首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective—To compare recovery from sevoflurane or isoflurane anesthesia in horses. Study Design—Prospective, randomized cross-over design. Animals—Nine Arabian horses (3 mares, 3 geldings, and 3 stallions) weighing 318 to 409 kg, 4 to 20 years old. Methods—Horses were anesthetized on three occasions with xylazine (1.1 mg/kg), Diazepam (0.03 mg/kg intravenously [IV]), and ketamine (2.2 mg/kg IV). After intubation, they were maintained with isoflurane or sevoflurane for 90 minutes. On a third occasion, horses were maintained with sevoflurane and given xylazine (0.1 mg/kg IV) when the vaporizer was turned off. Horses were not assisted in recovery and all recoveries were videotaped. Time to extubation, first movement, sternal, and standing were recorded as was the number of attempts required to stand. Recoveries were scored on a 1 to 6 scoring system (1 = best, 6 = worst) by the investigators, and by three evaluators who were blinded to the treatments the horses received. These blinded evaluators assessed the degree of ataxia present at 10 minutes after each horse stood, and recorded the time at which they judged the horse to be ready to leave the recovery stall. Results—Mean times (± SD) to extubation, first movement, sternal, and standing were 4.1 (1.7), 6.7 (1.9), 12.6 (4.6), and 17.4 (7.2) minutes with isoflurane; 3.4 (0.8), 6.6 (3.1), 10.3 (3.1), and 13.9 (3.0) minutes with sevoflurane; and 4.0 (1.2), 9.1 (3.3), 13.8 (6.5), and 18.0 (7.1) with sevoflurane followed by xylazine. Horses required a mean number of 4 (2.3), 2 (0.9), and 2 (1.6) attempts to stand with isoflurane, sevoflurane, and sevoflurane followed by xylazine respectively. The mean recovery score (SD) for isoflurane was 2.9 (1.2) from investigators and 2.4 (1.1) from blinded evaluators. For sevoflurane, the mean recovery score was 1.7 (0.9) from investigators and 1.9 (1.1) from evaluators, whereas the recoveries from sevoflurane with xylazine treatment were scored as 1.7 (1.2) from investigators and 1.7 (1.0) from blinded evaluators. Conclusions—Recoveries appeared to vary widely from horse to horse, but were significantly shorter with sevoflurane than isoflurane, although sevoflurane followed by xylazine was no different from isoflurane. Under the conditions of the study, recoveries from sevoflurane and sevoflurane followed by xylazine were of better quality than those from isoflurane. Clinical Relevance—Sevoflurane anesthesia in horses may contribute to a shorter, safer recovery from anesthesia.  相似文献   

2.
Recovery from isoflurane anesthesia was shorter, with no difference in quality, compared with halothane anesthesia in 2 groups of horses. In 1 group, 12 horses scheduled for elective arthroscopy were randomly assigned to receive halothane or isoflurane for maintenance of anesthesia during surgery. In the other group, 6 horses received anesthesia only, on 2 occasions, with halothane on 1 occasion, and isoflurane on the other. Difference in the quality of recovery was not seen between isoflurane and halothane anesthesia in either group. In the group that had surgery, recovery to sternal position was significantly shorter when isoflurane was used. In the group not treated surgically, recovery to sternal and standing positions was significantly shorter with isoflurane.  相似文献   

3.
ObjectiveTo determine the effects of intravenous ethyl pyruvate, an anti-inflammatory with putative benefits in horses with endotoxemia, on cardiopulmonary variables during anesthesia and the quality of anesthetic recovery.Study designRandomized, crossover, blinded experimental design.AnimalsA total of six healthy Standardbred geldings, aged 13 ± 3 years and weighing 507 ± 66 kg (mean ± standard deviation).MethodsHorses were anesthetized for approximately 90 minutes on two occasions with a minimum of 2 weeks apart using xylazine for sedation, ketamine and diazepam for induction, and isoflurane in oxygen for maintenance. Lactated Ringer’s solution (LRS; 10 mL kg–1 hour–1) was administered during anesthesia. Treatments were randomized and administered starting approximately 30 minutes after induction of anesthesia and infused over 60 minutes: LRS (1 L) or ethyl pyruvate (150 mg kg–1 in 1 L LRS). Invasive arterial pressures, heart rate, respiratory rate and end-tidal carbon dioxide tensions were recorded every 5 minutes for the duration of anesthesia. Arterial blood gases, glucose and lactate concentrations were measured every 20 minutes. Anesthetic recovery was video recorded, stored, and subsequently rated by two individuals blinded to treatments. Total recovery time, time to extubation, number of attempts and time to sternal recumbency, number of attempts to stand and time to stand were recorded. Quality of recovery was analyzed. Data between treatments and within a treatment were assessed using two-way repeated-measures anova and a Pearson correlation coefficient, significant at p < 0.05.ResultsAll horses completed the study. No significant differences were detected between the ethyl pyruvate and LRS treatments for either the cardiopulmonary variables or quality of recovery from anesthesia.Conclusions and clinical relevanceThe results suggest that intravenous ethyl pyruvate can be administered to healthy anesthetized horses with minimal impact on the cardiopulmonary variables studied or the quality of recovery from anesthesia.  相似文献   

