首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT:   To examine whether or not reef-associated seagrass beds harbor abundant food resources for resident and visiting fishes, the invertebrate density and biomass in a seagrass bed were compared with those in adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan, in June 2002. The vegetation within the bed was dominated by Enhalus acoroides , the coral area comprising primarily Acropora spp. Epifaunal density was greater on the seagrass than on the corals, whereas biomass was greater on the latter. Tanaids, chironomid larvae, errant polychaetes, and gammaridean amphipods were dominant taxa on the seagrass; larger crustaceans, such as crabs and shrimps, being abundant on the corals. The density of infauna was greatest in the seagrass bed, followed by the coral and sand areas, whereas biomass was greatest in the coral area, followed by the seagrass bed and sand area. Each of the three habitats was dominated by harpacticoid copepods and errant polychaetes, although the density of each taxonomic group differed among the habitats. Important food items of seagrass bed fishes, such as harpacticoid copepods, gammaridean amphipods, errant polychaetes, and tanaids, were abundant in the seagrass bed, the density of each being greater than in the other two habitats.  相似文献   

2.
Whilst the importance of seagrass beds as nurseries for coral reef fishes has been clearly recognized, the vast majority of early studies on fish nursery habitats emphasized the close proximity of the latter to coral reefs. To determine the potential nursery role of isolated seagrass beds, we investigated the degree to which juvenile emperor fishes (Lethrinidae) utilized seagrass beds in the presence/absence of adjacent coral habitats at Ishigaki Island (southern Japan), such fishes being known to use seagrass beds as nurseries. Seagrass beds in close proximity to coral habitats (distance between the two habitats of 50–200 m) had greater densities of lethrinid juveniles than those without adjacent coral habitats (2.5–4 km) for 3 different sites investigated, although a significant difference was obtained only for 1 site. Juveniles of Lethrinus atkinsoni, L. obsoletus, L. harak, and L. nebulosus were observed in seagrass beds with and without adjacent coral habitats, whereas L. ornatus occurred only in the former. Overall, most lethrinid juveniles utilize seagrass beds irrespective of the presence of adjacent adult coral habitat, suggesting that both types of seagrass beds would contribute to lethrinid adult populations. Therefore, management efforts for lethrinid populations should be applied not only to contiguous coral-seagrass habitat systems but also to isolated habitats.  相似文献   

3.
4.
海草床是近海典型生态系统之一,为了解山东省荣成市天鹅湖鳗草(Zostera marina)海草床及其邻近裸沙区的浮游生物群落结构及时空变化特征,于2019年2月、5月、8月和11月,对天鹅湖鳗草海草床及其邻近裸沙区的浮游生物、海草床生态学特征及关键环境因子进行了周年调查,并应用典范对应分析(CCA)和冗余分析(RDA)探究了环境因子对浮游生物优势种的影响。结果显示,共发现浮游植物38种,隶属3门25属,其中,硅藻门(Bacilariophyta)种类最多(89.4%),甲藻门(Dinophyta)次之(7.8%);共发现浮游动物18种,幼虫3类,以甲壳动物(71.4%)为主;浮游生物种类数呈现显著的季节变化,且在11月达到最大值;海草床浮游植物和浮游动物的年平均丰度分别为5.4×104 cells/m3和1.6×104 ind./m3,是裸沙区浮游植物和浮游动物年平均丰度的1.4倍和1.5倍;典范对应分析和冗余分析显示,海草床浮游生物优势种主要与水温、海草床的植株密度及生物量显著相关,而裸沙区浮游生物优势种则主要与水温、pH值及氨氮含量等环境因子显著相关。结果表明,天鹅湖海草床相比裸沙区具有更丰富的浮游生物。本研究为深入了解海草床生态系统的结构和功能提供了基础数据。  相似文献   

