首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specialty crop herbicides are not a priority for the agrochemical industry, and many of these crops do not have access to effective herbicides. High‐value fruit and vegetable crops represent small markets and high potential liability in the case of herbicide‐induced crop damage. Meanwhile, conventional and organic specialty crop producers are experiencing labor shortages and higher manual weeding costs. Robotic weeders are promising new weed control tools for specialty crops, because they are cheaper to develop and, with fewer environmental and human health risks, are less regulated than herbicides. Now is the time for greater investment in robotic weeders as new herbicides are expensive to develop and few in number, organic crops need better weed control technology and governments are demanding reduced use of pesticides. Public funding of fundamental research on robotic weeder technology can help improve weed and crop recognition, weed control actuators, and expansion of weed science curricula to train students in this technology. Robotic weeders can expand the array of tools available to specialty crop growers. However, the development of robotic weeders will require a broader recognition that these tools are a viable path to create new weed control tools for specialty crops. © 2019 Society of Chemical Industry  相似文献   

2.
An increasing water crisis, as well as the unavailability and high cost of labor, in Pakistan has forced rice‐growers to plant rice directly into the field. However, severe weed infestation causes disastrous effects on the productivity of this rice system. In this study, three herbicides (pendimethalin, penoxsulam and bispyribac‐sodium) were evaluated for weed control in direct‐planted rice on a sandy loam soil. Weedy check and weed‐free plots were established for comparison. Weed infestation decreased the rice yield by 75.2%. However, the application of herbicides suppressed the weed infestation, with a simultaneous increase in the rice yield. The postemergence application of bispyribac‐sodium was the most effective herbicide in reducing the total weed density and dry weight over the weedy check, followed by penoxsulam and pendimethalin, respectively. Bispyribac‐sodium increased the number of productive tillers, 1000‐grain weight, number of grains per panicle and grain yield over the control, as well as improved the water productivity and economic returns of direct‐planted rice. The weeds' proliferation increased the number of unproductive tillers and decreased the plant height. In conclusion, the postemergence application of bispyribac‐sodium can be used effectively to control weeds, increase water productivity and improve the economic returns and yield of direct‐planted rice on a sandy loam soil in Pakistan.  相似文献   

3.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Primarily, spatial information allows a potential reduction in herbicide use, when post‐emergent herbicides are only applied to field sections with high weed infestation levels. This paper presents a system for site‐specific weed control in sugar beet, maize, winter wheat, winter barley, winter rape and spring barley. The system includes on‐line weed detection using digital image analysis, computer‐based decision making and Global Positioning System‐controlled patch spraying. In a 2‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 6–81% for herbicides against broad leaved weeds and 20–79% for grass weed herbicides. Highest savings were achieved in cereals followed by sugar beet, maize and winter rape. The efficacy of weed control varied from 85% to 98%, indicating that site‐specific weed management will not result in higher infestation levels in the following crops.  相似文献   

4.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

5.
Information on temporal and spatial variation in weed seedling populations within agricultural fields is very important for weed population assessment and management. Most of all, it allows a potential reduction in herbicide use, when post‐emergence herbicides are only applied to field sections with weed infestation levels higher than the economic weed threshold; a review of such work is provided. This paper presents a system for site‐specific weed control in sugarbeet (Beta vulgaris L.), maize (Zea mays L.), winter wheat (Triticum aestivum L.) and winter barley (Hordeum vulgare L.), including online weed detection using digital image analysis, computer‐based decision making and global positioning systems (GPS)‐controlled patch spraying. In a 4‐year study, herbicide use with this map‐based approach was reduced in winter cereals by 60% for herbicides against broad‐leaved weeds and 90% for grass weed herbicides. In sugarbeet and maize, average savings for grass weed herbicides were 78% in maize and 36% in sugarbeet. For herbicides against broad‐leaved weeds, 11% were saved in maize and 41% in sugarbeet.  相似文献   

