首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Natural degradation of bark of beech and spruce . In connection with the biological utilization of tree barks the degradation of bark of beech and spruce was studied by determining weight losses and the fungal flora of samples exposed in forest stands of the same species. The barks contained a considerable amount of easily degradable components.  相似文献   

3.
Oriental beech (Fagus orientalis Lipsky.) and Oriental spruce [Picea orientalis (L.) Link] are the two most common tree species in northeast Turkey. Their distribution, stand type and understorey species are known to be influenced by topographical landforms. However, little information is available as to how these changes affect litter decomposition rates of these two species. Here, we investigated the effects of slope positions (top 1,800 m, middle 1,500 m and bottom 1,200 m), stand type (pure and mixed stands) and purple-flowered rhododendron (Rhododendron ponticum) on litter decomposition rates of Oriental beech and spruce for 4 years using the litterbag technique in the field. Among these three factors, stand type had the strongest influence on litter decomposition (P < 0.001, F = 58.8), followed by rhododendron (P < 0.001, F = 46.8) and slope position (P < 0.05, F = 11.6). Litter decomposition was highest under mixed beech/spruce forest, followed by pure beech and spruce forest. Beech and spruce litter decomposed much faster in mixed bags (beech–spruce) than they did separately under each stand type. Purple-flowered rhododendron significantly reduced litter decomposition of Oriental beech and spruce. Beech and spruce litter decomposed much slower at top slope position than at either bottom or middle position. Differential litter decomposition of Oriental beech and spruce was mainly due to adverse conditions in spruce forest and the presence of rhododendron on the ground which was associated with lower soil pH. Higher elevations (top slope position) slowed down litter decomposition by changing environmental conditions, most probably by decreasing temperature as also other factors are different (pH, precipitation) and no detailed investigations were made to differentiate these factors. The adverse conditions for litter decomposition in spruce forest can be effectively counteracted by admixture of beech to spruce monoculture and by using the clear-cutting method for controlling rhododendron.  相似文献   

4.
The nutrient status of Norway spruce in pure and in mixed-species stands   总被引:1,自引:0,他引:1  
Atmospheric deposition of N and S appears to have caused nutrient imbalance in Norway spruce stands in southern Sweden. This calls for a change of forest management to procedures that promote nutrient balance. Studies have shown lower soil acidity in Norway spruce/deciduous mixed stands than in spruce monocultures, but the tree nutrient status in such mixtures has not been much investigated so far.

The nutrient status of Norway spruce foliage and top mineral soil chemistry in monocultures and in stands mixed with beech, birch, or oak was investigated through paired comparisons on 30 sites in southern Sweden (27 sites) and eastern Denmark (three sites). In total, 45 mixed stands and 34 pure stands were included in the study.

Spruce needles from mixed stands had higher concentrations and ratios to N of K, P, and Zn than needles from pure spruce stands. Among the mixed stands, the K status appeared to be positively correlated with the percentage of deciduous tree basal area. Soil samples from mixed stands had a higher Mg concentration, base saturation, and BC/Al ratio than soil samples from pure stands. The spruce needle nutrient status was comparable in pure stands on fertile sites and in mixed stands on poor sites. We did not detect any differences in spruce tree growth between pure and mixed stands.

This paper discusses possible reasons for a positive effect on the tree nutrient status in mixed-species stands and the possibility of using mixed-species stands as a forest management procedure to avoid nutrient imbalance.  相似文献   


5.
测定森林土壤中的CO2 和N2O 的释放,在评价森林平衡大气中CO2 和N2O的作用方面有着重要的意义.为了量化立地对净碳矿化和N2O氮释放温度依赖性的影响,在德国的索尔森林,调查了三毛举林,挪威云杉和混合林三种相邻的地被物,并进行了3个月不同温度的培养试验.结果表明,3种森林地被物的净碳矿化率和N2O氮的释放量随温度上升呈现指数性增长.在一定温度范围内(1(20oC),利用温度系数函数(Q10)拟合通量率来描述森林地被物的温度敏感性.各试验点的森林地被物的温度敏感性拟合曲线与净碳矿化和N2O氮释放率都显正相关.各试验林的全部数据表明,每个单位的净碳矿化和N2O氮释放的温度系数函数值(Q10)分别为1.73(2.10和2.81(3.58,可用以描述试验地净碳矿化和N2O氮释放率对温度的依赖性.在三毛举和云杉的单一树种和混合种中,净碳矿化率 和N2O 氮释放率的温度依赖性没有明显的差异,表明净净碳矿化率和N2O 氮释放量不受不同树种凋落物质量的影响.  相似文献   