4.
5.
The inhalational anaesthetic agent isoflurane was administered to 22 dogs and 21 horses undergoing a variety of surgical procedures. Satisfactory anaesthesia was produced in all the animals. The cardiopulmonary changes were similar to those observed with halothane. Rapid changes in the depth of anaesthesia were achieved and recovery from anaesthesia was rapid in both dogs and horses, which was a reflection of the relative insolubility of isoflurane. Recovery from anaesthesia in the horses was particularly smooth and rapid with the animals spending a greater part of their recumbency in the sternal position, as opposed to lateral recumbency, before standing in a well coordinated manner.  相似文献   

6.
ObjectiveTo examine the cardiopulmonary effects of two anesthetic protocols for dorsally recumbent horses undergoing carpal arthroscopy.Study designProspective, randomized, crossover study.AnimalsSix horses weighing 488.3 ± 29.1 kg.MethodsHorses were sedated with intravenous (IV) xylazine and pulmonary artery balloon and right atrial catheters inserted. More xylazine was administered prior to anesthetic induction with ketamine and propofol IV. Anesthesia was maintained for 60 minutes (or until surgery was complete) using either propofol IV infusion or isoflurane to effect. All horses were administered dexmedetomidine and ketamine infusions IV, and IV butorphanol. The endotracheal tube was attached to a large animal circle system and the lungs were ventilated with oxygen to maintain end-tidal CO2 40 ± 5 mmHg. Measurements of cardiac output, heart rate, pulmonary arterial and right atrial pressures, and body temperature were made under xylazine sedation. These, arterial and venous blood gas analyses were repeated 10, 30 and 60 minutes after induction. Systemic arterial blood pressures, expired and inspired gas concentrations were measured at 10, 20, 30, 40, 50 and 60 minutes after induction. Horses were recovered from anesthesia with IV romifidine. Times to extubation, sternal recumbency and standing were recorded. Data were analyzed using one and two-way anovas for repeated measures and paired t-tests. Significance was taken at p=0.05.ResultsPulmonary arterial and right atrial pressures, and body temperature decreased from pre-induction values in both groups. PaO2 and arterial pH were lower in propofol-anesthetized horses compared to isoflurane-anesthetized horses. The lowest PaO2 values (70–80 mmHg) occurred 10 minutes after induction in two propofol-anesthetized horses. Cardiac output decreased in isoflurane-anesthetized horses 10 minutes after induction. End-tidal isoflurane concentration ranged 0.5%–1.3%.Conclusion and clinical relevanceBoth anesthetic protocols were suitable for arthroscopy. Administration of oxygen and ability to ventilate lungs is necessary for propofol-based anesthesia.  相似文献   

7.
OBJECTIVE: To compare recoveries from anesthesia of horses placed on a conventional padded stall floor or on a specially designed air pillow. DESIGN: Prospective study. ANIMALS: 409 horses (> 1 year old) that were anesthetized for surgical procedures during a 37-month period. PROCEDURES: By random allocation, horses were allowed to recover from anesthesia in either a foammat-padded recovery stall or an identical recovery stall equipped with a rapidly inflating-deflating air pillow. All recoveries were videotaped for subsequent analysis by an independent evaluator. Times to first movement, first attempt to attain sternal recumbency, attainment of sternal recumbency, first attempt to stand, and successful standing were recorded. The numbers of attempts before achieving sternal recumbency and standing were counted, and scores for quality of standing and overall recovery were assigned. Recovery-related variables were compared between groups. RESULTS: Compared with horses allowed to recover in a conventional manner, horses that recovered from anesthesia on the air pillow had a significantly longer rest period before attempting to attain sternal recumbency and rise to standing. Once the pillow was deflated, horses were able to stand after significantly fewer attempts and the quality of their standing was significantly better. Between the 2 groups of horses, there was no significant difference in overall recovery quality scores. The air pillow and padded floor systems were equally safe. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that use of a rapidly inflating-deflating air pillow promotes a longer period of recumbency and a better quality of standing after anesthesia in horses.  相似文献   