6.
Evolution of resistance to herbicides in weeds is becoming an increasing problem worldwide. To develop effective strategies for weed control, a thorough knowledge of the basis of resistance is required. Although non‐target‐site‐based resistance is widespread, target site resistance, often caused by a single nucleotide change in the gene encoding the target enzyme, is also a common factor affecting the efficacies of key herbicides. Therefore, fast and relatively simple high‐throughput screening methods to detect target site resistance mutations will represent important tools for monitoring the distribution and evolution of resistant alleles within weed populations. Here, we present a simple and quick method that can be used to simultaneously screen for up to 10 mutations from several target site resistance‐associated codons in a single reaction. As a proof of concept, this SNaPshot multiplex method was successfully applied to the genotyping of nine variable nucleotide positions in the CT domain of the chloroplastic ACCase gene from Lolium multiflorum plants from 54 populations. A total of 10 nucleotide substitutions at seven of these nine positions (namely codons 1781, 1999, 2027, 2041 2078, 2088 and 2096) are known to confer resistance to ACCase‐inhibiting herbicides. This assay has several advantages when compared with other methods currently in use in weed science. It can discriminate between different nucleotide changes at a single locus, as well as screening for SNPs from different target sites by pooling multiple PCR products within a single reaction. The method is scalable, allowing reactions to be carried out in either 96‐ or 384‐well plate formats, thus reducing work time and cost.  相似文献   

7.
Summary Weeds cause yield losses and reductions in crop quality. Prior to the introduction of selective herbicides, the drudgery of manual weeding forced farmers to adhere to a suit of weed management tactics by carefully combining crop rotation, appropriate tillage and fallow systems. The introduction of selective herbicides in the late 1940s and the constant flow of new herbicides in the succeeding decades provided farmers with a new tool, ‘the chemical hoe’, putting them in a position to consider weed control more independently of the crop production system than hitherto. The reliance on herbicides for weed control, however, resulted in shifts in the weed flora and the selection of herbicide‐resistant biotypes. In the 1980s, the public concern about side‐effects of herbicides on the environment and human health resulted in increasingly strict registration requirements and, in some countries, political initiatives to reduce the use of pesticides were launched. Today, the number of new herbicides being introduced has decreased significantly and integrated weed management has become the guiding concept. Farmers also have the option of growing herbicide‐resistant crops where the biology of the crop has been adapted to tolerate herbicides considered safe to humans and environmentally benign. This paper discusses some of the recent developments in herbicide discovery, technology and fate, and sketches important future developments.  相似文献   

8.
Herbicides contribute significantly to agricultural intensification, but some negatively impact non‐target organisms. Much research has focused on reducing herbicide use through technological improvements in application and herbicide selectivity, but impacts on non‐target organisms are less well understood. Using experimental plots in silage systems, we investigated impacts of herbicides (both narrow spectrum targeting broad‐leaved plants and selective and non‐selective broad spectrum) applied using traditional techniques (blanket‐ and manual spot‐spraying) and a novel application technique (automated spot‐spraying) on non‐target plant richness/diversity, target weed presence (Rumex species) and production (DM yield). All herbicides reduced non‐target plant richness/diversity and sometimes target weeds (when applied using traditional methods). Automated spot‐spraying had fewer negative effects on non‐target organisms, but did not reduce target weeds. No differences in production levels among treatments were observed. The automated spot‐spraying technique requires further research and development. Our results indicate that 20–30% weed cover does not significantly alter production and so, as herbicides are expensive, their effects on non‐target organisms and the environment can be more significant than their benefits to production. We advocate more research into the relationships between weed infestation and production in grasslands, so that the propensity to overuse herbicides is reduced.  相似文献   