5.
1. The effect of habitat fragmentation was investigated in two adjacent, yet separate, intertidal Zostera marina beds in the Salcombe Estuary, Devon, UK. The seagrass bed on the west bank comprised a continuous meadow of ca. 2.3 ha, whilst the bed on the east bank of the estuary was fragmented into patches of 6–9 m2. 2. Three 10 cm diameter core samples for infaunal macroinvertebrates were taken from three stations within each bed. No significant difference was found in univariate community parameters between beds, or in measured seagrass parameters. However, multivariate analysis revealed a significant difference in community composition, due mainly to small changes in species abundance rather than differences in the species present. 3. The species contributing most to the dissimilarity between the two communities were polychaetes generally associated with unvegetated habitats (e.g. Magelona mirabilis) and found to be more common in the fragmented bed. 4. A significant difference in median grain size and sorting coefficient was recorded between the two beds, and median grain size was found to be the variable best explaining multivariate community patterns. 5. The results of the study provide evidence for the effects of habitat fragmentation on the communities associated with seagrass beds, habitats which are of high conservation importance. As the infaunal community is perhaps intuitively the component least likely to be affected by fragmentation at the scale observed, the significant difference in community composition recorded has consequences for more sensitive and high‐profile parts of the biota (e.g. fish), and thus for the conservation of seagrass habitats and their associated communities. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Juvenile cultured sandfish (Holothuria scabra) with a mean size of 35.6 mm±11.4 S.D. were released on soft substrata near mangrove–seagrass and lagoonal coral reef flat habitats in the Western Province of Solomon Islands. Mean survival of H. scabra at the mangrove–seagrass sites was 95–100% 1 h after release and approximated 70% 3 days later. At the coral reef flat sites, however, mean survival was as low as 37.5% 1 h after release and total mortality occurred in two of the three releases within 48 h. Mortality of the juvenile H. scabra was due mainly to predation by fish in the families Balistidae, Labridae, Lethrinidae and Nemipteridae. Survival of juvenile H. scabra was improved significantly by releasing them within a cage of 8-mm mesh. This procedure resulted in 100% survival of juveniles in the coral reef flat habitat during the course of the experiment. Our data indicate that mangrove–seagrass areas should be suitable habitats for release of cultured juvenile sandfish in restocking and stock enhancement programs. Release of sandfish at night, to coincide with the time they emerge during their inherent diel burrowing cycle, and the short-term use of protective cages, should be investigated to improve survival of individuals released in mangrove–seagrass habitats.  相似文献   

7.
Canopy‐forming macroalgae can construct extensive meadow habitats in tropical seascapes occupied by fishes that span a diversity of taxa, life‐history stages and ecological roles. Our synthesis assessed whether these tropical macroalgal habitats have unique fish assemblages, provide fish nurseries and support local fisheries. We also applied a meta‐analysis of independent surveys across 23 tropical reef locations in 11 countries to examine how macroalgal canopy condition is related to the abundance of macroalgal‐associated fishes. Over 627 fish species were documented in tropical macroalgal meadows, with 218 of these taxa exhibiting higher local abundance within this habitat (cf. nearby coral reef) during at least one life‐history stage. Major overlap (40%–43%) in local fish species richness among macroalgal and seagrass or coral reef habitats suggest macroalgal meadows may provide an important habitat refuge. Moreover, the prominence of juvenile fishes suggests macroalgal meadows facilitate the triphasic life cycle of many fishes occupying diverse tropical seascapes. Correlations between macroalgal canopy structure and juvenile abundance suggests macroalgal habitat condition can influence levels of replenishment in tropical fish populations, including the majority of macroalgal‐associated fishes that are targeted by commercial, subsistence or recreational fisheries. While many macroalgal‐associated fishery species are of minor commercial value, their local importance for food and livelihood security can be substantial (e.g. up to 60% of landings in Kenyan reef fisheries). Given that macroalgal canopy condition can vary substantially with sea temperature, there is a high likelihood that climate change will impact macroalgal‐associated fish and fisheries.  相似文献   

8.
Marine ecology seeks to understand the factors that shape biological communities. Progress towards this goal has been hampered by habitat‐centric approaches that ignore the influence of the wider seascape. Coral reef fishes may use non‐reef habitats (e.g. mangrove and seagrass) extensively, yet most studies have focused on within‐reef attributes or connectivity between reefs to explain trends in their distribution and abundance. We systematically review the evidence for multihabitat use by coral reef fishes across life stages, feeding guilds and conservation status. At least 670 species of “coral reef fish” have been observed in non‐reef habitats, with almost half (293 species) being recorded in two or more non‐reef habitats. Of the 170 fish species for which both adult and juvenile data were available, almost 76% were recorded in non‐reef habitats in both life stages. Importantly, over half of the coral reef fish species recorded in non‐reef habitats (397 spp.) were potential fisheries targets. The use of non‐reef habitats by “coral reef” fishes appears to be widespread, suggesting in turn that attempts to manage anthropogenic impacts on fisheries and coral reefs may need to consider broader scales and different forms of connectivity than traditional approaches recommend. Faced with the deteriorating condition of many coastal habitats, there is a pressing need to better understand how the wider seascape can influence reef fish populations, community dynamics, food‐webs and other key ecological processes on reefs.  相似文献   

