首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Methomyl {S-methyl-N-[(methylcarbamoyl)oxy]thioacetimidate}, also known as Lannate, may exist in two geometric configurations but the more stable syn isomer is the form applied as an insecticide. In the rat, syn[14CN]methomyl [CH3S(CH3)CNOC(O)NHCH3] was metabolized to respiratory 14CO2 and CH314CN in a ratio of about 2 to 1. Studies with the anti isomer showed that it was metabolized predominately to CH314CN. These and other data are presented supporting the contention that syn methomyl is partially isomerized to the anti isomer in the animal prior to the hydrolysis of the ester linkage. After hydrolysis, the syn oxime [CH3S(CH3)14CNOH] is further metabolized to 14CO2 while the anti oxime is metabolized to CH314CN. Proposed immediate precursors to the carbon dioxide and acetonitrile, formed by Beckmann rearrangement of the syn and anti oximes, are CH3S14C(O)NHCH3 and [CH314⊕CNSCH3]x?, respectively.  相似文献   

2.
A variety of membrane-specific parameters was examined in both intact cells and isolated plasma membranes following exposure of cultured human liver cells to the insecticide 1,1-(2,2,2-trichloroethylidene)bis(4-chloro)benzene (DDT). Uptake of DDT was at equilibrium within 6 hr. In contrast, a decrease in the number of β-adrenergic hormone receptors first became significant after 48 hr of cell exposure. Whereas the uptake was largely reversible, the loss in the number of β receptors did not recover after DDT-exposed cells were cultured in fresh medium lacking the insecticide. Experiments in vitro substantiated the time lag of the biological effect. The decrease in receptor proteins was persistent in membranes with increased phospholipid unsaturation. Temperature-activity profiles (“Arrhenius plots”) of Na+K+-ATPase and 5′-nucleotidase were unchanged. Endogenous tryptophan fluorescence of membrane proteins was lower in membranes from DDT-exposed cells. These selective alterations in membrane parameters suggest a specific interaction of DDT with membrane proteins; interference with cellular protein synthesis is possible. The results indicate that membrane lipid “fluidization” does not play a physiologically important role in the mechanism of DDT action in biomembranes.  相似文献   

3.
The association equilibrium constant, 1Kd, and the carbamylation constant, k2, of 53 o-, m-, and p-substituted phenyl N-methylcarbamates with bovine erythrocyte acetylcholinesterase were determined. The 1Kd value varied 1000-fold, whereas the k2 value did not depend upon the nature and position of substituents. The variation in log(1Kd) was analyzed using free energy related substituent parameters and regression analyses. The effect of substituents at o-, m-, and p-positions was nicely separated into hydrophobic, electronic, hydrogen bonding, and proximity (steric and field electronic for o-substituents) factors. The physicochemical significance of these factors was established by comparison with those for model organic reactivities. The mechanism of the whole reaction process was elucidated in terms of physical organic chemistry.  相似文献   

4.
Metabolism experiments with rats showed that significant isotope effects (kHkD = 2.4 to 3.5) were associated with the in vivo formation of dichloro and trichlorophenylmercapturic acids from a 1:1 mixture of normal and hexadeuterated lindane. This is evidence that rate-determining dehydrogenation and dehydrochlorination, both of which proceed with significant isotope effects, are essential in the pathway of dichloro- and trichlorophenylmercapturic acid formation from lindane. No significant primary isotope effects were associated (kHkD = 1.31 ± 0.17) with the formation of monochlorophenylmercapturic acid. This suggests that the 1,2-dechlorination to tetrachlorocyclohexene followed by glutathione conjugation is the probable pathway that produces this metabolite from lindane.  相似文献   