9.
A simulation study was conducted to examine the effect of pattern of herbicide use on development of resistance to two herbicides with different modes of action in finite weed populations. The effects of the size of the treatment area (analogous to initial weed population), germination fraction and degree of self‐pollination in the weed were investigated. The results indicate that the probability of developing resistance to one or both herbicides decreases as the size of the area/initial population decreases. For treatment areas of 100 ha or less with an initial weed seedbank of 100 seeds m?2 and initial frequencies of the resistance genes of 10?6, development of resistance to both herbicides (double‐resistance) is uncommon within 50 years for all types of weeds if both herbicides are used in all years (used in combination). If herbicides are used in alternate years (rotated) double‐resistance almost always occurs in 100 ha areas but is uncommon in areas of 1 ha or less. The results suggest that adoption of practices that limit movement of weeds in conjunction with using herbicides in combination rather than in rotation can substantially delay development of herbicide resistance.  相似文献   

10.
The management of weeds in Malaysian rice fields is very much herbicide‐based. The heavy reliance on herbicide for weed control by many rice‐growers arguably eventually has led to the development and evolution of herbicide‐resistant biotypes in Malaysian rice fields over the years. The continuous use of synthetic auxin (phenoxy group) herbicides and acetohydroxyacid synthase‐inhibiting herbicides to control rice weeds was consequential in leading to the emergence and prevalence of resistant weed biotypes. This review discusses the history and confirmed cases and incidence of herbicide‐resistant weeds in Malaysian rice fields. It also reviews the Clearfield Production System and its impact on the evolution of herbicide resistance among rice weed species and biotypes. This review also emphasizes the strategies and management options for herbicide‐resistant rice field weeds within the framework of herbicide‐based integrated weed management. These include the use of optimum tillage practices, certified clean seeds, increased crop competition through high seeding rates, crop rotation, the application of multiple modes of action of herbicides in annual rotations, tank mixtures and sequential applications to enable a broad spectrum of weed control, increase the selective control of noxious weed species in a field and help to delay the resistance evolution by reducing the selection pressure that is forced on those weed populations by a specific herbicidal mode of action.  相似文献   

11.
A greater number of, and more varied, modes of resistance have evolved in weeds than in other pests because the usage of herbicides is far more extensive than the usage of other pesticides, and because weed seed output is so great. The discovery and development of selective herbicides are more problematic than those of insecticides and fungicides, as these must only differentiate between plant and insect or pathogen. Herbicides are typically selective between plants, meaning that before deployment there are already some crops possessing natural herbicide resistance that weeds could evolve. The concepts of the evolution of resistance and the mechanisms of delaying resistance have evolved as nature has continually evolved new types of resistance. Major gene target‐site mutations were the first types to evolve, with initial consideration devoted mainly to them, but slowly ‘creeping’ resistance, gradually accruing increasing levels of resistance, has become a major force owing to an incremental accumulation of genetic changes in weed populations. Weeds have evolved mechanisms unknown even in antibiotic as well as other drug and pesticide resistances. It is even possible that cases of epigenetic ‘remembered’ resistances may have appeared. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
The efficacy of any pesticide is an exhaustible resource that can be depleted over time. For decades, the dominant paradigm – that weed mobility is low relative to insect pests and pathogens, that there is an ample stream of new weed control technologies in the commercial pipeline, and that technology suppliers have sufficient economic incentives and market power to delay resistance – supported a laissez faire approach to herbicide resistance management. Earlier market data bolstered the belief that private incentives and voluntary actions were sufficient to manage resistance. Yet, there has been a steady growth in resistant weeds, while no new commercial herbicide modes of action (MOAs) have been discovered in 30 years. Industry has introduced new herbicide tolerant crops to increase the applicability of older MOAs. Yet, many weed species are already resistant to these compounds. Recent trends suggest a paradigm shift whereby herbicide resistance may impose greater costs to farmers, the environment, and taxpayers than earlier believed. In developed countries, herbicides have been the dominant method of weed control for half a century. Over the next half‐century, will widespread resistance to multiple MOAs render herbicides obsolete for many major cropping systems? We suggest it would be prudent to consider the implications of such a low‐probability, but high‐cost development. © 2017 Society of Chemical Industry  相似文献   