6.
The study provides an improved bioeconomic model of mixed-species stands in order to test the economic consequences of tree species mixtures composed of spruce (Picea abies [L.] Karst.) and beech (Fagus sylvatica L.), when the impact of mixing tree species on stand resistance against hazards is considered. We used survival probabilities of spruce in mixed- and mono-species stands derived by Griess et al. (For Ecol Manag 267:284–296, 2012) to expand an existing bioeconomic model by Knoke and Seifert (Ecol Model 210:487–498, 2008). Monte-Carlo simulations showed the highest average net present value (sum of all net revenues during one rotation period discounted by 2 %) for spruce stands with a small beech admixture of 7 % of total stems. The net present value of this mixed stand type was 8 % higher than that reached with a spruce monoculture, while risk—measured as standard deviation of net present value—was 18 % lower than that of a pure spruce stand. A mixed stand with 51 % beech led to a decrease of 23 % of the average net present value when compared to a spruce monoculture. However, the stabilizing effect of this high proportion of beech trees on spruce together with general economic diversification effects (as a result from low correlation of hazard and market risks of both tree species) reduced the standard deviation of the net present value by 55 %. Generally, an intensive species mixture in groups, with interactions between species throughout the stand, led to higher net present values and lower risks when compared to mixtures of identical proportions in large homogenous blocks without species interactions. For calculating survival probability, data from Rhineland-Palatinate were used, for modeling growth, data were based on information gained in Bavaria. It can be assumed that susceptibility toward windthrow was underestimated with respect to Bavarian conditions or growth was overestimated with respect to Rhineland-Palatinate conditions. This narrows the explanatory power of the study at hand and—once again—highlights the importance of a standardization of inventory processes all over Europe. Still the strong potential of mixing species is proven by the results. The hypothesis, derived from simpler, more traditional bioeconomic models that mixed-species stands are economically inferior to mono-species stands, could therefore be rejected. Of particular relevance to practicing foresters is the result that even mild admixtures may lead to substantial positive economic consequences. With relatively small initial investments then, a considerable increase in efficiency can be expected. This finding makes the admixture of at least small proportions interesting for the privately owned forest sector.  相似文献   

7.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

8.
Spiders (Araneae) and ground beetles (Coleoptera, Carabidae) were studied in a woodland of the Northwest German lowland. An ancient oak–beech stand (170 years old) growing on mineral soil as well as a 110-year-old Scots pine (Pinus sylvestris) and a 55-year-old spruce (Picea spp.) forest growing on peat were investigated by pitfall trapping. A total of 155 species (39 carabids, 116 spiders) and 16,887 individuals (5269 carabids, 11,618 spiders) was recorded. Beetle diversity was high in the oak–beech stand and the spruce forest, but significantly lower in the pine forest. In both conifer plantations the activity density of carabids was considerably lower. Spider diversity was significantly higher in the spruce forest when compared to the beech and pine stand, respectively. Analyses of assemblage similarity distinguished clearly the fauna of all three stands. For each forest type, indicator species were detected. Although both conifer plantations were planted on former bogs, spider species typical of bogs were present only in the pine stand, not in the spruce stand. In both animal taxa, species typical of deciduous forests were more numerous and abundant in the oak–beech stand when compared to the conifer plantations. Although they were in direct contact, the conifer stands on peat only to a very low extent serve as secondary habitats for the epigeic fauna of the autochthonous deciduous woodland. During the 1990s, various agricultural programmes in Central Europe promoted such conifer plantations – in contrast, such afforestation measures on extensively used or fallow land of former bogs are not supported by the results of this study.  相似文献   

9.
The structure of forest stands changes through developmental phases. This study is carried out in the unmanaged, oriental beech (Fagus orientalis Lipsky) stands in the north of Iran. The aim of this research was to quantify structural characteristics of stands in the stem exclusion phase using common structural indices, which include mingling, tree–tree distance, stem diameter, and tree height differentiation. According to our measurements from three stands, naturally regenerated stands tend to be mixed in species composition have slightly heterogeneous diameter distributions and uniform tree height. The average distance between trees was 3.3 m. Stocking volume of the stands had an average of 540 m3 ha?1 and 412 stem ha?1. Dead wood volume was 24 m3 ha?1, and as a standing volume, the most frequent species in dead wood pool was oriental beech (F. orientalis) (48 %). The common form of dead trees was snag (41 %). The mean value of mingling and tree-to-tree interval indices revealed that beech was mixed intensively with hornbeam and appears to be a more successful competitor for space and light compared with hornbeam; moreover, we found relatively high evidence of inter-species competition in this phase. A better understanding of stand characteristics in the stem exclusion phase as a critical part of the natural dynamics of forest ecosystems could facilitate predictions about the future changes within the stand.  相似文献   