5.
The metabolic fate of six 3H-ring-substituted ethoxychlor analogs with altered aliphatic moieties and [14C]p,p′-DDT was investigated in susceptible and DDT-resistant strains of the house fly Musca domestica Linnaeus. The chloroalkane analogs, dichloroethane, chloropropane, and dichloropropane were primarily metabolized to the corresponding dehydrochlorinated products. This pathway was relatively more prominent in the resistant strain than in the susceptible strain. Biotransformation and detoxication of the isobutane, nitropropane, and neopentane derivatives was through microsomal oxidation (O-deethylation) of aryl ethoxy degradophores, and oxidation of the aliphatic moieties to produce the corresponding benzophenones, with no substantial differences between the resistant and susceptible strain. There was a strong correlation between the Taft (σ1) values for the altered aliphatic moieties of chloroalkane analogs and their rate of dehydrochlorination in both the strains. These results suggest the importance of altered aliphatic moieties in developing resistance-proof DDT derivatives.  相似文献   

6.
The organophosphorus insecticides, parathion and azinphos (10?5-10?4M), significantly stimulate the Ca2+-pump activity of sarcoplasmic reticulum, while malathion has a limited effect. The rates of Ca2+ translocation and ATP hydrolysis are both stimulated and, apparently, the Ca2+ATP ratio is improved. Parathion and azinphos maximally increase this ratio by 26 and 14%, respectively. The organochlorine compounds, DDT and aldrin, also stimulate the Ca2+ pump, and lindane has a reduced effect. These effects are smaller than those observed for parathion and azinphos. The order of effectiveness is similar to the toxicity of the compounds to mammals and can be described as follows: parathion > azinphos > DDT ≈ aldrin > malathion ≈ lindane.  相似文献   

7.
The toxic action of a series of O-alkyl, O-substituted-phenyl alkyl- and aryl-phosphonates and phosphonothionates have been evaluated by correlating the linear free energy parameters for steric (Es), electronic (σ), and polar (σ1) effects with topical LD50 to the house fly and oral LD50 to the white mouse. In molecules free from major steric interactions with the reactive P atom, variations in these linear free energy parameters account for >90% of the variations in the LD50 values, and the degree of correlation with LD50 is at least as precise as that with the biomolecular rate constants for inhibition of the target-site enzyme acetylcholinesterase. The value of correlations of linear free energy parameters with LD50 in understanding quantitative structure-activity relationships is illustrated.  相似文献   

8.
As a result of toxicity tests, it was established that all cyclodiene-resistant strains of the German cockroach are also resistant to picrotoxinin, a plant-origin neurotoxicant. Two of the cockroach strains which exhibit a distinct cross-resistance pattern to picrotoxinin (i.e., LPP and FRP) are the ones that have been purified genetically by backcrossing against the susceptible (CSMA) strain. This cross-resistance pattern appears to be specific to picrotoxinin and does not extend to other neuroexcitants such as bicuculline, beta-bungarotoxin, and DDT. The nervous system of the resistant cockroach was found to be less sensitive to picrotoxinin. Furthermore, it was determined that nerve components from the resistant cockroaches have significantly lower binding capacity to [3H]α-dihydropicrotoxinin. The most likely explanation for the above phenomenon is that these cockroaches have developed the cyclodiene resistance by altering the nerve receptor for picrotoxinin.  相似文献   

9.
The effect of phenobarbital and certain pesticides on glutathione S-transferase activity was investigated. The maximum amount of enzyme induction occurred 96 hr after phenobarbital treatment. Chlorinated hydrocarbons were more effective inducers than the other pesticides evaluated. Phenobarbital treatment did not alter the apparent Km value but altered the Vmax value of glutathione S-transferase to 3,4-dichloronitrobenzene. The amount of reduced glutathione was not increased by phenobarbital treatment. Pretreatment of house flies with phenobarbital provides some protection against methyl parathion, methyl paraoxon, azinphosmethyl, and methidathion toxicity.  相似文献   