8.
Objective To compare recovery times and quality following maintenance of anaesthesia with sevoflurane or isoflurane after a standard intravenous induction technique in horses undergoing magnetic resonance imaging (MRI). Study design Prospective, randomised, blinded clinical study. Animals One hundred ASA I/II horses undergoing MRI. Materials and methods Pre‐anaesthetic medication with intravenous acepromazine and romifidine was followed by induction of anaesthesia with diazepam and ketamine. The animals were randomised into two groups to receive either sevoflurane or isoflurane in oxygen. Horses were subjectively scored (0–5) for temperament before sedation, for quality of sedation, induction and maintenance and anaesthetic depth on entering the recovery area. Recoveries were videotaped and scored by an observer, unaware of the treatment, using two scoring systems. Times to the first movement, head lift, sternal recumbency and standing were recorded along with the number of attempts to achieve sternal and standing positions. Variables were compared using a Student t‐test or Mann–Whitney U‐test (p < 0.05), while the correlation between subjective recovery score and other relevant variables was tested calculating the Spearman Rank correlation coefficient and linear regression modelling performed when significant. Results Seventy‐seven horses entered the final analysis, 38 received isoflurane and 39 sevoflurane. Body mass, age and duration of anaesthesia were similar for both groups. There were no differences in recovery times, scoring or number of attempts to achieve sternal recumbency and standing between groups. Weak, but significant, correlations were found between the subjective recovery score for the pooled data from both groups and both temperament and time in sternal recumbency. Conclusions No differences in recovery times or quality were detected following isoflurane or sevoflurane anaesthesia after intravenous induction. Clinical relevance Sevoflurane affords no obvious advantage in recovery over isoflurane following a standard intravenous induction technique in horses not undergoing surgery.  相似文献   

9.
To examine the influence of detomidine or romifidine on recovery quality from isoflurane anesthesia, 78 anesthetic records were reviewed, from horses that had received romifidine (group R) during premedication [80–120 μg kg−1 IV], anesthetic maintenance (40 μg kg−1 hour−1 IV), and recovery (20 μg kg−1 IV) or detomidine (group D), at doses of 10–20 μg kg−1 IV, 5 μg kg−1 hour−1 IV, and 2.5 μg kg−1 IV, respectively. Duration of the different recovery phases, the number of attempts to sternal and standing, scores for transition to standing (TrSta), balance and coordination once standing (BC), and final recovery score (FS) were compared between groups using a Mann–Whitney U-test, independent t-test, or chi-squared test, as appropriate (alpha 0.05). Parametric data are represented as the mean ± standard deviation, and nonparametric data as the median (interquartile range). Compared with group D (25 horses), horses in group R (53 horses) needed significantly fewer attempts to achieve sternal recumbency [R 1 (1–1) vs. D 1 (1–2)], remained significantly longer in sternal recumbency [R 10 (3–14,5) vs. D 5 (1–9,5) minutes], needed significantly less attempts to stand [R 1 (1–1) vs. D 2 (1–4)], and a significantly shorter time to stand after making their first attempt [R 0 (0–0) vs. D 3 (0–6) minutes], with significantly better scores for TrSta, BC, and FS in group R. The results suggest that, at the doses used, romifidine provides a better recovery quality.  相似文献   