10.
The aim of this study is to investigate the effects of forest conversion on forest floor vegetation. ‘Ecological’ forest conversion, as defined by an interdisciplinary southern Black Forest project group, describes the transformation of even-aged spruce (Picea abies L. H. Karst.) stands to structured continuous cover forests consisting of spruce (Picea abies), silver fir (Abies alba Mill.) and beech (Fagus sylvatica L.). In order to analyse the conversion process, four conversion stages were defined in a conceptual forest development model. Four forest districts deemed to be representative of the southern Black Forest region were selected for the study. The ground vegetation was initially classified independently from the stand structures. Subsequently, the relationship between stand structures, as determined by development stage, and ground vegetation was analysed. It was revealed that forest conversion modified the ground vegetation. The main factors influencing ground vegetation were the influence of broadleaves, predominately beech (F. sylvatica), on the canopy composition and litter coverage on the one hand; and the canopy coverage of spruce, the proportion of needle litter and the associated light penetration on the other. The prevalence of moss and vascular plant species preferring acidic sites found in spruce forests decreased during the transition process, whereas, species requiring a moderate base supply increased in abundance. The continuous cover forest representing the final stage of conversion increasingly contained a mixture of ground vegetation species normally associated exclusively with either conifer or deciduous forest. Due to the fact that there is an associated ground vegetation specific to the different stages of forest conversion in stands dominated by Norway spruce or European beech and a mixture in the latest conversion stages, large-scale forest conversion should be avoided in favour of management promoting a diversity of silvicultural goals and treatments in neighbouring stands. Only a variety of treatments ensures the maintenance of floristic diversity in the long-term.  相似文献   

11.

Understanding how species-specific disturbances affect the dynamics of mixed forests is becoming increasingly important due to rapidly changing disturbance regimes. This study estimated the effect of Norway spruce (Picea abies (L.) Karst.) mortality on the disturbance processes in two mixed beech stands of the Western Carpathians that were affected by a bark beetle outbreak. We evaluated the size distribution, fraction of canopy and expanded gaps, the characteristics of gapmakers and the contribution of different species to gap size. The measured canopy gap fraction was <5%, and most canopy gaps were small (<100 m2). Spruce was the most abundant gapmaker, and its share among gapmakers was 3–6 times higher than its share in the canopy. We found that the increase in spruce mortality due to the outbreak resulted in a fine-scale mortality pattern. However, spruce gapmakers did not contribute much to gap area size, as shown by a weak correlation between the number of spruce gapmakers and the area of expanded gaps. Diameter distribution of living versus recently dead trees showed that beech mortality occurred disproportionately in large size classes. However, dead spruce trees were equally frequent in all diameter classes, which means beetles did not exclusively attack larger trees in these stands during the outbreak. We conclude that spruce mortality may have influenced successional processes by giving a competitive advantage to two other species that were not affected by the outbreak, provided that a high deer browsing intensity does not hinder the regeneration of new seedlings.

  相似文献   

12.

??Context

It is assumed that climate change will favour European beech (Fagus sylvatica L.) to Norway spruce (Picea abies [L.] Karst.) at its northern range margins due to climate change and induced disturbance events.

??Aims

An old-growth mixed forest of spruce and beech, situated near the northern beech margin, was studied to reveal effects of disturbances and response processes on natural forest dynamics, focussing on the understory.

??Methods

We carried out analyses on understory dynamics of beech and spruce in relation to overstory release. This was done based on a sequence of stand and tree vitality inventories after a series of abiotic and biotic disturbances.

??Results

It became apparent that beech (understory) has a larger adaptive capacity to disturbance impacts and overstory release (68 % standing volume loss) than spruce. Understory dynamics can play a key role for forest succession from spruce to beech-dominated forests. Disturbances display an acceleration effect on forest succession in the face of climate change.

