首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Background: Chronic kidney failure is frequently seen in middle-aged and elderly cats. 51Chromium-ethylene diaminic tetraacetic acid (51Cr-EDTA) clearance and single blood sample (SBS) method are used in several species to estimate the glomerular filtration rate (GFR).
Hypothesis: The hypothesis of this study was that 51Cr-EDTA clearance could be determined using an SBS method in normal and hyperthyroid cats.
Animals: Forty-six cats were included in this study, with an average age of 9.5 years. Of these cats, 27 had hyperthyroidism; 19 were healthy.
Methods: After IV injection of 51Cr-EDTA (average dose: 4.25 MBq), 7 blood samples were obtained between 5 and 240 minutes. Reference clearance was calculated in mL/min and mL/min/kg body weight, using a 2-compartment model. Optimal time for clearance measurement with SBS was then determined by systematically comparing each individual plasma concentration to the reference multisample clearance.
Results: The average reference plasma clearance of 51Cr-EDTA for all cats was 14.9 mL/min (3.7 mL/min/kg). The clearance in hyperthyroid cats averaged 16.4 mL/min (4.3 mL/min/kg) and in normal cats averaged 10.3 mL/min (2.4 mL/min/kg).
The optimal time for the SBS was 48 minutes after injection of tracer 51Cr-EDTA ( R 2= 0.9414), giving the following converting equation: clearance = (0.0066 × DV48 minutes) – 0.9277 (in mL/min).
Conclusions and Clinical Importance: In this study, the single sample 51Cr-EDTA clearance method was used to estimate the global GFR in cats. The method identified differences in clearance between normal and hyperthyroid cats. The optimal time for an SBS was 48 minutes.  相似文献   

2.
The purpose of this study was to investigate the effects of methimazole on renal function in cats with hyperthyroidism. Twelve cats with naturally occurring hyperthyroidism and 10 clinically normal (i.e., control) cats were included in this study. All cats initially were evaluated with a history, physical examination, complete blood count, serum biochemistry profile, basal serum total thyroxine concentration, complete urinalysis, and urine bacterial culture. Glomerular filtration rate (GFR) was estimated by a plasma iohexol clearance (PIC) test. After initial evaluation, hyperthyroid cats were treated with methimazole until euthyroidism was achieved. Both groups of cats were then reevaluated by repeating the initial tests four to six weeks later. The mean (+/-standard deviation) pretreatment estimated GFR for the hyperthyroid cats was significantly higher (3.83+/-1.82 ml/kg per min) than that of the control cats (1.83+/-0.56 ml/kg per min). Control of the hyperthyroidism resulted in a significantly decreased mean GFR of 2.02+/-0.81 ml/kg per minute when compared to pretreatment values. In the hyperthyroid group, the mean increases in serum urea nitrogen (SUN) and creatinine concentrations and the mean decrease in the urine specific gravity after treatment were not statistically significant when compared to pretreatment values. Two of the 12 hyperthyroid cats developed abnormally high serum creatinine concentrations following treatment. These results provide evidence that cats with hyperthyroidism have increased GFR compared to normal cats, and that treatment of feline hyperthyroidism with methimazole results in decreased GFR.  相似文献   

3.
BACKGROUND: Important characteristics determining the usefulness of a method for glomerular filtration rate (GFR) measurement are convenience, availability, and reproducibility. HYPOTHESIS: The use of different plasma clearance methods could lead to different results and differences in reproducibility. ANIMALS: Twelve healthy cats: 6 young adult cats (age 7-12 months), and 6 aged cats (age 9-12 years) were included in this study. METHODS: A cross-over design was used to compare the plasma clearance of exogenous creatinine (PECCT), exo-iohexol (PexICT), endo-iohexol (PenICT), and chromium-51 ethylenediaminetetraacetic acid (51Cr-EDTA), and to investigate reproducibility of these methods. Cats of different ages were included to determine if differences in GFR in young adult versus aged cats would be detected with these methods. The PECCT, PexICT, and PenICT were performed in a combined manner. Plasma data were subjected to noncompartmental (creatinine, exo-iohexol, and endo-iohexol) or bicompartmental (51Cr-EDTA) analysis with a statistical moment approach. Area under the concentration-time curve was calculated using the trapezoidal rule with extrapolation to infinity. Statistical analyses were carried out using a random effects model. RESULTS: Globally, the 4 methods differed significantly (P < .0001) in GFR assessment. Clearance of exo-iohexol and chromium-51 ethylenediaminetetraacetic acid (51Cr -EDTA) showed the highest and lowest reproducibility, respectively. Only plasma clearance of creatinine differed significantly between young adult and aged cats. CONCLUSION AND CLINICAL IMPORTANCE: We found considerable differences in reproducibility of different GFR measurements. These findings should be taken into account not only in practice but also in future studies involving GFR measurement.  相似文献   

