首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Carbohydrate reserve storage in trees is usually considered a passive function, essentially buffering temporary discrepancies between carbon availability and demand in the annual cycle. Recently, however, the concept has emerged that storage might be a process that competes with other active sinks for assimilate. We tested the validity of this concept in Hevea brasiliensis Müll. Arg. (rubber) trees, a species in which carbon availability can be manipulated by tapping, which induces latex regeneration, a high carbon-cost activity. The annual dynamics of carbohydrate reserves were followed during three situations of decreasing carbon availability: control (no tapping), tapped and tapped with Ethephon stimulation. In untapped control trees, starch and sucrose were the main carbohydrate compounds. Total nonstructural carbohydrates (TNC), particularly starch, were depleted following bud break and re-foliation, resulting in an acropetal gradient of decreasing starch concentration in the stem wood. During the vegetative season, TNC concentration increased. At the end of the vegetative season, there were almost no differences in TNC concentration along the trunk. In tapped trees, the vertical gradient of starch concentration was locally disturbed by the presence of the tapping cut. However, the main effect of tapping was a dramatic increase in TNC concentration, particularly starch, throughout the trunk and in the root. The difference in TNC concentration between tapped and untapped trees was highest when latex production was highest (October); the difference was noticeable even in areas of the trees that are unlikely to be directly involved in latex regeneration, and it was enhanced by Ethephon stimulation, which is known to increase latex metabolism and flow duration. Thus, contrary to what could be expected if reserves serve as a passive buffer, a decrease in carbohydrate availability resulted in a net increase in carbohydrate reserves at the trunk scale. Such behavior supports the view that trees tend to adjust the amount of carbohydrate reserves stored to the level of metabolic demand, at the possible expense of growth.  相似文献   

2.
A water deficit during stage III of fruit growth was established with the aim of determining if it is possible to achieve an improvement in tree water status by summer pruning and fruit thinning. The experiment was set up as a randomized block split-plot design across trials (irrigation) where pruning was assigned to the main plot and fruit thinning to the sub-plots. The irrigation treatments were (1) standard full irrigation (FI), and (2) suppression of irrigation during stage III of fruit growth until leaves visibly withered (LWI); the pruning treatments were (1) experimental summer pruning (EP), and (2) standard summer pruning (CP); and three fruit thinning intensities were applied to facilitate analysis of the effects of the treatments in relation to fruit load. Changes in amount of light intercepted and in tree stem water potential (Psi stem) were evaluated. The EP treatment reduced the amount of light intercepted by the tree. In the FI treatment, there was a significant reduction in fruit growth measured as both water accumulation and dry mass accumulation. Under FI conditions, reductions in fruit load as a result of EP were not accompanied by a significant improvement in Psi stem. In the LWI treatment, EP produced a significant improvement of 0.17 MPa in Psi stem, but there was no improvement in fruit growth compared with CP trees. A reduction in fruit load from 350 (commercial load) to 150 per tree significantly improved Psi stem by 0.3 MPa at the end of stage III of fruit growth. These results indicate that improvements in water status in response to pruning may be insufficient to promote fruit growth if the pruned trees are unable to provide an adequate supply of assimilates to the developing fruits.  相似文献   

3.
The carbohydrate reserve of bareroot Scots pine (Pinus sylvestris L.) seedlings was evaluated as means of describing seedling quality and capacity to withstand stress during nursery lifting, outplanting and acclimatization at the planting site. Carbohydrate concentrations in needles were followed through four spring storage treatments and the postplanting success and growth of seedlings monitored at two sites. The reduction in total glucose concentration in needles was affected by storage time and temperature. Depletion of carbohydrate reserves decreased needle growth, reduced the number of terminal buds, disturbed leader shoot formation, and consequently reduced shoot length. The depletion of reserves below a threshold concentration of ~2 % total glucose during storage resulted in significant seedling mortality. A simple model for estimating the depletion of carbohydrate reserves based on dark respiration was evaluated as a measure of the accumulated strain during the storage. The application of carbohydrate analyses as a routine test of seedling quality in a nursery is not currently feasible because of the insensitivity and laboriousness of the method.  相似文献   