??Conclusion

Beech is poised strategically to replace spruce as the dominant tree species at the study area. Due to an increasing productivity and a lower risk of stand failure, beech may raise into the focus of forestry in southern Sweden.  相似文献   

13.
European beech Fagus sylvatica and Norway spruce Picea abies are economically and ecologically important forest trees in large parts of Europe. Today, the beech forest reaches its northern distribution limit in south-eastern Norway and it is expected to expand northwards due to climate warming. This expansion will likely result in fundamental ecosystem changes. To increase our knowledge about the competitive balance between spruce and beech, we have investigated how beech and spruce litter affect spruce seedling emergence, growth and uptake of C and N. We did this in a seed-sowing experiment that included litter layer removal as well as reciprocal transplantations of litter layers between spruce and beech forests. Our results show that spruce seedling emergence was significantly impaired by both litter layer types, and especially so by the beech litter layer in the beech forest. The low seedling emergence in beech forests is concurrent with their lower light availability.  相似文献   

14.
The effect of forest management on biodiversity is a crucial issue for sustainable forestry and nature conservation. However, the ways in which management affects macrofungal and plant communities and diversity of mountain temperate forests still remain poorly understood. We performed a random sampling stratified by stand age and stand type on the sites of temperate montane fir–beech forests. Diversity of macrofungi and the vascular plant understorey in beech- and spruce-dominated managed stands was investigated and compared to primeval forests located in the Po?ana Biosphere Reserve, Western Carpathians. Both the vascular plant and the macrofungal communities were altered by management, and the response of the macrofungal species (especially wood-inhabiting fungi) was more pronounced in terms of species composition change. Species turnover evaluation seems to be an important tool of forest natural status assessment, because alpha diversity did not change as much as species composition. Certain species of Carpathian primeval forests were confirmed as good indicators for natural forest change; others were proposed. Species pool and mean number of species per plot were the highest in unmanaged fir–beech forests, and species diversity significantly decreased in spruce plantations. The number of species decreased significantly due to the change of canopy tree species composition only in the macrofungal communities. As an outcome for forest management, we recommend keeping mixed forests involving all natural tree species and providing at least a minimal amount of dead wood necessary for wood-inhabiting organisms and leaving some area of unmanaged natural forests within complexes of managed stands.  相似文献   

15.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

16.
Litterfall was investigated in three even-aged Norway spruce (Picea abies), sitka spruce (Picea sitchensis) and beech (Fagus sylvatica) stands on a nutrient poor-soil in Southern Denmark. Dry weights and N, P, K, S, Mg, Ca, Na, Al, and Fe concentrations and fluxes were examined in litterfall fractions. Foliage litter amounted to 90% of total litterfall. The tree stands showed a similar mean annual litterfall. In the spruce stands, annual litterfall was correlated negatively with the current year increment and positively with the previous year increment. Annual litterfall in beech was constant during the 6 study years whereas Norway spruce and sitka spruce showed large fluctuations between years caused by drought, spruce aphid infestations and probably sea salt stress. Norway spruce responded with a long lasting elevated needle loss. Sitka spruce responded to infestations with premature needle loss during short periods. The presence of a large syrphid (Coccinellidae) population was important in regulating aphid (Elatobium abietinum) population density. The between-year variation in element concentrations of litterfall was small whereas variations during the year were large. Interspecific levels were recognized: Norway spruce>beech>sitka spruce. High concentrations in Norway spruce were ascribed to a combination of drought, sea salt stress and elevated transpiration. In sitka spruce, aphid infestations reduced the litterfall N content. Sitka spruce showed the smallest amount of base cation fluxes with litterfall. In contrast, spruce and beech exhibited even litterfall element fluxes. Litterfall studies revealed reduced vitality in the non-native spruce stands and underlined the perception of a healthy stand of native beech.  相似文献   