13.
Α three‐year, non‐irrigated field study was conducted in 1998, 1999, and 2000 at the Southern Weed Science Research Unit farm, Stoneville, MS to study the effects of rye cover crop residue, soybean planting systems, and herbicide application programs on the control, density and biomass of several weed species and soybean yield. The soybean planting systems comprised 19 cm rows with high plant density, 57 cm rows with medium plant density, and 95 cm rows with low plant density. The herbicide programs evaluated were pre‐emergence, postemergence, pre‐emergence followed by postemergence, and no herbicide. Flumetsulam and metolachlor were applied pre‐emergence, and acifluorfen, bentazon, and clethodim were applied postemergence. The presence or absence of rye cover crop residue and a soybean planting system did not affect weed control of the species evaluated (browntop millet, barnyard grass, broadleaf signal grass, pitted morningglory, yellow nutsedge, Palmer amaranth and hyssop spurge), when herbicides were applied, regardless of the application program. In addition, rye cover crop residue was not an effective weed management tool when no herbicide was applied, because density and biomass of most weeds evaluated were higher than a no cover crop residue system. Among soybean planting systems, narrow with high plant density soybeans reduced density of grasses, broadleaf weeds and yellow nutsedge by 24–83% and total weed biomass by 38%, compared to wide with low plant density soybeans. Although weed pressure was reduced by narrow with high plant density soybeans, herbicide applications had the most impact on weed control, weed density and biomass. All herbicide programs controlled all weed species 81–100% at two weeks after postemergence herbicide applications, in comparison to no‐herbicide. Density of grasses and all broadleaf weeds as well as total weed biomass was lower with the pre‐emergence followed by postemergence program than these programs alone. Soybean yields were higher in the pre‐emergence followed by postemergence, and postemergence only programs than the pre‐emergence alone program. Planting crops in narrow rows is one cultural method of reducing weed pressure. However, even with the use of this cultural practice, prevalent weed pressure often requires management with herbicides.  相似文献   

14.
农田草害的发生严重影响了农业生产和发展,使用除草剂进行化学防治是目前最省时省力和防除效果最好的除草方法.其中,茎叶处理除草剂因其具有不受土壤环境影响、按草施药、灵活和选择性高等优点,应用范围更广.然而,茎叶处理除草剂在喷雾施药过程中由于受到杂草叶片界面特性的影响,常出现药液迸溅、滚落、难以渗透等现象,导致除草剂用量增大...  相似文献   

15.
近年我国农田杂草防控中的突出问题与治理对策   总被引:7,自引:0,他引:7  
李香菊 《植物保护》2018,44(5):77-84
我国田园杂草有1 400多种,严重危害的130余种,恶性杂草37种。我国杂草发生面积约9 246.7万hm2次,防治面积1.04亿hm2次,挽回粮食损失2 699万t,每年主粮作物仍有近300万t产量损失。杂草防控中的突出问题是:杂草群落演替,难治杂草种群增加;除草剂单一使用,杂草抗药性发展迅速;除草剂对作物药害频发,影响种植结构调整;新除草剂创制能力不足,难以满足不同作物田除草需求;农村劳动力短缺,杂草防控更依赖于化学防治。解决上述问题,应实施以下对策:加强杂草发生危害的监测预警,科学轮换使用除草剂,推广除草剂减量与替代技术,加快新除草剂研制及推广应用,加速耐除草剂作物商业化进程,推进统防统治及农民培训。  相似文献   

16.
Abstract

Field experiments were conducted to determine the effectiveness of herbicides in controlling Rottboellia cochinchinensis (Lour.) W. D. Clayton and Cyperus rotundus L. in upland rice (Oryza sativa L.) at different moisture regimes as imposed by a line source sprinkler system. Preemergence application of pendimethalin [N‐(1‐ethylpropyl)‐3,4‐dimethyl‐2,6‐dinitrobenzenamine] was highly effective in controlling R. cochinchinensis irrespective of soil moisture after herbicide application. Bentazon [3‐(1‐methylethyl)‐(1H)‐2,1,3‐benzothiadiazin‐4(3H)‐one 2,2‐dioxide] and 2,4‐D [(2,4‐dichlorophenoxy)acetic acid] applied at postemergence effectively controlled C. rotundus when moisture supply was well above pan evaporation. These herbicides also had no adverse effect on rice stand and resulted in higher yield over the control. Water application rates above upland pan evaporation for a season‐long period was essential to obtain a high response to weed control either by herbicides or hand weeding. The data suggest that proper weed control by herbicides or hand weeding will not result in high upland rice grain yields if moisture level from rains fall below the critical level.  相似文献   