4.
We modeled tree responses to pruning on the basis of growth rules established on unpruned trees and a simple principle governing root-shoot interactions. The model, which integrates architectural and ecophysiological approaches, distinguishes four types of anatomical organs in a tree: rootstock, main axis, secondary axes and new roots. Tree structure is described by the position of secondary axes on the main axis. The main processes considered are plastochronal activity, branching, assimilate production, respiration and assimilate partitioning. Growth and development rules were based on measurements of two unpruned trees. The model was used to simulate growth of peach trees (Prunus persica (L.) Batsch) in their first growing season. Assuming that the equilibrium between roots and shoots tends to be restored after pruning, the response to removal of the main axis above the twentieth internode in mid-July was simulated and compared to the response measured in three pruned trees. The model fit the unpruned tree data reasonably well and predicted the main traits of tree behavior after pruning. Dry matter growth of the secondary axes of pruned trees was increased so that shoot seasonal carbon balance was hardly modified by pruning. Rhythmicity of growth was enhanced by pruning, and might result from variations induced in the root:shoot ratio. Variation in pruning severity had greater effects than variation in pruning date. A sensitivity analysis indicated that: (1) root-shoot partitioning was a critical process of the model; (2) tree growth was mainly dependent on assimilate availability; and (3) tree shape was highly dependent on the branching process.  相似文献   

5.
We modeled the effects of weather and source-sink factors on mango fruit growth. The peach fruit-growth model "Cashoo" was adapted for mango fruit. The model accounts for the main processes of fruit growth, i.e., leaf photosynthesis, fruit demand, fruit respiration, and storage and mobilization of leaf and stem reserves. Simulations for three successive years and for various leaf-to-fruit ratio treatments showed good agreement with observed fruit growth data. Simulations of fruit growth under different climatic conditions, especially with contrasting temperature and radiation, and for different values of initial fruit dry mass and leaf-to-fruit ratio, showed that variations in fruit growth among years can be partly explained by climatic variations through their effects on leaf photosynthesis, fruit demand and fruit growth rate. However, climatic changes contribute substantially less to observed variability in fruit growth than to initial fruit dry mass and leaf-to-fruit ratio.  相似文献   

6.
We studied the influence of branch autonomy on the growth of reproductive and vegetative organs by establishing different patterns of fruit distribution within and between large branch units (scaffolds) in mature peach trees (Prunus persica (L.) Batsch cv. 'Elegant Lady'). Different patterns of fruit distribution were established by defruiting either whole scaffolds (uneven fruit distribution between scaffolds; US) or several selected hangers (small fruiting branches) per tree (uneven fruit distribution between hangers; UH). The effects of these patterns were compared with the effects of an even fruit distribution treatment (EVEN) in which fruits were thinned to achieve maximum uniformity of fruit distribution within the canopy. The desired fruit loads were obtained by differentially thinning the remaining bearing parts. On a tree basis, the response of mean fruit mass to fruit load was strongly affected by fruit distribution. The steepest mean fruit mass to fruit load relationship was found in US trees, whereas the relationship in UH trees was intermediate between the US and EVEN trees. On a scaffold basis, differences in fruit size between EVEN and US trees with similar fruit loads, though statistically significant, were relatively small, indicating that scaffolds were almost totally autonomous with respect to dry matter partitioning to fruit during the final stage of peach fruit growth. Hangers also appeared to exhibit significant autonomy with respect to the distribution of dry matter during the final phase of fruit growth. Branch autonomy was evident in scaffold growth: defruited scaffolds in the US treatment grew more than fruited scaffolds, and fruit distribution treatments had little impact on scaffold cross-sectional area on a tree basis. On the other hand, as observed for fruit growth, branch autonomy did not appear to be complete because the fruited scaffolds grew more in US trees than in EVEN trees under heavy cropping conditions. However, the effect of fruit distribution occurred only over short distances, and was negligible on organs located farther away from the source of heterogeneity (fruits), such as the trunk and roots.  相似文献   

7.
We monitored seasonal variations in net primary production (NPP), estimated by allometric equations from organ dimensions, gross primary production (GPP), estimated by the eddy covariance method, autotrophic respiration (R(a)), estimated by a model, and fruit production in a coconut (Cocos nucifera L.) plantation located in the sub-tropical South Pacific archipelago of Vanuatu. Net primary production of the vegetative compartments of the trees accumulated steadily throughout the year. Fruits accounted for 46% of tree NPP and showed large seasonal variations. On an annual basis, the sum of estimated NPP (16.1 Mg C ha(-1) year(-1)) and R(a) (24.0 Mg C ha(-1) year(-1)) for the ecosystem (coconut trees and herbaceous understory) closely matched GPP (39.0 Mg C ha(-1) year(-1)), suggesting adequate cross-validation of annual C budget methods. However, seasonal variations in NPP + R(a) were smaller than the seasonal variations in GPP, and maximum tree NPP occurred 6 months after the midsummer peak in GPP and solar radiation. We propose that this discrepancy reflects seasonal variation in the allocation of dry mass to carbon reserves and new plant tissue, thus affecting the allometric relationships used for estimating NPP.  相似文献   