4.
BACKGROUND: Glomerular filtration rate (GFR) can be measured by clearance methods of different markers showing discrepancies and different reproducibility in healthy cats. Studies comparing different methods of GFR measurement in hyperthyroid cats have not yet been performed. HYPOTHESIS: Plasma clearance of exogenous creatinine (PECCT), exo-iohexol (PexICT), and endo-iohexol (PenICT) could lead to differences in GFR measurement and the need to use the same clearance method when comparing GFR before and after radioiodine treatment in hyperthyroid cats. ANIMALS: Fifteen client-owned hyperthyroid cats. METHODS: GFR was measured 1 day before and 1, 4, 12, and 24 weeks after treatment. Intravenous injection of iohexol was followed immediately by IV injection of creatinine. Plasma creatinine was measured by an enzymatic method. Plasma endo- and exo-iohexol were measured by high-performance liquid chromatography coupled to ultraviolet detection. RESULTS: Globally, the 3 GFR methods resulted in significantly different (P < .001) GFR results. GFR results among the different methods were the same (P= .999) at all time points. All 3 techniques indicated decreasing GFR after (131)I treatment. For each GFR technique, a significant decrease in GFR was observed between time point 0 and all other time points. This decrease stabilized 4 weeks after treatment, with very little decline afterward. CONCLUSION AND CLINICAL IMPORTANCE: It is mandatory to use the same GFR technique in follow-up studies. GFR testing at 4 weeks posttreatment could allow assessment of the final renal functional loss after treatment in hyperthyroid cats.  相似文献   

5.
The glomerular filtration rate (GFR) was estimated in eight full-term neonatal foals by the single injection inulin plasma clearance method at two days of age, the continuous infusion plasma and urinary clearance methods at three days of age, and the 12-hour endogenous creatinine clearance method at four days of age. The effective renal plasma flow (ERPF) was estimated simultaneously by the single injection para-aminohippuric acid (PAH) plasma clearance method in the eight two-day old foals and the continuous PAH infusion plasma and urinary clearance method in the eight three-day old foals. The GFR (+/- 1 SEM), as determined from the single injection plasma clearance method, was 2.30 +/- 0.34 mL/kg/min; by continuous infusion plasma clearance 2.56 +/- 0.30 mL/kg/min; by continuous infusion urinary clearance 2.82 +/- 0.32 mL/kg/min; and by 12-hour endogenous creatinine clearance 2.81 +/- 0.55 mL/kg/min. Effective renal plasma flow (+/- 1 SEM) measured by the single injection plasma clearance method was 15.22 +/- 1.5 mL/kg/min, by continuous infusion plasma clearance was 18.21 +/- 2.0 mL/kg/min. and by continuous infusion urinary clearance it was 11.95 +/- 1.9 mL/kg/min. The results of these methods were not statistically different. On a per kilogram body weight basis, the full-term neonatal foal's GFR and ERPF was determined to be comparable with adult equine GFR and ERPF.  相似文献   

6.
Glomerular filtration rate (GFR) was determined in 53 cats using an inulin single-injection method. Thirty healthy young adult cats were used to establish normal values. The procedure was also used in 23 cats that were either older than 10 years or had borderline serum creatinine levels. The total clearance was calculated from the decay of the serum inulin concentration after injection of 3000 mg/m(2)body surface area using a two-compartment model. Concomitant inulin and iohexol clearance in nine cats showed excellent correlation between the two methods. Calculated normal values for GFR in 30 healthy cats were 35.9-58.5 (median 46.0) ml/min/m(2)or 2.07-3.69 (median 2.72) ml/min/kg. A few cats with normal creatinine or blood urea nitrogen levels were detected as having reduced GFR and therefore being in a state of early renal dysfunction. The study indicates that single-injection inulin clearance is a valuable tool for routine GFR measurement in cats. An "inulin excretion test" using only one blood sample 3h after the administration of 3000 mg/m(2)body surface area could prove an attractive alternative for the assessment of renal function in daily practice.  相似文献   