10.
The metabolism of pure cis- and trans-chlordane was studied in vitro. Microsomal preparations from the livers of male rats induced with cis- or trans-chlordane in feed for 10 days were used to metabolize the pure compound corresponding to the inducer. Subsequent extraction, column fractionation, and combined gas chromatography-mass spectroscopy resulted in the characterization of four compounds not previously reported from an in vitro system. In addition to the substrate, trans-chlordane extracts contained species with the following molecular weights and empirical formulas: me 370, C10H5Cl7, heptachlor; me 352, C10H6OCl6, a hydroxylated chlordene; and me 422, C10H6OCl8, a hydroxylated chlordane. Dichlorochlordene, oxychlordane, and 1-chloro-2-hydroxy-dihydrochlordene were also present. With the exception of the hydroxychlordane, cis-chlordane extracts contained all of the metabolites found in the trans incubates. Additionally, a fully saturated compound, me 372, C10H7Cl7, a dihydroheptachlor, was present. The 1,2-trans-dihydrodiol of heptachlor found in previous in vitro incubates of cis-chlordane was not present in this extract. This information has been incorporated into a proposed route for the biotransformation of the chlordanes that offers an explanation for the observed differences in the metabolism of cis and trans isomers. The pathway is based on the reductive dechlorination of the chlordanes through dihydroheptachlor to dihydrochlordene. Parallel pathways of hydroxylation, desaturation, and epoxide formation arise at each of these species and at chlordane itself.  相似文献   

11.
The toxicity of the (R)P and (S)P chiral isomers and racemates of fonofos and fonofos oxon to insects and white mice were determined. (R)P-Fonofos and (S)P-fonofos oxon were 2- to 12-fold more toxic to house flies, mosquito larvae, and mice than were the corresponding enantiomers. The racemates were intermediate in toxicity. Stereoselectivity also was observed in the in vitro inhibition of house fly-head and bovine erythrocyte acetylcholinesterase, horse serum cholinesterase, chymotrypsin, trypsin, and a variety of esterases. In all cases the (S)P-oxon was a more potent inhibitor than the (R)P-oxon with k1 ratios of (S)P(R)P ranging from 4- to 60-fold. Further, differences in levels of house fly-head, mouse brain, and blood cholinesterase obtained from house flies and mice treated with the enantiomers and racemates of fonofos and fonofos oxon were observed. Differences in toxicity of the enantiomers and racemates to house flies and mice were more closely related to in vivo than to in vitro cholinesterase inhibition.  相似文献   

12.
In lindane-treated house flies, a cis-dehydrogenated metabolite, (3645)-hexachlorocyclohexene, was identified by gas-liquid chromatography and mass spectrometry. The in vitro metabolism study showed that in the presence of NADPH the microsomal fraction of house flies converted lindane to three hexane-soluble metabolites. This conversion was inhibited by piperonyl butoxide, SKF-525A, and carbon monoxide. These metabolites were identified as (3645)-hexachlorocyclohexene, (3645)- and (3465)-pentachlorocyclohexene (PCCHE) by gas-liquid chromatography. They, as well as lindane, were excellent substrates for the reaction with the postmicrosomal fraction in the presence of glutathione. While the reaction with lindane-d6 showed a significant deuterium isotope effect (6.82), that of (3645)-PCCHE-d5 did not (1.18). Enzymatic conjugation with glutathione probably occurs at the stage of PCCHE.  相似文献   

13.
Male feral pigeons were dosed with ring-labeled [14C]p,p′-DDT and the tissues and droppings analyzed for total 14C, extractable 14C, and metabolites. Only 16% of an intraperitoneal dose of 1.5–2.2 mg kg?1 was voided in the droppings over 28 days; the rate of loss reached a maximum on the 14th day and then fell quickly away. The rate of removal of 14C in droppings was low in comparison to that found in the rat and the Japanese quail. When pigeons were dosed with 32–38 mg kg?1 DDT per bird, and killed after 77 days, 5.4% of the dose was eliminated in droppings and 87% was recovered in the body. The tissues and droppings from this experiment were analyzed for DDT and its metabolites. Of the 14C remaining in tissues 88% was accounted for as the apolar compounds DDE, DDT, and DDD. Approximately half of the 14C in droppings was present as DDE, DDT, and DDD, whereas 27–35% was apparently in conjugated form, extractable from aqueous solutions by ethyl acetate after prolonged acid hydrolysis. Two polar metabolites were isolated from the acid-released material. One was p,p′-DDA; the other was extractable from aqueous solution at pH 8 and was tentatively identified as a monohydroxy derivative of p,p′-DDT. DDE accounted for 93% of the 14C present as metabolites in tissues and droppings, clearly indicating the importance of this intermediate in this study. The metabolism of DDT in the feral pigeon is discussed in relation to its metabolism by other species.  相似文献   