10.
Objective To compare behavioral characteristics of induction and recovery in horses anesthetized with eight anesthetic drug protocols. Study design Randomized prospective experimental study. Animals Eight horses, 5.5 ± 2.4 years (mean ± SD) of age, and weighing 505 ± 31 kg. Methods After xylazine pre‐medication, each of eight horses was anesthetized on four occasions using one of eight different anesthetic induction protocols which incorporated various combinations of ketamine (KET), propofol (PRO), and thiopental (THIO): THIO 8 mg kg?1; THIO 6 mg kg?1 + PRO 0.5 mg kg?1; THIO 4 mg kg?1 + PRO 1 mg kg?1; THIO 2 mg kg?1 + PRO 1.5 mg kg?1; KET 2 mg kg?1; KET 1.5 mg kg?1 + PRO 0.5 mg kg?1; KET 1 mg kg?1 + PRO 1 mg kg?1; KET 0.5 mg kg?1 + PRO 1.5 mg kg?1. Quality of induction and recovery were scored from 1 (poor) to 5 (excellent), and time taken to achieve lateral recumbency, first movement, sternal recumbency, and standing were evaluated. Results Time taken to achieve lateral recumbency after drug administration differed significantly (p < 0.0001) among the various combinations, being shortest in horses receiving THIO‐8 (mean ± SD, 0.5 ± 0.3 minutes) and longest in horses receiving KET‐2 (1.4 ± 0.2 minutes). The best scores for induction quality were associated with KET‐1.5 + PRO‐0.5, and the worst scores for induction quality were associated with KET‐2, although the difference was not significant. Time to first movement varied significantly among drug protocols (p = 0.0133), being shortest in horses receiving KET‐2 (12.7 ± 3.6 minutes) and longest in horses receiving THIO‐8 (29.9 ± 1.5 minutes). Horses receiving THIO‐8 made the greatest number of attempts to attain sternal posture (6.5 ± 4.7) and to stand (1.6 ± 0.8). Horses in the THIO‐8 treatment also received the poorest recovery scores (3.3 ± 1.0 and 3.0 ± 0.7 for sternal and standing postures, respectively). The best recovery scores were associated with combinations comprised mainly of propofol. Conclusions Combining propofol with either ketamine or thiopental modifies behaviors associated with use of the individual drugs. Clinical relevance Quality of early anesthesia recovery in horses may be improved by some combinations of propofol with either thiopental or ketamine.  相似文献   

11.
Duration of anesthesia onset (time to intubation) and recovery (time to extubation, sternal and standing) and quality of recovery were compared for sevoflurane and isoflurane in 10 adult psittacines. Both agents were initially administered at an equal volume percentage (2%) rather than at equal minimum alveolar concentrations (MACs), therefore the initial concentration was above the isoflurane MAC for dogs and birds (1.3%) but below the sevoflurane MAC for dogs (2.3%). The time to intubation was significantly longer with sevoflurane because of initially delivering the sevoflurane below suspected MAC for birds. Although recovery times (time to extubation, sternal, and standing) were not significantly different, birds recovering from sevoflurane were less ataxic. Sevoflurane is a suitable inhalant agent for use in these psittacines and merits further study.  相似文献   

12.
Objective — To determine the minimum alveolar concentration (MAC) of desflurane (DES) in the horse.
Study Design — Prospective study.
Animals — Six healthy adult horses (three males and three females) weighing 370 ±16 kg and aged 9 ±2 years old.
Methods — Anesthesia was induced with DES vaporized in oxygen via a face mask connected to a large-animal, semiclosed anesthetic circle system. The horses were endotracheally intubated and positioned in right lateral recumbency. Inspired and end-tidal DES were monitored using a calibrated Ohmeda RGM 5250 multigas analyzer (Ohmeda-BOC, Spain). The MAC of desflurane that prevented gross purposeful movement in response to 60 seconds of noxious electrical stimulation of oral mucous membranes was determined.
Results — The time from the start of DES administration to lateral recumbency was 6.1 ±0.9 min. The MAC of DES in these horses was 7.6 ±0.4%. Time required for the animal to regain sternal recumbency after 98 ±4 minutes of anesthesia was 6.6 ±0.5 minutes and the time to standing was 14.3 ±2.7 minutes.
Conclusions — The MAC of desflurane in these horses was 7.6 ±0.4%. DES provided a rapid induction to, and recovery from, anesthesia.
Clinical Relevance — Desflurane offers the potential for more precise control during anesthesia, and may allow a faster and uneventful recovery. It is important to know the MAC of an inhalant to use it clinically.  相似文献   