7.
Commonly used clinical indicators of renal disease are either insensitive to early dysfunction or have delayed results. Decreased glomerular filtration rate (GFR) indicates renal dysfunction before there is a loss of 50% of functional nephrons. Most tests evaluate global rather than individual kidney function. Dynamic computed tomography (CT) and Patlak plot analysis allows for individual GFR to be tested. Our objectives were to establish a procedure and provide reference values for determination of global GFR in 10 healthy cats using dynamic CT (CTGFR). This method of GFR determination was compared against serum iohexol clearance (SIC). A single CT slice centered on both kidneys and the aorta was acquired every fifth second during and after a bolus injection of iohexol (240 mgI/ml; 300 mgI/kg) for 115 s. Using data from this dynamic acquisition, Patlak plots were obtained, GFR was calculated, and results were compared to global GFR determined by iohexol clearance. The average global CTGFR estimate was 1.84 ml/min x kg (SD = 0.43; range = [1.22, 2.45]). The average global GFR measured using SIC was 2.45 ml/min x kg (SD = 0.58; range = [1.72, 3.69]). GFR measurements estimated by both dynamic CT and SIC were positively associated (estimated Spearman rank correlation coefficient = 0.72; P = 0.0234). The CTGFR method consistently underestimated GFR with a bias of -0.62 (SE = 0.1307) when compared to SIC (P = 0.0011). In healthy cats, CTGFR was capable of determining individual kidney function and appears clinically promising.  相似文献   

8.
Glomerular filtration rate (GFR) was measured in 12 clinically normal horses, using the standard inulin clearance method, and values were compared with values for 2 methods, using a single rapid IV injection of 99mTc-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA). The first 99mTc-DTPA method used a 2-compartment model to calculate GFR blood clearance of the tracer. The second method used sequential digital gamma camera images of the kidneys to determine fractional accumulation of the total dose of the tracer in the kidneys (percentage of injected dose, gamma camera) from 0 to 10 minutes after radionuclide administration. Linear correlation among the 3 methods was determined. Mean (+/- SD) GFR, using the inulin clearance method, was 154.67 +/- 42.28 ml/min/100 kg of body weight. Mean GFR, using the 2-compartment blood clearance curve, was 146.92 +/- 27.49 ml/min/100 kg. Mean GFR, using percentage of injected dose (gamma camera method) was 154.7 +/- 22.00 ml/min/100 kg. The percentage of injected dose (gamma camera method) did not correlate significantly to the inulin clearance results. However, a significant (r = 0.666, P less than 0.018) correlation was observed between the inulin method and the 99mTc-DTPA blood clearance method. Significant (P less than 0.0001) difference also was observed in the split function of the equine kidneys, with GFR of the right kidney contributing 60.1 +/- 9.12% of the total function, as determined by 99mTc-DTPA gamma camera imaging. Because the 99mTc-DTPA blood clearance method does not require urine collection, it may be a more practical procedure to measure GFR in the horse.  相似文献   

9.
OBJECTIVE: To evaluate accuracy of measuring plasma clearance of inulin as an alternative renal function test for estimation of glomerular filtration rate (GFR) in cats. ANIMALS: 10 cats, first studied with intact kidneys and subsequently studied following partial nephrectomy. PROCEDURE: Clearance studies were performed in 10 clinically normal cats; those same cats then underwent partial nephrectomy, and clearance studies were performed again. Plasma concentration of inulin was determined after administration at 50 mg/kg of body weight to cats while renally intact and 45 mg/kg after the partial nephrectomy. Plasma clearance of inulin (PCin) was determined by dividing the dose by the area under the plasma inulin concentration versus time curve. Results for PCin were compared with values obtained simultaneously for urinary clearance of exogenously administered creatinine (Ccr), a widely accepted method for measurement of GFR in cats with intact kidneys and cats with reduced renal mass. RESULTS: Results of PCin were strongly correlated (r2 = 0.912, P < 0.001) with Ccr. Repeatability of determination of PCin was similar to that of Ccr. Sensitivity and specificity of PCin were superior and equivalent to that of Ccr, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Determination of PCin provides a reliable estimate of GFR in cats and is a promising alternative to determining Ccr in cats.  相似文献   

