayed increased sensitivity to fenpropimorph (negatively correlated cross-resistance). Cross-resistance between EBIs and the antimicrobial agents climbazole and lombazole was also established. It is suggested that fungal mutants that possess a resistance mechanism based on a deficiency in sterol C-14 demethylation or sterol C-14(15) double bond reduction, have a greatly reduced chance of survival.  相似文献   

14.
With three plant pathogens,Botrytis cinerea, Venturia inaequalis and Puccinia graminis f. sp.tritici, the time course of sterol biosynthesis during spore germination was examined by labeling experiments along with the question whether this pathway could be inhibited by triazole fungicides. Conidia ofB. cinerea andV. inaequalis are able to synthesize sterols immediately after the beginning of the germination process when the germ tubes have not yet emerged. On the contrary uredospores ofP. graminis start sterol biosynthesis after 6 to 8 h germination time almost at the end of the germ tube phase, indicating that sterol reserves of the spores are likely to be used for the germ tube growth.The sterol C-14 demethylation appeared to be the rate limiting step within the sterol biosynthetic pathway: the half life of 24-methylenedihydrolanosterol was less than 1 h forB. cinerea. It was more than 1 h forV. inaequalis and 3 h forP. graminis. Independent of these differences in the time course of sterol biosynthesis and in the C-14 demethylation rate, the synthesis of sterols in germinating spores was strongly inhibited by triazole fungicides in all three pathogens examined. In contrast toP. graminis, this inhibition could be demonstrated withB. cinerea andV. inaequalis even in ungerminated conidia, indicating that the fungicides were rapidly taken up and reached their target within 1 or 2 h. These results are discussed along with the question whether spore germination can be used as a bioassay for the estimation of sensitivities of triazole fungicides.  相似文献   

15.
The cytochrome P450 sterol 14α-demethylase gene (MfCYP51) from Monilinia fructicola (G. Wint.) Honey was cloned and sequenced. The gene was 1680 bp in length (including introns) and was predicted to have two introns of 54 and 57 bp. The nucleotide sequence was 82.1, 53.4, 47.1, 45.1, and 33.6% and the amino acid sequence was 89.7, 76.1, 76.1, 71.8, and 66.9% identical to the CYP51 genes from Botrytis cinerea, Tapesia yallundae, T. acuformis, Erysiphe graminis, and Uncinula necator, respectively. Expression of MfCYP51 in PDR5::TN5 deficient Saccharomyces cerevisiae resulted in reduced sensitivity of the yeast transformants to myclobutanil but not to propiconazole, fenbuconazole or tebuconazole. A wildtype population of 33 M. fructicola isolates was significantly less sensitive to myclobutanil than to propiconazole, fenbuconazole, and tebuconazole. The sensitivity of the isolates to myclobutanil and the three other DMI fungicides included in this study was correlated positively, suggesting a similar or identical mode of action. The low sensitivity in M. fructicola wildtype isolates to myclobutanil could result from a less effective binding potential of the fungicide to the 14α-demethylase.  相似文献   

16.
The C-14 demethylation of the sterols, dependent on cytochrome P-450, and the C-22(23) desaturation of sterols are reactions in the ergosterol biosynthesis pathway that are regarded as primary target sites in the toxicity of fungicides of the pyrimidin-5-ylmethanol type. Currently, there is no evidence for target sites in other pathways of comparable sensitivity, although the failure of added ergosterol to reverse the fungitoxicity suggests the existence of such sites. The mitochondrial respiratory systems in Ustilago maydis and Aspergillus nidulans are insensitive to this type of fungicide and are not regarded as primary targets of fungitoxicity in these organisms. Appreciable evidence indicates that the primary targets in higher plant growth regulation are reactions, dependent on cytochrome P-450, that assist in the conversion of kaurene to kaurenoic acid in the gibberellin (GA) biosynthesis pathway. Growth retardation by high concentrations of pyrimidin-5-ylmethanols, which is not reversable by GA, apparently involves action at sites outside the GA biosynthesis pathway. The data derived from various studies of the mechanisms of fungitoxicity and growth regulation suggest that any undetected primary targets of the pyrimidin-5-ylmethanols are likely to be haem enzymes, similar to the cytochrome P-450 involved in sterol C-14 demethylation.  相似文献   