13.
Objective— To characterize the behavior of horses recovering in the Anderson Sling Suspension System after 4 hours of desflurane anesthesia and postdesflurane intravenous (IV) administration of propofol and xylazine. Study Design— Experimental study. Animals— Healthy horses (n=6), mean±SEM age 12.3±1.8 years; mean weight 556±27 kg. Methods— Each horse was anesthetized with xylazine, diazepam, and ketamine IV and anesthesia was maintained with desflurane in O2. At the end of 4 hours of desflurane, each horse was positioned in the sling suspension system and administered propofol–xylazine IV. Recovery events were quantitatively and qualitatively assessed. Venous blood was obtained before and after anesthesia for biochemical and propofol analyses. Results— Anesthetic induction and maintenance were without incident. Apnea commonly accompanied propofol administration. All horses had consistent recovery behavior characterized by a smooth, careful, atraumatic return to a standing posture. Conclusions— Results of this study support careful, selective clinical use of desflurane, propofol–xylazine, and the Anderson Sling Suspension System to atraumatically transition horses with high anesthetic recovery risk to a wakeful standing posture. Clinical Relevance— Technique choices to facilitate individualized, atraumatic recovery of horses from general anesthesia are desirable. Use of IV propofol and xylazine to transition horses from desflurane anesthesia during sling recovery to standing posture may facilitate improved recovery management of high‐injury risk equine patients requiring general anesthesia.  相似文献   

14.
The objective of this study was to compare recovery from desflurane anesthesia in horses with or without post-anesthetic xylazine. Six adult horses were anesthetized on 2 occasions, 14 d apart using a prospective, randomized crossover design. Horses were sedated with xylazine, induced to lateral recumbency with ketamine and diazepam, and anesthesia was maintained with desflurane. One of 2 treatments was administered intravenously at the end of anesthesia: xylazine [0.2 mg/kg body weight (BW)] or an equivalent volume of saline. Recovery parameters were recorded and assessed by 2 blinded observers. A Wilcoxon signed-rank test was used to analyze recovery data. Heart rate, arterial blood pressures, and arterial blood gas data were analyzed using 2-way analysis of variance (ANOVA) for repeated measures. Values of P < 0.05 were considered significant. Duration of anesthesia was not different between groups. Administration of xylazine at the end of desflurane anesthesia was associated with significantly longer times to first movement, endotracheal tube removal, first attempt to achieve sternal recumbency, sternal recumbency, first attempt to stand, and standing. Number of attempts to stand and quality of recovery scores were not different between groups. Administering xylazine after desflurane anesthesia resulted in longer recovery times. Recovery scores were not significantly different between groups.  相似文献   

15.
Pain management is an important post-operative concern. Pain scales may rely on the observer's subjective assessment of the level of discomfort and may not correlate with physiologic or pharmacologic measures of pain. The purpose of this study was to develop an objective measure of behavior in healthy pain-free horses recovering from anesthesia that could be used for comparison with the behavior of horses recovering from a surgical procedure.
Focal sampling with videotape and observation was done on five healthy horses before anesthesia to establish baselines. Behavioral measures included head turns, tail swishes, eyelid aperture/size, ear position, angle of neck, weight shifts, and ambulation. Physiologic measures included heart rate, respiratory rate, and temperature. The horses were anesthetized for 2 hours with isoflurane, and in the recovery stall, data were collected continuously on videotape from the time of extubation to standing. Focal sampling of 15 minutes was repeated at 1, 2, 4, and 24 hours after the horses returned to their stalls. Video data were analyzed using the Noldus Observer Video Analysis System.
A wide variation in behavior was observed between horses in the recovery stall. Observations at 1, 2, and 4 hours revealed change from the up/forward ear position to the down ear position, and a decrease in weight bearing of the hind limb from a baseline of 11–12 minutes out of 15 minutes to 7–9 minutes with an increase in toe pointing. Time spent standing was similar to baseline of 93.8%, and the neck angle was not changed from baseline of 173.5°. Values had returned to baseline at 24 hours.
Changes in behavior were induced by anesthesia alone and must be taken into consideration when evaluating analgesic treatments.  相似文献   