9.
Climate change and the future for coral reef fishes   总被引:5,自引:0,他引:5  
Climate change will impact coral-reef fishes through effects on individual performance, trophic linkages, recruitment dynamics, population connectivity and other ecosystem processes. The most immediate impacts will be a loss of diversity and changes to fish community composition as a result of coral bleaching. Coral-dependent fishes suffer the most rapid population declines as coral is lost; however, many other species will exhibit long-term declines due to loss of settlement habitat and erosion of habitat structural complexity. Increased ocean temperature will affect the physiological performance and behaviour of coral reef fishes, especially during their early life history. Small temperature increases might favour larval development, but this could be counteracted by negative effects on adult reproduction. Already variable recruitment will become even more unpredictable. This will make optimal harvest strategies for coral reef fisheries more difficult to determine and populations more susceptible to overfishing. A substantial number of species could exhibit range shifts, with implications for extinction risk of small-range species near the margins of reef development. There are critical gaps in our knowledge of how climate change will affect tropical marine fishes. Predictions are often based on temperate examples, which may be inappropriate for tropical species. Improved projections of how ocean currents and primary productivity will change are needed to better predict how reef fish population dynamics and connectivity patterns will change. Finally, the potential for adaptation to climate change needs more attention. Many coral reef fishes have geographical ranges spanning a wide temperature gradient and some have short generation times. These characteristics are conducive to acclimation or local adaptation to climate change and provide hope that the more resilient species will persist if immediate action is taken to stabilize Earth's climate.  相似文献   

10.
  • 1. Habitat loss and habitat fragmentation are usually correlated while habitat degradation may occur independently of them. Natural and anthropogenic disturbances increase the spatial fragmentation of seagrass meadows with unknown consequences on the vegetative development achieved by seagrass.
  • 2. Cover and spatial fragmentation of Thalassia testudinum meadows in three coral reef lagoons of the Veracruz Reef System,VRS (SW Gulf of México) were quantified by analysing low‐altitude images acquired by photographic and digital video cameras from a helium‐filled blimp. Spatial fragmentation was quantified as the ratio of the length of meadow edge to meadow area. The number of blowouts (erosive gaps in seagrass meadows) was also recorded.
  • 3. Meadow cover was negatively correlated with the length of meadow edge to meadow area ratio. The number of blowouts per ha of T. testudinum meadow was negatively correlated with meadow cover and positively with the length of meadow edge to meadow area ratio. Wave exposure is probably a main component of the processes determining the cover and spatial fragmentation of T. testudinum meadows in VRS.
  • 4. Low cover and high spatial fragmentation of T. testudinum meadows in VRS are associated with low vegetative development of this seagrass species. Copyright © 2011 John Wiley & Sons, Ltd.
  相似文献   

11.
ABSTRACT:   By using a seine net, fish samples were taken from the nonestuarine Chwaka Bay (Zanzibar, Tanzania) from the mangroves, mud/sand flats and seagrass beds. Sampling was done twice per month between November 2001 and October 2002. In total, 150 fish species belonging to 55 families were identified. Diversity ( H' ) ranged from 1.9 in mud/sand flats to 3.4 within the Chwaka seagrass beds. Mean density of fishes was significantly higher in the mangrove creeks than in any other habitat (mean = 238.7 ind./1000 m2). Highest, but non-significantly different mean biomasses were recorded in the mangrove creeks (1.7 kg/1000 m2) and in the Marumbi seagrass beds (1.6 kg/1000 m2). The mangrove channel had the lowest biomass (0.6 kg/1000 m2). A high overlap in species composition (as high as 93.4% similarity) was found for adjoining habitats (i.e. mangrove creeks and mangrove channel), while habitats that were far apart showed low overlap (6.6% similarity for the Marumbi seagrass beds and mangrove creeks). On average, 58.4 and 63.2% in terms of abundance and biomass, respectively, of the fish assemblage of Chwaka Bay were of commercial fishery importance. Thus, Chwaka Bay appears to be an important juvenile habitat for various commercially important fish species.  相似文献   

