首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
新疆‘树上干’杏耐寒株系的鉴定与筛选   总被引:5,自引:0,他引:5  
周书娟  王飞  田治国  王朴  张喜琴 《园艺学报》2011,38(10):1976-1982
以新疆地方杏品种‘树上干’杏6个不同株系为材料,在0、-2、-4、-6、-8和-10℃低温处理后,测定了花蕾和盛开花的褐变率、半致死温度、游离脯氨酸与MDA含量以及SOD、POD、CAT酶活性共7项指标,从而筛选出耐寒株系S6,为‘树上干’杏生产和育种提供参考。  相似文献   

2.
低温胁迫对杏花SOD活性和膜脂过氧化的影响   总被引:30,自引:0,他引:30  
王华  王飞 《果树科学》2000,17(3):197-201
以大槽杏、意大利7号、泾阳梅杏三个抗寒性不同的杏品种为试材,经不同低温(盛开花为:0℃、-1℃、-3℃、-5℃、-6℃、-8℃;花蕾为-2℃、-3℃、-5℃、-7℃、-9℃、-11℃)胁迫5h后测定杏花的SOD活性和细胞质膜透性及丙二醛(DMA)含量,观察褐变情况。结果表明:随着处理温度的降低,细胞质膜透性明显加剧,MDA含量呈规律性的变化,SOD活性先上升后下降,且蕾期和盛花期表现一致,说明SO  相似文献   

3.
1大樱桃开花授粉与品种的结实特性影响大樱桃开花期最主要的因素是温度。萌芽期适宜的温度为10℃左右时,开花期适宜的温度为10℃左右。萌芽、开花到幼果生长的不同时间内,对低温的耐力不同,其致害的温度分别是:花蕾期-5.5~1.7℃,开花和幼果期-2.8~-1℃,如果温度急剧下降,花芽受冻可达到96%~98%,缓慢下降时,则受冻仅为3%~5%。大樱桃对低温的适应性除温度因素  相似文献   

4.
低温胁迫对杏花SOD活性和膜脂过氧化的影响   总被引:13,自引:0,他引:13  
王华  王飞  陈登文  丁勤 《果树学报》2000,17(3):197-201
以大曹杏、意大利7号、泾阳梅杏三个抗寒性不同的杏品种为试材,经不同低温(盛开花为:0℃、-1℃、-3℃、-5℃、-6℃、-8℃;花蕾为- 2℃、-3℃、-5℃、-7℃、-9℃、-11℃)胁迫5 h后测定杏花的 SOD活性和细胞质膜透性及丙二醛(MDA)含量,观察褐变情况。结果表明:随着处理温度的降低,细胞质膜透性明显加剧,MDA含量呈规律性的变化,SOD活性先上升后下降,且营期和盛花期表现一致,说明SOD活性、MDA含量和细胞质膜透性均可做为抗寒性鉴定的指标。  相似文献   

5.
梨树花期冻害调查   总被引:1,自引:0,他引:1  
1993年4月上旬在梨树开花期间,出现较低气温,最低温度下降到-1.1~-7.2℃(表1),远低于梨树花器所能忍受的能力,一般梨花期开放的花朵仅能忍受-1.7~-2.0℃的低温,未开放的花蕾也仅能忍受-  相似文献   

6.
1对环境条件的要求1.1温度枣对温度适应性强,冬季能抗-32.9℃严寒,夏季能耐43℃高温。生长期要求较高温:春季日均温14℃以上时萌芽、抽梢、展叶,19~20℃时出现花蕾,20~22℃时开始开花,22~24℃时授粉受精最好。花期达25℃以上时才着果...  相似文献   

7.
前言黑豆果适宜冷凉气候栽培,抗寒性强,生育期间幼叶能耐-4°~-5℃,但花期不耐低温,一般黑豆果的花蕾只耐短时间的-3.5℃,开放的花朵能耐-2.5℃,低于此温度即受伤或冻死。黑豆果一般在4月上旬萌芽,5月上旬开花,山区气候冷凉,开花偏晚,一般在5月中下旬左右。黑龙江省气候特点,每年春末有霜冻天气出现,霜冻最早出现在5月初,最晚出现在5月中下旬。山区多出现在5月中下旬,此时恰是薄皮黑豆果开花的盛期,已开的花遭到低温袭击,易受冻伤致死。  相似文献   

8.
以"D0716"黄瓜植株为试材,研究了不同温度条件下黄瓜鲜雄花保存花粉、直接保存花粉和贮藏花蕾对花粉活力的影响。结果表明:黄瓜花粉活力随贮藏时间延长而降低;低温可以延长黄瓜花粉的寿命,但不利于黄瓜的开花和散粉;4℃下贮藏黄瓜鲜雄花花粉寿命比CK延长84h,且萌发率降低程度最小;直接保存花粉比鲜雄花保存花粉的花粉寿命短;与15℃相比,4℃贮藏花蕾的花粉活力保持的时间要长,但低温不利于开花散粉,所以在授粉前要将低温贮藏花蕾提前放在常温(25℃)一段时间以加速雄花的开放和散粉。  相似文献   