17.
Strains of Pseudocercosporella herpotrichoides collected in France on winter wheat give either fast-growing mycelial colonies with regular margins or slow-growing mycelial colonies with irregular margins. Most of the fastgrowing isolates were sensitive to triadimenol (EC50 below 2mg litre?1), but some of them were resistant to this inhibitor of sterol C-14 demethylation. In contrast, all the slow-growing strains were highly resistant to triadimenol (EC50 greater than 100 mg litre?1). This resistance was also expressed in inhibition of germ-tube elongation. Positive cross-resistance was observed between most of the inhibitors of sterol C-14 demethylation, with the exception of some imidazole derivatives (clotrimazole, prochloraz). All the fast-growing strains were tolerant to fenpropimorph and fenpropidin whereas the slow-growing ones were susceptible; the reverse was true with piperalin and tridemorph. All the field isolates were inhibited to the same extent by the inhibitors of squalene-epoxidase, nafifine and terbinafine. Two types of mutant resistant to triadimenol have been induced under laboratory conditions from sensitive fast-growing strains. The most common mutants were resistant to all the inhibitors of sterol C–14 demethylation and also in some conditions to fenpropimorph, tridemorph and the inhibitors of squalene-epoxidase. The other mutants were characterised by a reduced spectrum of cross-resistance between triadimenol and the other inhibitors of sterol biosynthesis. The field isolates and laboratory mutants resistant to triadimenol and propiconazole were also resistant to each of the four enantiomers of these two fungicides.  相似文献   

18.
In Botrytis cinerea, multidrug resistant (MDR) strains collected in French and German vineyards were tested in vitro, at the germ-tube elongation stage, towards a wide range of fungicides. Whatever the MDR phenotype, resistance was recorded to anilinopyrimidines, diethofencarb, iprodione, fludioxonil, tolnaftate and several respiratory inhibitors (e.g., penthiopyrad, pyraclostrobin). In MDR1 strains, overproducing the ABC transporter BcatrB, resistance extended to carbendazim and the uncouplers fluazinam and malonoben. In MDR2 strains, overproducing the MFS transporter BcmfsM2, resistance extended to cycloheximide, fenhexamid and sterol 14α-demethylation inhibitors (DMIs). MDR3 strains combined the overexpression of both transporters and exhibited the widest spectrum of cross resistance and the highest resistance levels. The four transport modulators, amitriptyline, chlorpromazine, diethylstilbestrol, and verapamil, known to affect some ABC transporters, were tested in B. cinerea. In our experimental conditions, the activity of several fungicides was only enhanced by verapamil. Interestingly, synergism was only recorded in MDR2 and/or MDR3 isolates treated with tolnaftate, fenhexamid, fludioxonil or pyrimethanil, suggesting that verapamil may inhibit the MFS transporter BcmfsM2. This is the first report indicating that a known modulator of ABC transporters could also block MFS transporters.  相似文献   

19.
Using a Random Amplified Polymorphic DNA (RAPD) assay, we investigated the genetic polymorphism existing among 62 European isolates of the grape powdery mildew fungus (Uncinula necator [Schw.] Burr.). Isolates overwintering as mycelium in buds were genetically distinct from isolates overwintering as ascospores, suggesting the existence of two genetically isolated powdery mildew populations, and consequently of two independent sources of inoculum in the vineyard. Isolates resistant to fungicides inhibiting sterol 14α-demethylation (DMIs) were found in both populations, suggesting that resistance to DMIs may arise independently in the two powdery mildew populations. A PCR assay targeting the gene encoding U. necator 14α-demethylase has been developed which will permit an early, specific detection of U. necator infections, and may be useful for spraying programmes. ©1997 SCI  相似文献   

20.
Rapidly growing mycelia of Aspergillus fumigatus treated with 10 μg/ml triforine (N,N′-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine) showed little or no inhibition in dry weight increase prior to 2 h. By 2.5–3 h, triforine inhibited dry weight increase by 85%. The effects of triforine on protein, DNA, and RNA syntheses corresponded to the effect on dry weight increase both in time of onset and magnitude. Neither glucose nor acetate oxidation were inhibited by triforine.Ergosterol synthesis was almost completely inhibited by triforine even in the first hour after treatment. Inhibition of ergosterol synthesis was accompanied by an accumulation of the ergosterol precursors 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methyl-Δ8, 24 (28)-ergostadienol. Mycelia treated with 5 μg/ml of triarimol (α-(2,4-dichlorophenyl)-α-phenyl-5-pyrimidinemethanol) also accumulated the same sterols as well as a fourth sterol believed to be Δ5, 7-ergostadienol.Identification of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in untreated mycelia indicates that the C-14 methyl group is the first methyl group removed in the biosynthesis of ergosterol by A. fumigatus. The lack of detectable quantities of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in triforine or triarimol-treated mycelia and the accumulation of C-14 methylated sterols in treated mycelia suggests that both fungicides inhibit sterol C-14 demethylation. The accumulation of Δ5, 7-ergostadienol in triarimol-treated mycelia further implies that triarimol also inhibits the introduction of the sterol C-22(23) double bond.Two strains of Cladosporium cucumerinum tolerant to triforine and triarimol were also tolerant to the fungicide S-1358 (N-3-pyridyl-S-n-butyl-S′-p-t-butylbenzyl imidodithiocarbonate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号