14.
A rat hepatocyte suspension effectively epoxidized aldrin to dieldrin with a Vmax of 7.19 mol/mol P-450/min and a Km of 9.27 μM. Viability and metabolic activity were stable for 6 hr after isolation when cells were maintained at room temperature (20°C) with the gentle introduction of O2CO2 onto the surface of the suspension. The cytochrome P-450 content of the suspension was 303 pmol/106 cells. Primary maintenance culture of the cells also epoxidized aldrin. During culture for 3 days, metabolic activity decreased slowly day by day. Metabolic activity of microsomal fraction from rat liver was also examined. Microsomes epoxidized aldrin with a Vmax of 5.11 mol/mol P-450/min and a Km of 1.64 μM. Significant loss of some subspecies of cytochrome P-450 during fractionation of liver homogenate was indicated.  相似文献   

15.
Captan, folpet, and perchloromethylmercaptan were effective inhibitors of Penicillium duponti p-nitrophenylpropionate esterase activity (I50 = 0.5 – 2 μM) whereas α-naphthyl acetate esterase activity was not affected by the presence of these compounds. Captan and folpet are both equally effective at pH 7.3 and 8.3. The ionic composition of the medium had strong effects on the degree of inhibition produced by all inhibitors but did not alter esterase activity. Neither succinamide nor phthalimide caused inhibition of the p-nitrophenylpropionate esterase activity: The trichloromethylmercaptan portion of these fungicides appears to be responsible for the observed inhibition. The rapidity of captan and folpet inhibition of esterase activity (complete in < 1 min) compared to the rates of spontaneous decomposition (t12 > 1 min) and the insensitivity of captan and folpet inhibition to hydrogen ion concentration suggest that generation of spontaneous decomposition products is not required for inhibition. The results are consistent with a mechanism in which the entire fungicide molecule binds to the protein followed by enzyme-promoted reactions of captan and folpet which result in loss of esterase activity.  相似文献   

16.
The action of avermectin was studied in the leg muscle and the central nervous system of the American cockroach, Periplanata americana L. Avermectin at a low concentration (10?7M) causes a failure of the leg muscles to respond to external stimuli within 30 min without affecting the magnitude of contraction. Avermectin was found to stimulate Cl? uptake by the leg muscles within 4 min at 10?7M. The threshold concentration to cause such stimulation was on the order of 10?8M. This stimulatory action could be antagonized by picrotoxinin (10?4M) and to a lesser extent by bicuculline methiodide (10?4M). The phenomenon is observable under both Na+-free and K+-free conditions. It was concluded that the action of avermectin is to open the chloride channel on the plasma membrane. This action of avermectin does not seem to be mediated through GABA, GABA receptors, diazepine receptors, or picrotoxinin receptor in this insect species, and therefore suggests that avermectin directly attacks the chloride channel proper both in the central nervous and the neuromuscular systems.  相似文献   