17.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

18.
Evolution of resistance to multiple herbicides with different sites of action and of nontarget site resistance (NTSR) often involves multiple genes. Thus, single‐gene analyses, typical in studies of target site resistance, are not sufficient for understanding the genetic architecture and dynamics of NTSR and multiple resistance. The genetics of weed adaptation to varied agricultural environments is also generally expected to be polygenic. Recent advances in whole‐genome sequencing as well as bioinformatic and statistical tools have made it possible to use population and quantitative genetics methods to expand our understanding of how resistance and other traits important for weed adaptation are genetically controlled at the individual and population levels, and to predict responses to selection pressure by herbicides and other environmental factors. The use of tools such as quantitative trait loci mapping, genome‐wide association studies, and genomic prediction will allow pest management scientists to better explain how pests adapt to control tools and how specific genotypes thrive and spread across agroecosystems and other human‐disturbed systems. The challenge will be to use this knowledge in developing integrated weed management systems that inhibit broad resistance to current and future weed‐control methods. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

19.
Weeds have negative impacts on crop production but also play a role in sustaining biodiversity in agricultural landscapes. This trade‐off raises the question of whether it is possible to promote weed communities with low competitive potential but high value to biodiversity. Here, we explored how weed communities respond to different vineyard management practices in South Africa's Western Cape, aiming to identify whether any specific practices are associated with more beneficial weed communities. Eight weed community characteristics representative of abundance, diversity and functional composition were used as indicators of competitive potential and biodiversity value. We explored how these responded to farm management strategy (organic, low input or conventional) and weed management practices (herbicides, tillage, mowing or combinations of these) using ordination and mixed models. Mown sites were associated with weed communities of high biodiversity value, with higher weed cover in both winter and summer, higher diversity and more native weeds. Mowing also promoted shorter weeds than either tillage or herbicides, considered to be less competitive with grapevines. However, high summer weed cover may be problematic where competition for water is critical, in which case tillage offers a method to limit summer weed cover that did not adversely affect diversity or native weeds. In contrast, herbicide‐treated sites had characteristics indicative of a lower biodiversity value and higher potential for competitiveness with few native weeds, lower diversity and relatively tall, small‐seeded weeds. Mowing in winter combined with tillage in spring may thus optimise the biodiversity benefits and production costs of Western Cape vineyard weeds.  相似文献   

20.
BACKGROUND: Weed management in glyphosate‐resistant (GR) maize, cotton and soybean in the United States relies almost exclusively on glyphosate, which raises criticism for facilitating shifts in weed populations. In 2006, the benchmark study, a field‐scale investigation, was initiated in three different GR cropping systems to characterize academic recommendations for weed management and to determine the level to which these recommendations would reduce weed population shifts. RESULTS: A majority of growers used glyphosate as the only herbicide for weed management, as opposed to 98% of the academic recommendations implementing at least two herbicide active ingredients and modes of action. The additional herbicides were applied with glyphosate and as soil residual treatments. The greater herbicide diversity with academic recommendations reduced weed population densities before and after post‐emergence herbicide applications in 2006 and 2007, particularly in continuous GR crops. CONCLUSION: Diversifying herbicides reduces weed population densities and lowers the risk of weed population shifts and the associated potential for the evolution of glyphosate‐resistant weeds in continuous GR crops. Altered weed management practices (e.g. herbicides or tillage) enabled by rotating crops, whether GR or non‐GR, improves weed management and thus minimizes the effectiveness of only using chemical tactics to mitigate weed population shifts. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号