10.
A double-isotope single-injection method without urine collection for the estimation of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) in dogs and cats was evaluated. The GFR was determined, using 14C-inulin and ERPF was determined, using [3H]tetraethylammonium bromide. Using a modified single exponential, 1-compartment mathematical model, the renal clearance of these solutes was estimated with a plasma radioactivity disappearance curve constructed from samples collected over a 150-minute time period. In 25 dogs, GFR, ERPF, and filtration fraction were 3.55 +/- 0.14 ml/kg/min, 10.51 +/- 0.72 ml/kg/min, and 0.34 +/- 0.02, respectively. In 25 cats, GFR, ERPF, and filtration fraction were 3.24 +/- 0.14 ml/kg/min, 8.14 +/- 0.53 ml/kg/min, and 0.39 +/- 0.02, respectively. This time-efficient and reliable method, using beta-emitting isotopes, yielded renal functional values well within the normal ranges reported by a variety of other isotopic and nonisotopic procedures. The advantages of the present procedure over previous double-isotope single-injection methods include the use of less costly, lower energy-using, and less penetrating beta emittors, as well as a shortened blood sampling schedule.  相似文献   

11.
The objective of our study was to determine individual and global glomerular filtration rates (GFRs) using dynamic renal computed tomography (CT) in Beagle dogs. Twenty-four healthy Beagle dogs were included in the experiment. Anesthesia was induced in all dogs by using propofol and isoflurane prior to CT examination. A single slice of the kidney was sequentially scanned after a bolus intravenous injection of contrast material (iohexol, 1 mL/kg, 300 mgI/mL). Time attenuation curves were created and contrast clearance per unit volume was calculated using a Patlak plot analysis. The CT-GFR was then determined based on the conversion of contrast clearance per unit volume to contrast clearance per body weight. At the renal hilum, CT-GFR values per unit renal volume (mL/min/mL) of the right and left kidneys were 0.69 ± 0.04 and 0.57 ± 0.05, respectively. No significant differences were found between the weight-adjusted CT-GFRs in either kidney at the same renal hilum (p = 0.747). The average global GFR was 4.21 ± 0.25 mL/min/kg and the whole kidney GFR was 33.43 ± 9.20 mL/min. CT-GFR techniques could be a practical way to separately measure GFR in each kidney for clinical and research purposes.  相似文献   

12.
13.
Background: Glomerular filtration rate (GFR) is decreased in humans with hypothyroidism, but information about kidney function in dogs with hypothyroidism is lacking.
Hypothesis: Hypothyroidism influences GFR in dogs. The objective of this study was to assess GFR in hypothyroid dogs before implementation of thyroxine supplementation and after re-establishing euthyroidism.
Animals: Fourteen hypothyroid dogs without abnormalities on renal ultrasound examination or urinalysis.
Methods: Blood pressure and GFR (measured by exogenous creatinine clearance) were measured before treatment (T0, n = 14) and at 1 month (T1, n = 14) and at 6 months (T6, n = 11) after beginning levothyroxine supplementation therapy (20 μg/kg/d, PO). The response to therapy was monitored at T1 by measuring serum total thyroxine and thyroid stimulating hormone concentrations. If needed, levothyroxine dosage was adjusted and reassessed after 1 month. Statistical analysis was performed using a general linear model. Results are expressed as mean ± standard deviation.
Results: At T0, the average age of dogs in the study group was 6.3 ± 1.4 years. Their average body weight decreased from 35 ± 18 kg at T0 to 27 ± 14 kg at T6 ( P < .05). All dogs remained normotensive throughout the study. GFR increased significantly with levothyroxine supplementation; the corresponding results were 1.6 ± 0.4 mL/min/kg at T0, 2.1 ± 0.4 at T1, and 2.0 ± 0.4 at T6 ( P < .01).
Conclusion: GFR was <2 mL/min/kg in untreated hypothyroid dogs. Re-establishment of a euthyroid state increased GFR significantly.  相似文献   