17.
A total of 146 samples of different kinds of cheeses produced in Spain were analysed in order to ascertain the specific contamination pattern. The organochlorine compounds studied were those most commonly investigated in previous surveys: α-HCH, β-HCH, γ-HCH (lindane), γ-HCH, chlordane, aldrin, dieldrin, endrin, heptachlor, heptachlor epoxide, and the isomers and metabolites of DDT. α-HCH, β-HCH, γ-HCH, chlordane, p,p′, DDT, and p,p′-DDE were found in more than 76% of samples; p,p′-DDE and γ-HCH were the most frequently detected, with frequencies of 100 and 97.9% respectively. γ-HCH, aldrin, dieldrin, heptachlor, heptachlor epoxide, o,p′-DDT, p,p′-DDD and o,p′-DDD were observed at lower frequencies. No residues of endrin were detected in any sample. Insecticides exceeding the maximum residue limits (MRLs) were chlordane, β-HCH, α-HCH and γ-HCH, with 42, 20, eight and six samples respectively. Mean residues of organochlorines found were as follows (μ kg?1 butterfat): α-HCH = 46.3; β-HCH = 46.5; γ-HCH = 54.2; δ-HCH = 16.9; aldrin = 16.7; dieldrin = 9.7; heptachlor = 15.9; heptachlor epoxide = 14.8; chlordane = 50.2; o,p′-DDT = 5.1; p,p′-DDT = 12.4; o,p′-DDT = 19.6; p,p′-DDD = 46.7; o,p′-DDE = 6.9; p,p′-DDE = 40.7 (.DDT = 55.0). Estimated dietary intakes (EDIs) from cheese consumption were compared to acceptable daily intakes (ADIs) for the pesticides where residues exceeded the MRL. EDIs calculated were in all cases below ADIs, and, therefore, based on the ADIs, there is no health risk involved in the consumption of cheese from Spain arising from organochlorine residues.  相似文献   

18.
4-Chloro-, 2,4-dichloro-, 3,4-dichloro-, 2,3,5-trichloro-, and 2,4,5-trichlorophenylmercapturic acids were identified as main metabolites of lindane, γ-isomer of 1,2,3,4,5,6-hexachloro-cyclohexane, in rat urine. Pathways to these metabolites were shown to include (3645)-hexachlorocyclohexene as the most important intermediary metabolite. (3465)-Pentachlorocyclohexene and (3465)-tetrachlorocyclohexene also seem to be involved in these pathways, while (3645)-pentachlorocyclohexene plays a minor role in the pathway. Glutathione conjugation, using the rat liver soluble fraction, occurred directly on the polychlorocyclohexenes, not on their further transformed products. In in vivo biodegradation, (3645)-hexachlorocyclohexene may be dechlorinated and dehydrochlorinated at the endoplasmic reticulum before it undergoes the glutathione conjugation in cytosol, although other polychlorocyclohexenes generally react in a manner similar to that in the in vitro reaction.  相似文献   

19.
Conversion of chrysanthemates to their cyclopropane, episulfide, and epoxide derivatives by addition of methylene, sulfur, or oxygen, respectively, to the 2-methyl-1-propenyl double bond yields products generally of reduced toxicity but enhanced neurophysiological activity and photostability. The reduced toxicity is established with cis-cyphenothrin derivatives administered intracerebrally to mice and topically to house flies and with cis-phenothrin derivatives applied topically to American cockroaches and house flies, even in the presence of piperonyl butoxide for the house flies. In contrast, cyclopropane, episulfide, and epoxide derivatives of phenothrin are more potent than the parent compound in eliciting repetitive firing following stimulation of a cercal sensory nerve of the American cockroach in vitro. The individual 1′R and 1′S isomers of epoxides derived from (1R,cisS)cyphenothrin, (1R,cis)phenothrin, and (1R,trans)tetramethrin differ in potency by up to 20-fold for insecticidal activity, >30-fold for intracerebral toxicity to mice, and ~100,000-fold in the cercal sensory nerve assay. In each case the epoxide isomer of higher Rf is more potent than that of lower Rf when derived from a trans-chrysanthemate and vice versa from a cis-chrysanthemate.  相似文献   

20.
The ability of spinosyn A to either enhance or displace binding to selected insecticidally-relevant receptors was investigated using a number of radioligands including, [3H]imidacloprid and [3H]ivermectin in tissues from the ventral nerve cord (VNC) membranes of the American cockroach, Periplaneta americana and head membranes from the housefly, Musca domestica. In these insect neural tissues, spinosyn A does not appear to alter the binding of a number of radioligands suggesting that spinosyn A does not interact directly with a variety of known receptors, including nicotinic or γ-aminobutyric acid (GABA)-based insecticidal target sites. However, available data are consistent with spinosyn A interacting with a site distinct from currently known insecticidal target sites, thus supporting a novel insecticidal mechanism of action for the spinosyns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号