16.
OBJECTIVE: To determine the cardiovascular and respiratory effects of water immersion in horses recovering from general anesthesia. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized 3 times with halothane and recovered from anesthesia while positioned in lateral or sternal recumbency in a padded recovery stall or while immersed in a hydropool. Cardiovascular and pulmonary functions were monitored before and during anesthesia and during recovery until horses were standing. Measurements and calculated variables included carotid and pulmonary arterial blood pressures (ABP and PAP respectively), cardiac output, heart and respiratory rates, arterial and mixed venous blood gases, minute ventilation, end expiratory transpulmonary pressure (P(endXes)), maximal change in transpulmonary pressure (deltaP(tp)max), total pulmonary resistance (RL), dynamic compliance (Cdyn), and work of breathing (W). RESULTS: Immersion in water during recovery from general anesthesia resulted in values of ABP, PAP P(endXes), deltaP(tp)max, R(L), and W that were significantly greater and values of Cdyn that were significantly less, compared with values obtained during recovery in a padded stall. Mode of recovery had no significant effect on any other measured or calculated variable. CONCLUSIONS AND CLINICAL RELEVANCE: Differences in pulmonary and cardiovascular function between horses during recovery from anesthesia while immersed in water and in a padded recovery stall were attributed to the increased effort needed to overcome the extrathoracic hydrostatic effects of immersion. The combined effect of increased extrathoracic pressure and PAP may contribute to an increased incidence of pulmonary edema in horses during anesthetic recovery in a hydropool.  相似文献   

17.
Objective To compare three combinations of injectable anesthetics in miniature donkeys for quality of induction, recovery, muscle relaxation, cardiopulmonary changes during anesthesia and duration of recumbency. Design Prospective, randomized experimental study. Animals Six miniature donkeys (< 90 cm in height at the withers) weighing 92–127 kg were used. Materials and methods The drug combinations were: xylazine?butorphanol?ketamine (XBK), xylazine?butorphanol?tiletamine?zolazepam (XBT) and xylazine?propofol (XP). Each miniature donkey was anesthetized with each combination at 1‐week intervals in random order. Heart and respiratory rates, indirect blood pressure and temperature were measured before and at 5‐minute intervals during recumbency. Arterial blood samples were drawn for blood‐gas analysis before and at 5, 15 and 30 minutes of anesthesia when samples could be collected. Recumbency time to sternal and time to standing were recorded and a subjective evaluation of induction, muscle relaxation and recovery were made. Results Mean recumbency time ± SD was 14.7 ± 9.4, 33.8 ± 6.3 and 14.6 ± 1.9 minutes with XBK, XBT and XP, respectively. Mean time to standing ± SD was 28.4 ± 11.3, 43.7 ± 7.2 and 26.3 ± 2.9 minutes with XBK, XBT and XP, respectively. Heart and respiratory rates and blood pressures varied from baseline but were always within normal ranges. Hemoglobin saturation, pH and PaO2 tended to be lower with these doses of XBT and XP. Conclusions and clinical relevance Overall quality of anesthesia was poor with XBK. At the doses used this combination did not provide sufficient anesthesia compared with the combinations of XBT and XP, which appeared to provide acceptable anesthesia of short duration in miniature donkeys.  相似文献   

18.
Objective To determine the minimum alveolar concentration (MAC) of isoflurane in cattle.
Study design Prospective study.
Animals Sixteen healthy adult female Holstein-Friesian cattle weighing 612 ± 17 kg (× ± SEM) and aged 5.7 ± 0.9 years old.
Methods The unsedated cattle were restrained in right lateral recumbency using a rope harness technique. Anaesthesia was induced with isoflurane (ISO) in oxygen via a face mask connected to a large-animal, semiclosed anaesthetic circle system. Each cow was intubated with a cuffed orotracheal tube (25 mm ID). Inspired and end-tidal ISO were monitored using a calibrated infra red analyser with a methane filter. The MAC of ISO that prevented gross purposeful movement in response to a tail and dewclaw clamp was determined. The time from the start of ISO administration to intubation, the time interval between discontinuance of ISO and the time the animal regained sternal recumbency, were recorded. Time to standing and quality of recovery were also recorded.
Results The time from the start of ISO administration to tracheal intubation was 18.68 ± 2.77 minutes. The MAC of ISO in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). Time to sternal recumbency after 90 ± 16 minutes of anaesthesia from intubation was 4.60 ± 0.58 minutes and time to standing was 6.70 ± 1.02 minutes. All cattle were extubated when they regained sternal recumbency.
Conclusion The MAC of isoflurane in these cattle was 1.27 ± 0.03% (1.14 ± 0.01% corrected to sea level). ISO provided a smooth induction to, and rapid recovery from, anaesthesia.
Clinical relevance Knowledge of the MAC of ISO in cattle will facilitate its appropriate clinical use.  相似文献   