8.
Tropical tree fodder is harvested by frequent prunings, and resprouting depends on nonstructural carbohydrate reserves in the remaining tree parts. We studied the effects of three pruning intensities (removal of all leaves and branches leaving 1 m of stem once a year (T-12), or every 6 months (T-6), and about 50% pruning every 2 months (P-2)) on regrowth and the dynamics of soluble sugars and starch in the legume tree Gliricidia sepium (Jacq.) Walp. growing under humid tropical conditions in Guadeloupe, Lesser Antilles. Carbohydrates were sampled in roots, stems and branches. Among pruned trees, trees in the T-6 harvest regime had the highest leaf fodder yield (0.73 kg tree(-1) year(-1)). High litter loss reduced leaf yield of T-12 trees, but compared with the other treatments, T-12 trees produced the most branch biomass (3.43 kg tree(-1)). Among treatments, P-2 trees had an intermediate leaf fodder yield and the lowest branch production. Sucrose, glucose and fructose were the most common sugars in all biomass compartments. Mannose, pinitol and an unidentified cyclitol were relatively abundant in branches. Root sugar and starch concentrations were unaffected by harvest regime. There was a significant interactive effect of harvest intensity and regrowth time on stem sugar concentration. Stem starch concentration was highest in T-12 trees. After a year of fodder harvesting, whole-tree reserves of nonstructural carbohydrates were highest in T-12 trees; however, a larger proportion of reserves were located in roots and stems of T-6 and P-2 trees. These reserves, which were not lost in pruning and contributed to regrowth of G. sepium after pruning, may explain the relatively small effects of harvesting regime on soluble sugar and starch concentrations.  相似文献   

9.
The influence of assimilate supply, metabolism and dilution on sugar concentrations in the mesocarp of peach (Prunus persica (L.) Batsch) fruit during the main stage of fruit enlargement was analyzed with the SUGAR model of Génard and Souty (1996). The model predicts the partitioning of carbon into sucrose, sorbitol, glucose and fructose in the mesocarp of peach fruit. Based on measured data and the model, we determined values for the relative rates of sugar transformation. These rates were constant, varied with time or varied with relative fruit growth rate, depending on the type of sugar. Equations were derived to describe these rates and incorporated into the SUGAR model. The model simulated the effects of changing assimilate supply and fruit volume on sugar concentrations. The set of equations for the SUGAR model was rewritten to include the three components influencing sugar concentrations: assimilate supply, metabolism and dilution. The sugar types differed in sensitivity to these components. Sucrose was highly sensitive to changes in assimilate supply and to the dilution effect; it was not subject to intense metabolic transformation. Sorbitol was the most important carbohydrate in fruit metabolism, which explains why the sorbitol concentration was always low despite the strong positive effect of assimilate supply. The reducing sugars constituted a transitory storage pool and their concentrations were closely related to metabolism.  相似文献   

10.
In a greenhouse study we quantified the gradual change of gas exchange, water relations and root reserves of aspen (Populus tremuloides Michx.) seedlings growing over a 3-month period of severe water stress. The aim of the study was to quantify the complex interrelationship between growth, water and gas exchange, and root carbon (C) dynamics. Various growth, gas exchange and water relations variables in combination with root reserves were measured periodically on seedlings that had been exposed to a continuous drought treatment over a 12-week period and compared with well-watered seedlings. Although gas exchange and water relations parameters significantly decreased over the drought period in aspen seedlings, root reserves did not mirror this trend. During the course of the experiment roots of aspen seedlings growing under severe water stress showed a two orders of magnitude increase in sugar and starch content, and roots of these seedlings contained more starch relative to sugar than those in non-droughted seedlings. Drought resulted in a switch from growth to root reserves storage which indicates a close interrelationship between growth and physiological variables and the accumulation of root carbohydrate reserves. Although a severe 3-month drought period created physiological symptoms of C limitation, there was no indication of a depletion of root C reserve in aspen seedlings.  相似文献   