12.
To clarify the feeding habits of seagrass fishes, we examined the gut contents from 42 fish species collected in seagrass habitats in Trang. Thirteen species showed ontogenetic and/or seasonal changes in food-use patterns. Smaller individuals generally preyed on small planktonic items (e.g., copepod larvae) or small benthic/epiphytic crustaceans (e.g., harpacticoid copepods), with subsequent changes to other prey items (e.g., shrimps, crabs, detritus and filamentous algae) with growth. The most important dietary items for the seagrass fish assemblages comprised benthic/epiphytic crustaceans, detritus, and planktonic copepods. Cluster analysis based on dietary overlaps showed that the seagrass fishes comprised eight feeding guilds (large benthic/epiphytic crustacean, detritus, planktonic animal, small benthic/epiphytic crustacean, mollusc, invertebrate egg, polychaete, and fish feeders). Of these, the first three guilds were the most abundantly represented, whereas the last three were each represented by only a single species.  相似文献   

13.
  • 1. Mapping of seabed habitats is increasingly being used to identify the distribution and structure of marine ecosystems and as surrogate measures of biodiversity for marine protected area (MPA) planning. In this study, the distribution of seabed habitats to the 3 nmi limit around the Kent Group of islands, south‐eastern Australia were mapped using video ground‐truthed single‐beam acoustics at the mesoscale level (10 m to 1 km) as part of an MPA planning process.
  • 2. Six distinct seabed habitat types (continuous reef, patchy reef, sand, hard sand, sparse sponge, and seagrass) were identified based primarily on visual differences in the first and second echo and a further four (low, medium and high profile reef, and sand hills) on variations in seabed profile identified in the echogram. Extensive acoustic and video transects allowed an estimate of the broad‐scale spatial distribution of seabed habitats defined at several hierarchical levels and provided information on the cover of the dominant benthic species or assemblages.
  • 3. The island group supports a range of consolidated habitats, including rocky reefs of varying profile dominated by the macroalgae Phyllospora comosa and Ecklonia radiata in depths down to around 45 m, adjacent to deeper sponge‐dominated reefs containing encrusting, erect and branching forms. Unconsolidated habitats occurred broadly through the island group, with the offshore region dominated by hard sand (sand with scallop shells and/or shell grit) and sparse sponge‐habitats (sand interspersed with low cover of sponge‐dominated assemblages). The sheltered coves were dominated by sand and seagrass habitats consisting of beds of the seagrasses Halophila australis, Zostera tasmanica and Posidonia australis, with variations in species composition, patchiness and percentage cover evident within and between coves.
  • 4. In February 2004 the Kent Group MPA was announced, covering all waters out to the 3 nmi limit containing two areas defined as a Sanctuary Zone (‘no take’) and a Habitat Protection Zone (‘restricted take’). Overall, seabed habitat mapping generated a capability to define the boundary and size of potential MPA zones within the Kent Group of islands and was an essential component of the planning process to improve the likelihood that the MPA was comprehensive, adequate and representative (CAR).
  • 5. The need to define habitats at multiple scales within a hierarchical classification scheme that are meaningful in terms of biodiversity and CAR principles and identifiable using mapping techniques is discussed.
Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The fishery for California groundfishes is managed using broad species complexes, although some non-groundfish species are managed similarly due to the perception of shared behavioral characteristics. This study integrates acoustic telemetry and a GIS to quantify movement patterns of one such species, the ocean whitefish (Caulolatilus princeps) in a marine protected area. Seventeen ocean whitefish were tagged and actively tracked over multiple 24-h periods to measure fine-scale movement patterns. Home ranges based on 95% kernel utilization distributions averaged 20,439 ± 28,492 (±S.D.) m2. Fish were active during the day, foraging over sand habitat at depths averaging 21 ± 8 m, but were inactive at night, taking refuge near rocky reefs at depths averaging 15 ± 7 m. Seventeen additional fish were tagged with coded acoustic transmitters and passively tracked using automated underwater acoustic receivers for up to 1 year. Approximately 75% of these fish exhibited long-term (1 year) fidelity to home ranges in the study area. Results suggest that MPAs can be an effective means of protecting populations of ocean whitefish and based on their habitat associations, ocean whitefish can be managed separately from other reef associated groundfishes.  相似文献   