19.
ObjectiveTo compare PaO2 and PaCO2 in horses recovering from general anesthesia maintained with either apneustic anesthesia ventilation (AAV) or conventional mechanical ventilation (CMV).Study designRandomized, crossover design.AnimalsA total of 10 healthy adult horses from a university-owned herd.MethodsDorsally recumbent horses were anesthetized with isoflurane in oxygen [inspired oxygen fraction = 0.3 initially, with subsequent titration to maintain PaO2 ≥ 85 mmHg (11.3 kPa)] and ventilated with AAV or CMV according to predefined criteria [10 mL kg–1 tidal volume, PaCO2 40–45 mmHg (5.3–6.0 kPa) during CMV and < 60 mmHg (8.0 kPa) during AAV]. Horses were weaned from ventilation using a predefined protocol and transferred to a stall for unassisted recovery. Arterial blood samples were collected and analyzed at predefined time points. Tracheal oxygen insufflation at 15 L minute–1 was provided if PaO2 < 60 mmHg (8.0 kPa) on any analysis. Time to oxygen insufflation, first movement, sternal recumbency and standing were recorded. Data were analyzed using repeated measures anova, paired t tests and Fisher’s exact test with significance defined as p < 0.05.ResultsData from 10 horses were analyzed. Between modes, PaO2 was significantly higher immediately after weaning from ventilation and lower at sternal recumbency for AAV than for CMV. No PaCO2 differences were noted between ventilation modes. All horses ventilated with CMV required supplemental oxygen, whereas three horses ventilated with AAV did not. Time to first movement was shorter with AAV. Time to oxygen insufflation was not different between ventilation modes.ConclusionsAlthough horses ventilated with AAV entered the recovery period with higher PaO2, this advantage was not sustained during recovery. Whereas fewer horses required supplemental oxygen after AAV, the use of AAV does not preclude the need for routine supplemental oxygen administration in horses recovering from general anesthesia.  相似文献   

20.
OBJECTIVE: To investigate the effects of peri-operative morphine on the quality and duration of recovery from halothane anaesthesia in horses. STUDY DESIGN: Prospective randomized study. ANIMALS: Twenty-two client owned horses, ASA category I or II. METHODS: Horses undergoing elective surgical procedures were divided into two groups and paired according to procedure, body position during surgery, body mass and breed. Group M+ received morphine by intravenous injection (0.15 mg kg(-1)) before induction of anaesthesia and then by infusion (0.1 mg kg(-1) hour(-1)) during anaesthesia. Group M- received the same anaesthetic agents except that morphine was excluded. At the end of surgery, the horses were placed in a recovery box and allowed to recover without assistance. Recoveries were recorded on videotape, beginning when the anaesthetist left the recovery box, and ending when the horse stood up. Recoveries were assessed from digital video recordings by three observers, unaware of treatment. The time to first movement, attempting and attaining sternal recumbency and standing were recorded. The quality of various aspects of the recovery was assessed to produce a total recovery score; high numerical values indicate poor recoveries. The duration of anaesthesia and the total dose of morphine administered were recorded. RESULTS: The mean morphine dose (95% CI) was 147 (135-160) mg [equivalent to 0.27 (0.25-0.29) mg kg(-1)]. The recovery scores (median, 95% CI) for the M- and M+ groups were 25, 19-41 and 20, 14-26, respectively. Total score increased as duration of anaesthesia increased, independent of treatment. Untreated (M-) horses made more attempts to achieve sternal recumbency: mean number of attempts (95% CI) for M- was 4.5 (2.7-6.2) compared with 2.0 (1.4-2.6) (M+). Untreated horses made more attempts to stand (2.1, 1.6-2.6) compared with the morphine recipients (1.3, 1.1-1.5). Time to standing (in minutes) was significantly (p = 0.0146) longer for the untreated (31.3, 24.3-38.3) compared with treated animals (26.6, 20.9-32.3). The interval between the first movement in recovery to the time at standing was significantly (p < 0.001) longer for M- (14.5, 12.1-16.9 minutes) compared with M+ animals (7.4, 5.0-9.8 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: Recoveries from anaesthesia in the morphine recipients were characterized by fewer attempts to attain sternal recumbency and standing, and a shorter time from the first recovery movement to the time of standing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号