9.
研究了不同贮藏温度对黄瓜新鲜雄花和花蕾花粉活力的影响。结果表明:5~25℃范围内,随着贮藏温度的降低黄瓜花粉寿命延长,5、10、15℃分别较常温(25℃)的花粉寿命长60、44、34h;低温贮藏花蕾能有效地延长花粉寿命,以在傍晚(约18:00)采摘第2天将开放的大花蕾为贮藏材料较好;5℃低温下花粉活力持续时间最长,但因低温不利于雄花开放和散粉,所以在授粉前将5℃低温贮藏的花蕾放在常温(25℃)下1~2h以加速雄花的开放和散粉。  相似文献   

10.
沙芥花粉萌发特性和柱头可授性的研究   总被引:8,自引:0,他引:8  
 用培养基发芽法研究沙芥花粉萌发特性;用人工异株授粉法和联苯胺—过氧化氢法测定柱头可授期。结果表明:沙芥花粉萌发的最佳培养基是20%蔗糖+0.001%硼酸;花粉能够萌发的温度范围为15~38 ℃,最适萌发温度为25 ℃;从花蕾充分膨大期至开花后16 h花粉活力较强,开花后48 h花粉基本无活力;花粉储藏的适宜条件为低温(4 ℃),储藏期为7 d。柱头可授期为开花前48 h至开花后96 h,其中开花后24~72 h可授性强。  相似文献   

11.
杏花器官组织抗寒性研究   总被引:10,自引:0,他引:10  
通过人工模拟霜害试验,研究了杏花抗寒性与花器官组织结构的关系,并统计了冻害率。结果表明:4个仁用杏品种的抗寒性由强到弱为优一、白玉扁、一窝蜂、龙王帽;在同一朵花中,抗寒性强弱为花瓣>雄蕊>雌蕊;未接种冰核细菌的花比接菌的抗寒性强。-3℃低温处理后,各品种的子房显微结构均受到不同程度的破坏。  相似文献   

12.
冰核细菌对杏花器官抗寒性的影响   总被引:28,自引:2,他引:28  
 从田间采取两个仁用杏品种的大蕾期花枝, 在室内进行水培。对花器官人工接种冰核( INA)细菌, 置于模拟自然霜夜的半导体制冷电脑控温和自动记录的人工霜箱内, 研究INA 细菌对花器官抗寒性的影响。结果表明: 杏花器官抗寒性顺序为花瓣> 雄蕊> 雌蕊。未接菌仁用杏花器官能抵抗- 4~ - 6 ℃低温, 而INA 细菌能提高仁用杏花器官相对电导率, 破坏膜保护酶SOD、POD 的活性, 使细胞积累大量自由基, 并增强膜脂过氧化作用, 加剧MDA 含量的积累, 使花器官发生严重褐变乃至死亡。INA 细菌能在- 2~ - 3 ℃诱发细胞结冰, 使组织冰点提高2 ℃左右, 因此, INA 细菌可诱发和加重霜冻害。  相似文献   

13.
《Scientia Horticulturae》2002,92(2):125-135
The influence of pre-blossom temperatures on flower development and fruit set is ascertained in apricot (Prunus armeniaca L.), a species without previous records on the effect of pre-blossom temperature on fruit set, but that is particularly prone to erratic fruit set. A polyethylene cage was used during pre-blossom development of flower buds to increase maximum temperatures by 6–7 °C and mean temperatures by 3 °C in orchard conditions. This increase in temperature accelerated flower bud development, caused a hastening in flowering time and following hand-pollination, reduced fruit set. At anthesis, flowers that had developed in warmer conditions weighed less and showed less development of the pistil than control flowers. Pistil growth of flowers under warm conditions did not differ from that of the control flowers when both the populations were compared on a real time scale in spite of the fact that warmed buds were at an advanced external phenological stage. Thus, hastening of external floral development by warm pre-blossom temperatures was not accompanied by advance in pistil development. This lack of synchrony resulted in premature flowering of flowers with underdeveloped pistils that had a reduced capability to set fruit. The results are discussed in terms of flower quality and its implications in fruit set and subsequent crop load.  相似文献   

14.
In temperate deciduous fruit crops such as Prunus spp., bud endodormancy is an important physiological phase affecting the timing of blooming and subsequent fruit development. Japanese apricot (Prunus mume) bears unmixed flower buds, separate from vegetative buds, that bloom slightly more than a month before vegetative bud burst. Seasonal expression of Prunus mume DORMANCY ASSOCIATED MADS-box genes (PmDAMs) has previously been analyzed only in vegetative buds, with an association between these genes and flower bud endodormancy release not yet confirmed. In this study, we performed a seasonal expression analysis of PmDAM1–6 genes in flower buds of two Japanese apricot genotypes – namely, high-chill and low-chill cultivars. The analysis revealed that PmDAM3, PmDAM5, and PmDAM6 expressions are closely associated with dormancy release in both flower and vegetative buds. In addition, a yeast two-hybrid screening demonstrated that PmDAM6 can interact in yeast with the homolog of Arabidopsis SOC1 (PmSOC1). Synchronized expression patterns were detected in PmDAM6 and PmSOC1 during dormancy release in flower buds of the two genotypes. Taken together, these results suggest that the dimer of PmDAM6 and PmSOC1 may play a role in the regulation of dormancy transition and blooming time in Japanese apricot flower buds.  相似文献   