14.
The glomerular filtration rate (GFR) was determined with the single injection 51Cr-EDTA clearance in 48 dogs with renal disease and the results were compared with the plasma Creatinine (PC) and plasma urea (PU) levels. The superiority of PC values over PU values for the assessment of the GFR is represented by the power functions PC = 78.2 CR(-0.67) mmol per litre and PU = 10.3 Cr(-0.52) mmol per litre, in which Cr is the relative glomerular filtration rate. The higher correlation between PC and Cr (r = 0.834) than between PU and Cr (r = 0.693) also demonstrates this superiority. An extended two compartment analysis of the 51Cr-EDTA plasma disappearance curve is not essential for diagnostic purposes.  相似文献   

15.
Glomerular filtration rate (GFR) was estimated by plasma clearance of iohexol (PCio) in 52 conscious cats presented for a variety of reasons to Angel Animal Hospital over a 2-year period. Cats were divided into four groups according to their clinical conditions and reasons for measuring PCio. The median PCio (ml/min/kg) was 3.68 in normal cats (NM), 2.39 in cats with suspected renal disease (SP), 1.35 in cats referred to confirm renal dysfunction (RD), and 0.84 in cats with apparent clinical signs of renal failure (RF). There was a significant difference between the results for each group. The respective medians of blood urea nitrogen (BUN) and plasma creatinine concentration (Pcr) (mg/dl) were 15 and 1.40 in NM cats, 21 and 1.71 in SP cats, 30 and 2.20 in RD cats, and 48 and 3.30 in RF cats. The reference values of BUN and Pcr were 21 +/- 7 mg/dl and 1.5 +/- 0.4 mg/dl (mean +/- SD). Diminished renal function could not be detected in SP cats by either BUN or Pcr, while a marked decrease of GFR was demonstrated before BUN and Pcr increased, indicating the insensitivity of BUN and Pcr in detecting renal dysfunction in cats. PCio can be performed non-invasively in conscious cats, which improves the veterinarian's ability to detect early stages of chronic renal disease.  相似文献   

16.
OBJECTIVE: To determine whether plasma clearance of iohexol (PCio) can be used to estimate glomerular filtration rate (GFR) in cats. ANIMALS: 4 renal-intact and 6 partially nephrectomized adult cats. PROCEDURE: Plasma clearance of iohexol was determined after IV administration of iohexol; plasma concentrations of iodine were measured by use of a colorimetric assay. Results for PCio were compared with simultaneously obtained values for urinary clearance of creatinine (CCr). RESULTS: The colorimetric assay used to measure plasma iodine concentrations was extremely precise. Results of PCio for all cats, renal-intact cats, and partially nephrectomized cats were closely associated with results of CCr. Mean difference between CCr and PCio determined for all cats was 0.95 ml/min/kg, which was < 30% of mean CCr for renal-intact cats. Coefficients of variance for PCio (5%) and CCr (8%) in renal-intact cats were similar. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma clearance of iohexol determined by use of a simple colorimetric assay provided an estimation of GFR in cats that was not significantly different from that provided by CCr. Moreover, PCio more reliably estimates renal function than BUN and plasma creatinine concentrations. Because determination of PCio is less labor intensive and invasive, compared with CCr, it may be easier to perform in a clinical setting.  相似文献   

17.
Pharmacokinetics and bioavailability of cephalothin in horse mares   总被引:1,自引:0,他引:1  
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%.  相似文献   