16.
17.
Henderson AR, Johnston CE. Ontogenetic habitat shifts and habitat use in an endangered minnow, Notropis mekistocholas . Ecology of Freshwater Fish 2010: 19: 87–95.
© 2009 John Wiley & Sons A/S
Abstract –  Information on larval and juvenile habitat use is virtually absent for fishes. Our objective was to document habitat use of larval and juvenile Cape Fear shiners Notropis mekistocholas , an endangered species, in both natural and lab settings so that a better understanding of habitat requirements in all life stages can be achieved. We measured habitat parameters of areas used by all life stages of N. mekistocholas in the summers of 2007–2008 in the Rocky River, North Carolina. Field data suggests larvae use more shallow depths (mean = 31.6 cm) and reduced water velocities (mean = 0.02 m·s−1) than adults (mean = 56.3 cm, 0.10 m·s−1), and juveniles 15–25 mm often school with adults. Results of lab studies support field observations. In the mesolarval and metalarval stages N. mekistocholas were selective in their use of water velocity ( P  = 0.013) and depth ( P  = 0.001). In multiple juvenile stages, N. mekistocholas were selective for water velocity ( P  = 0.015), and depth ( P  < 0.001), choosing deeper depths and higher water velocities than larvae. These results demonstrate ontogenetic shifts in habitat use of N. mekistocholas and suggest that water velocity and depth are critical to successful recruitment for this species.  相似文献   

18.
The day–night change in fish community structure over a year was examined in a seagrass bed in Lake Notoro, Hokkaido, northern Japan, to examine nocturnal increases in predation risk. This seagrass bed has previously been considered a predation refuge for juvenile and small-sized fishes. Species richness, abundance and biomass of piscivorous fishes during nighttime were higher than those during daytime on all sample dates surveyed (May, August and November 2013), indicating an increase in predation risk for juvenile and small-sized fishes during nighttime. The mean biomass-weighted trophic level of fish communities in the seagrass bed was also higher at night than in the day. The piscivorous fishes collected in the seagrass bed during the night included important fishery species. These may obtain energy through nocturnal feeding in the seagrass bed. Therefore, the function of seagrass beds as fish habitats should be re-evaluated by considering two possible characteristics contributing to fishery production: as a daytime predation refuge for juvenile and small-sized fishes, and as a nighttime foraging ground for piscivorous fishes.  相似文献   

19.
20.
  • 1. Fish assemblages of shallow‐lagoonal biotopes (seagrass beds, coral patches, reef flat and sand) were examined within the Nabq Managed Resource Protected Area (MRPA), South Sinai, Egypt. This protected area supports a small‐scale artisanal Bedouin fishery, managed by gear restrictions and a network of no‐take zones (NTZs).
  • 2. Coral patches showed highest species richness and diversity of fish, followed in order by the reef flat, shallow seagrass beds and sandy bottoms.
  • 3. There were clear differences in fish assemblages between the biotopes surveyed, little differences between sampling areas and no significant differences in fish assemblages between no‐take and take zones, suggesting species characteristic of these shallow‐water biotopes are dispersed along the coast irrespective of fishing pressure.
  • 4. Nine species (Acanthurus nigrofuscus, Asterropteryx semipunctatus, Cryptocentrus caeruleopunctatus, Cheilio inermis, Thalassoma rueppellii, Lethrinus mahsena, Lethrinus nebulosus, Parupeneus forsskali and Pomacentrus trilineatus) had a 95% correlation to the pattern of assemblage distribution, indicating these species are the most important determinants of the fish community.
  • 5. Approximately one‐third of fishes recorded appeared to be juveniles, with seagrass beds having a particularly high proportion of juvenile fish, including several commercial species.
  • 6. The structure of the fish assemblage and fish size suggests that shallow‐water biotopes in Nabq MRPA may be acting as nursery areas of commercial fish for the Bedouin fishery.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号