11.
Radiation-use efficiency (RUE) relates biomass production to the photosynthetically active radiation (PAR) intercepted by a plant or crop. We determined RUE and biomass partitioning coefficients of young olive (Olea europaea) trees for use in a general growth model. In 1995, 1-year-old olive trees var. 'Picual' were planted at a density of either 0.5 or 2.0 trees m(-2) near Córdoba, Spain, at a site providing favorable growth conditions. During the experiment (1995-1997), both PAR interception by the canopy and plant area index (PAI) were measured with radiation sensors. Regular harvests were performed to determine leaf area and biomass accumulation in roots, wood (stem, branches and trunk) and leaves. Leaf, wood and root biomass partitioning coefficients were calculated. The leaf area partitioning coefficients were also estimated. Dry matter production was linearly related to cumulative intercepted PAR. Seasonal RUE, calculated as the slope of the regression of aboveground biomass and cumulative intercepted PAR, was 1.35 g (MJ PAR)(-1). Radiation-use efficiency appeared to respond to environmental conditions, but was independent of planting density and PAI. The young olive trees allocated 0.26 of their total biomass to roots. Partitioning of aboveground dry matter was 0.60 to wood and 0.37 to leaves. As competition increased, dry matter partitioning to wood increased to 0.70.  相似文献   

12.
于宁乡县龙田镇月塘村选择生长健壮、结实正常的10年生香榧实生植株作为观测对象,对香榧果实生长发育规律进行观测,结果表明:香榧果实发育过程历时16个月,跨越2个年度,果实的生长变化曲线呈"S"形;当年6月初到12月末果实生长很缓慢,12月中旬到翌年2月末生长极其缓慢,至翌年3月果实开始膨大,从4月末到7月中旬进入快速生长...  相似文献   

13.
The maintenance of plane trees (Platanus acerfolia Wild) by regular curtain-like pruning during the vegetative period induced modifications in the distribution and seasonal patterns of carbohydrate reserves in the perennial parts. The unpruned trees were characterized by high and fairly constant concentrations of starch in roots > 5 cm in diameter and a decreasing gradient of starch from the base to the top of the trunk. Starch also accumulated at the trunk-branch junction and at the base of large branches. Curtain-like pruning caused the starch gradient in the trunk to disappear and induced well marked seasonal variations in the starch concentration of roots > 5 cm in diameter. Pruning also eliminated the accumulation of starch at the trunk-branch junction during summer, but it had no effect on the accumulation of starch at the base of large branches. Concentrations and seasonal fluctuations of carbohydrates in roots < 0.5 cm in diameter were similar in both pruned and unpruned trees. Repeated cuts or "short head pruning" induced the formation of excrescences at the tips of branches that accumulated starch.  相似文献   

14.
We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.  相似文献   

15.
Cheng L  Fuchigami LH 《Tree physiology》2002,22(18):1297-1303
Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertilized with a nutrient solution (fertigation) containing 0, 2.5, 5, 7.5, 10, 15 or 20 mM nitrogen (N) in a modified Hoagland's solution from June 30 to September 1. In mid-October, half of the trees in each N treatment were sprayed twice with 3% urea, 1 week apart. The remaining trees served as controls. All trees were harvested after leaf fall and stored at 2 degrees C over winter. One group of trees from each treatment was destructively sampled before bud break to determine amounts of reserve N and total nonstructural carbohydrates (TNC); the remaining trees were transplanted to N-free medium in the spring. These trees were supplied with Hoagland's solution with or without 10 mM N (from 15N-depleted NH4NO3) for 60 days, starting from bud break. With increasing N supply from fertigation, tree N concentration increased, whereas TNC concentration decreased. Foliar urea applications increased tree N concentration and decreased TNC concentration in each N fertigation treatment. There was a negative linear relationship between tree N concentration and TNC concentration. Irrespective of whether N was provided the following spring, trees with high N reserves but low carbohydrate reserves produced a larger total leaf area at the end of the regrowth period than trees with low N reserves but high carbohydrate reserves. The pooled data on reserve N used for new growth showed that, regardless of the spring N supply, there was a linear relationship between total N accumulated in the tree during the previous season and the amount of reserve N remobilized for new shoot and leaf growth. About 50% of tree N content was remobilized to support new shoot and leaf growth over the range of tree N status examined. We conclude that the initial growth of young apple trees in the spring is determined mainly by reserve N, not reserve carbohydrates. The amount of reserve N remobilized for new growth in spring was proportional to tree N status and was unaffected by current N supply.  相似文献   