18.
Background: Hypothyroidism affects renal function in a manner opposite the effects of hyperthyroidism.
Objective: To evaluate the effects of experimentally induced hypothyroidism on glomerular filtration rate (GFR) and basal plasma creatinine concentration in dogs.
Animals: Sixteen anestrous, female dogs.
Methods: Hypothyroidism was induced by administration of 131I in 8 dogs, and 8 healthy euthyroid dogs acted as controls. Exogenous plasma creatinine clearance (an estimate of GFR) was measured in all dogs before (control period) and 43–50 weeks after induction of hypothyroidism (posttreatment period). Other pharmacokinetic parameters of creatinine were also determined.
Results: No significant difference was observed for basal plasma creatinine concentration and creatinine clearance between control and hypothyroid dogs in the control period. In the posttreatment period, mean ± SD creatinine clearance in the hypothyroid group (2.13 ± 0.48 mL/min/kg) was lower ( P < .001) than that of the control group (3.20 ± 0.42 mL/kg/min). Nevertheless, basal plasma creatinine concentrations were not significantly different between the hypothyroid and control groups (0.74 ± 0.18 versus 0.70 ± 0.08 mg/dL, respectively) because endogenous production of creatinine was decreased in hypothyroid dogs (22 ± 3 versus 32 ± 5 mg/kg/d, P =.001).
Conclusion and Clinical Importance: Hypothyroidism causes a substantial decrease in GFR without altering plasma creatinine concentrations, indicating that GFR evaluation is needed to identify renal dysfunction in such patients.  相似文献   

19.
The purpose of this project was to establish a procedure and reference values for glomerular filtration rate (GFR) using contrast-enhanced computed tomography (CT) in eight healthy dogs. A single section of the kidney was scanned sequentially after bolus injection (3 ml/s) of iohexol (300 mg/kg). Time-attenuation curves were constructed and the GFR per volume of kidney was calculated using Patlak graphical analysis software. The GFR was then converted from contrast clearance per unit volume (ml/min/ml) to contrast clearance per body weight (ml/min/kg). Individual kidney and global GFR were calculated using both CT and nuclear scintigraphy. Global GFR for each dog was also determined by plasma iohexol clearance. Contrast-enhanced CT underestimated the global GFR compared with the other two methods. The average global GFR was 2.57 +/- 0.33 ml/ min/kg using functional CT and 4.06 +/- 0.37 ml/min/kg using plasma iohexol clearance. There was significant (P < 0.05) interobserver variability of CT GFR of the right kidney and total GFR. There was decreased interobserver variability for the left kidney. There was no difference in the intraobserver variability for CT-determined individual kidney and global GFR. There was no difference between the motion corrected and nonmotion corrected values for individual and global CT GFR. Nuclear scintigraphy produced a slightly higher coefficient of variation than contrast-enhanced CT, 2.9% and 1.0%, respectively. It is hypothesized that altered renal blood flow, hematocrit of the small vessels, and nephrotoxicity play a role in the underestimation of GFR by contrast-enhanced CT.  相似文献   

20.
A suitable method in the routine veterinary practice for the quantitative determination of the glomerular filtration rate (GFR) in dogs and cats has not been available until to date. Therefore, we modified the known plasma clearance model (=P-CL). The resulting P-CLterminal was assessed concerning its diagnostic value. P-CL of exogenous creatinine (P-CLcrea) and of inulin were determined in dogs (n=12, Beagle, 6 months of age) and cats (n=11, Domestic Short Hair, 14 months of age). The marker substances were administered as a bolus injection. In fasted dogs, P-CLcrea was 84.3 +/- 14.85 ml/min/m2 after a creatinine dose of 2.4 g/m2. An electrolyte infusion during the clearance determination did not alter the resulting values (p>0.05). In fasted cats, P-CLcrea was 54.7 +/- 5.8 ml/min/m2 (creatinine dose 2.0 g/m2). The inulin clearance, determined at the same time, was 104.5 +/- 19.81 ml/min/m2. Feeding the cats just before and during the test increased P-CL of both markers significantly (p<0.05). In order to adapt the clearance method for diagnostic assessment of GFR in the small animal practice, we aimed at minimizing the number of required blood samples (3 instead of 7 or more) and introduced the modified exogenous creatinine clearance (P-CLterminal). These values determined were 108.4 +/- 20.81 ml/min/m2 in fasted dogs and 66.3 +/- 11.81 ml/min/m2 in fasted cats. An electrolyte infusion (dogs) and feeding (cats) had the same effect on P-CLterminal values as described above for P-CL. In conclusion,the modified exogenous creatinine clearance is a suitable renal function test for the early diagnosis of renal disease in dogs and cats presented in small animal practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号