15.
应用细胞化学方法对花芽抗寒性不同的两个桃品种在越冬过程中多糖积累和质壁分离动态与抗寒性的关系进行了观察研究。结果表明,花芽抗寒性弱的品种五月鲜多糖积累早(9月下旬),水解晚(1月中旬),水解不彻底;抗寒性强的品种大久保多糖积累晚(11月中旬),开始水解早(12月下旬),严冬时水解彻底。大久保的花芽细胞质壁分离开始早(10月下旬),恢复晚(3月中旬),仲冬时原生质体孤立程度强烈,维持了比较稳定的抗寒力;五月鲜花芽细胞质壁分离开始晚(11月下旬),恢复早(2月中旬),易受变温的危害,因此抗寒性下降。  相似文献   

16.
杏花芽分化后期碳素同化物的分配   总被引:14,自引:0,他引:14  
以雌蕊败育率不同的2个杏品种Tyinthos(败育率低)和金杏(败育率高)为试材,于花芽分化后期(9月中旬)各选一枝条进行14C标记,研究其14C同化物的分配规律。结果表明,Tyinthos花芽在各个时期的同化物比强、花芽的同化物分配率、叶片的光合产物利用率均高于金杏。  相似文献   

17.
仁用杏花芽3个发育时期数字基因表达谱分析   总被引:1,自引:0,他引:1  
以仁用杏‘优一’为试材,运用转录组、数字基因表达谱技术,研究了仁用杏花芽萌动期前后相关基因的表达规律。结果发现,仁用杏花芽在花芽萌动期前后进行着各种旺盛的生物合成和代谢活动,且4个开花调控途径(光周期途径、春化途径、自主途径、GA调控途径)均已启动,光周期途径在花芽萌动时发挥重要作用,涉及到了74条基因,其中有38条差异基因上调表达,29条下调表达;GA途径在花芽萌动期对花芽的生长发育调控表现为抑制作用,涉及到了60条基因,其中有13条差异基因上调,9条差异基因下调;其他两条途径于花芽萌动前作用,其中春化途径涉及到了23个基因,其中有4条差异基因上调,15条差异基因下调;自主途径涉及到了24条基因,其中有3条差异基因上调,11条差异基因下调。本研究通过数字基因表达谱分析,初步了解仁用杏花芽萌动前后的网络途径,为后期对仁用杏花芽相关开花基因的研究、探明仁用杏早花的分子机理及通过分子育种方法培育仁用杏晚花品种提供坚实的理论依据。  相似文献   

18.
以"银香白""早熟黑叶杏""串枝红"3个杏品种为试材,观察了杏花芽分化和开花规律,研究了在花芽分化过程中内源多胺(PAs)的含量变化,以期为杏丰产栽培管理提供参考依据。结果表明:在花芽分化期和开花期,3个品种的内源腐胺(Put)和亚精胺(Spd)含量呈规律性变化,均呈先下降后升高的趋势;而精胺(Spm)含量变化相对复杂,未呈现一定的规律。从花芽分化期到花芽露瓣期,3个品种的内源PAs含量呈高低起伏的变化,并在初花期均有一个最高峰,"银香白""早熟黑叶杏""串枝红"内源PAs含量分别为5 747.2、3 048.0、2 433.6nmol·g-1FW。内源PAs含量对杏花芽分化和成花具有一定的影响,且高水平的Put和Spd有利于杏花芽分化的启动和成花。  相似文献   

19.
Root formation in chrysanthemum (Dendranthemum grandiflora (Ramat.) Kitamura) cuttings was reduced as flowers developed on stock plants. This effect was shown for all ten cultivars evaluated in this study. Not all cultivars were affected equally by the presence of flower buds on cuttings. There was no relationship (r2 = 0.06) between root formation in vegetative cuttings and the ability for a cultivar to root from flowering cuttings. IBA (1 mM) could partially overcome the negative effect of flowering on root formation, but cuttings taken after the flower buds had fully opened failed to root even after auxin treatment. Removing buds from cuttings or continually removing flower buds during stock plant growth reduced rooting compared to cuttings with flower buds intact. Furthermore, cuttings taken from the top three nodes of the stock plant containing flower buds rooted comparably to cuttings taken from the lower stem section that contained only vegetative buds. The negative influence of flowering on root formation appears to be due to the photoperiodic induction of the flowering stimulus rather than a direct competition for resources between flowers and developing roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号