16.
The hypothesis that carbohydrate partitioning is driven by competition among individual plant organs, based on each organ's growth potential, was used to develop a simulation model of the carbon supply and demand for reproductive and vegetative growth in peach trees. In the model, photosynthetic carbon assimilation is simulated using daily minimum and maximum temperature and solar radiation as inputs. Carbohydrate is first partitioned to maintenance respiration, then to leaves, fruits, stems and branches, then to the trunk. Root activity is supported by residual carbohydrate after aboveground growth. Verification of the model was carried out with field data from trees that were thinned at different times. In general, the model predictions corresponded to field data for fruit and vegetative growth. The model predicted that resource availability limited fruit and stem growth during two periods of fruit growth, periods that had been identified in earlier experimental studies as resource-limited growth periods. The model also predicted that there were two periods of high carbohydrate availability for root activity. The fit between model predictions and field data supports the initial hypothesis that plants function as collections of semiautonomous, interacting organs that compete for resources based on their growth potentials.  相似文献   

17.
以梯田堰边老龄低产花椒为试材,采用随机区组设计进行不同修剪试验。发现刻芽、中截、重截、疏枝修剪处理均能促进新梢生长,提高叶绿素含量,显著提高花椒单株产量、穗重,增加花椒出皮率。以疏枝处理对花椒新梢生长、果实产量品质影响最显著。平茬更新处理的花椒树的叶色浓绿、叶片肥厚、生长壮旺,果实产量和枝量明显高于对照树,复壮效果明显。  相似文献   

18.
Fruit load was altered by flower thinning on three- and four-year-old, field-grown apple trees. Increasing fruit load led to increases in dry matter production per unit leaf area and partitioning to fruit and to decreases in fruit size, percentage fruit dry matter, dry matter partitioning to new shoot growth, thickening of existing woody tissue and root growth. Flower bud production for the following spring was also negatively affected by an increase in fruit load. Leaf photosynthesis was increased in cropping trees in July and August at the time of maximum fruit dry weight increase. Calculated light interception was linearly related to leaf area. The efficiency of conversion of intercepted photosynthetic active radiation to dry matter energy equivalents was 3.3% in heavily cropping trees and 1.8% in non-cropping trees. Total dry matter production was linearly related to both leaf area and light interception, but the variance accounted for by the regression was more than doubled if fruit dry matter or fruit number was included in the regression.  相似文献   

19.
The annual development of Navelina (Citrus sinensis (L.) Osbeck) trees budded on three hybrid citrus rootstocks was studied. Two rootstocks, named #23 and #24, were obtained from the cross of Troyer citrange (C. sinensis x Poncirus trifoliata (L.) Raf.) x Cleopatra mandarin (C. reshni Hort. ex Tan.). The third rootstock, named F&A 418, came from a cross of Troyer citrange x common mandarin (C. deliciosa Ten.). Rootstocks #23 and F&A 418 are dwarfing rootstocks and reduce the size of the scion by about 75%. Rootstock #24 yields a standard size scion. Major growth differences that influenced tree size were apparent during the first summer after grafting and appeared to be related to fruit productivity, because defruiting the dwarfed scions caused a significant increase in vegetative shoot development, including summer sprouting. The reduced growth of the dwarfed scions was not restored by hormone application, indicating that a hormonal deficiency is unlikely to be the primary reason for scion dwarfing, although differences in gibberellin concentrations were found in actively growing shoots. Leaf photosynthesis was similar in scions on all three rootstocks, but the carbohydrate accumulation in fruits and fibrous roots during the summer sprouting period was significantly greater in the dwarfed trees than in the standard trees. Our results suggest that the dwarfing mechanism induced by the F&A 418 and #23 rootstocks is mediated by enhanced reproductive development and fruit growth, resulting in reduced vegetative development in the summer. Thus, a change in the pattern of assimilate distribution appears to be one of the main components of the dwarfing mechanism.  相似文献   

20.
In August, eight 4-m tall citrus trees were pruned by removing the top third of their canopy. Eight unpruned trees served as controls. Root growth, which was examined nondestructively with minirhizotrons over a four-month period, tended to be less in the pruned than unpruned trees seven days after pruning and this difference was significant (P < 0.05) from 14 to 49 days after pruning. Total reducing and ketone sugars (includes free fructose, sucrose and fructans) in the fine roots were less in pruned than unpruned trees 20 days after pruning, but not thereafter. By 30 days after pruning, at least 20% of the roots of the pruned trees at a soil depth of 9 to 35 cm apparently died. By 63 days after pruning, root length density had recovered to that of the unpruned trees, although starch reserves were 18% less in the fine roots of pruned than unpruned trees at this time. Nine to eleven months after pruning (May to July), total biomass of leaves and fine roots to a depth of 1 m were similar in pruned and unpruned trees. However, fruit biomass harvested in April from pruned trees was only 24% of that in the unpruned trees. In May, nonstructural carbohydrates in the fine and coarse roots of pruned trees were generally greater than in unpruned trees, possibly reflecting previous differences in fruit production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号