17.
To test the direct regeneration hypothesis and support natural disturbance-based forest management we characterized the structure and composition of boreal mixedwood forests regenerating after large wildfires and examined the influence of pre-fire stand composition and post-fire competing vegetation. In stands which had been deciduous (Populus sp.)-dominated, conifer (white spruce)-dominated, or mixed pre-fire we measured regeneration stocking (presence in 10 m2 plots), density and height 10–20 years post-burn in five wildfires in Alberta, Canada. Most plots regenerated to the deciduous or mixed stocking types; plots in the older fire and in stands that were pure conifer pre-fire had higher amounts of conifer regeneration. Surprisingly, regeneration in pre-fire ‘pure’ white spruce stands was most often to pine, although these had not been recorded in the pre-fire inventory. Pre-fire deciduous stands were the most resilient in that poplar species dominated their post-fire regeneration in terms of stocking, density and height. These stands also had the highest diversity of regenerating tree species and the most unstocked plots. High grass cover negatively affected regeneration density of both deciduous and conifer trees. Our results demonstrate the natural occurrence of regeneration gaps, pre- to post-fire changes in forest composition, and high variation in post-fire regeneration composition. These should be taken into consideration when developing goals for post-harvest regeneration mimicking natural disturbance.  相似文献   

18.
Tree growth and carbon dynamics are important issues especially in the context of climate change. However, we essentially lack knowledge about the effects on carbon dynamics especially in mixed stands. Thus, the objective of this study was to test the effects of climatic changes on the above and below ground carbon dynamics of a mixed stand of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) by means of scenario simulations. To account for the typical tree interactions in a mixed-species stand a spatial explicit tree growth model based on eco-physiological processes was applied. Three different climate scenarios considering altered precipitation, temperature, and radiation were calculated for an unthinned and a thinned stand. The results showed significant changes of above and belowground biomass over time, especially when temperature and radiation were increased additionally to decreased precipitation. The reduction in biomass increments of Norway spruce were more attenuated above than below ground. In contrast, the results for beech were the opposite: The belowground increments were reduced more. These results suggest a shift in the species contribution to above and belowground biomass under dryer and warmer conditions. Distinct effects were also found when thinned and unthinned stands were compared. A reduced stand density changed the proportions of above and below ground carbon allocation. As a main reason for the changed growth reactions the water balance of trees was identified which lead to changed biomass allocation pattern. This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

19.
Patterns of local and regional dominance within species assemblages can be used to infer the legacy of disturbance in managed systems. Specifically, highly disturbed communities are expected to share the same dominant species across environmental gradients, while recovery from disturbance should be correlated with a differentiation among the dominant suite of species among sites. We tested this hypothesis using moth communities sampled from 20 forest stands within three watersheds managed for complete timber harvest 60 years prior. Specifically, we (1) compared the species-abundance distributions for all moths sampled from the forests, (2) used ordination and indicator species analysis to assess whether the same taxa were most dominant within each forest stand, and (3) tested whether dominant taxa were disproportionately niche generalists compared to all species sampled from the larger species pools within each watershed. With only a single significant exception, moth communities within the forest stands shared the log-normal species-abundance distribution. Ordination suggested some evidence of divergence in species dominance among individual forest stands, but differences were not based on watershed identity or spatial proximity. Few dominant species appeared to display a high level of fidelity to any particular stand or watershed in the region. Finally, dominant taxa were not disproportionately niche generalists, but this result was largely driven by the absence of niche specialists from the entire forested landscape. Thus, we suggest that the moth communities from this managed forest system still bear a clear legacy of timber management more than 60 years post-harvest. Shifts in dominant moth taxa among forest stands may be largely idiosyncratic in nature.  相似文献   

20.
Using the physiological single tree growth model BALANCE, vitality of forest stands was simulated in dependence of the site-related factors, climate and stand structure. At six level II plots in southern Germany with the main tree species beech (Fagus sylvatica L.), oak (Quercus robur L.), spruce (Picea abies [L.] Karst.), and pine (Pinus sylvestris L.), simulated results were compared to measured values (soil water content, bud burst and leaf colouring, diameter at breast height, tree height and crown density) in order to validate the model. Sensitivity tests were done to examine the influence and the interactions of the environmental parameters. The validation results show that BALANCE is capable of realistically simulating the growth and vitality of forest stands for central European regions for medium term time spans (several years). The validation of the water balance module produces mean absolute errors based on field capacity between 2.7 and 6.9% in dependence of sites and forest stands. Senescence of foliage as well as crown density is reproduced with a correlation coefficient of 0.70 compared to measurements. Differences between measured and simulated diameter values were smaller than 1% for spruce and smaller than 6.5% for beech after 7 years of simulation, and smaller than 1% for oak after 8 years of simulation. On the other hand, the simulations for pine trees conform less with the measurements (difference: 22.6% after 8 years). The sensitivity of the model on environmental changes and on combinations of these parameters could be demonstrated. The responses of the forest stands were quite different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号