首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Alpine grassland ecosystems are thought to be the most sensitive ecosystems to climate change, yet the responses of their belowground biomass and potential climatic controls are poorly understood. Thirteen‐year (2004 ‐ 2016) time‐series of observational belowground biomass data and environmental factors were analysed in a humid alpine Kobresia meadow on the Northern Qinghai–Tibetan Plateau. Results showed that the mean air temperature increased by 0.44°C from 2004 to 2016, while annual precipitation remained relatively stable. The belowground biomass across all soil depths (0–10 cm, 10–20 cm, 20–40 cm) increased significantly, while aboveground biomass showed little change. The proportion of 0–10 cm belowground biomass decreased, whereas the other proportions both increased, which could be mostly attributed to variations in maximum air temperature. There was no significant relationship between aboveground biomass of plant functional groups and belowground biomass across all depths, indicating that the impact of maximum air temperature on belowground biomass should not be limited by aboveground biomass. The asymmetrical response of aboveground and belowground biomass under current climate fluctuations could provide new insights for the appropriate management of the alpine ecosystem.  相似文献   

2.
In 1998, seeds of four cultivated native perennial grasses, Bromus inermis (B), Clinelymus nutans (C), Elymus nutans (E) and Agropyron cristatum (A), were sown as mixtures with different seed rates in three combinations (B + C, B + E + A and B + E + C + A) in a field study in the north‐eastern part of the Qinghai‐Tibetan Plateau, China. A grazing experiment was conducted in 2000 to investigate the performance of these grass mixtures at leaf, plant and sward scales under different grazing intensities (GI). Four GIs, expressed as the proportion of herbage consumed by Tibetan lambs in relation to the available biomass (IP), were applied in the summer: no grazing, and 0·30, 0·50 and 0·70 of IP. Tiller numbers of the grasses increased and leaf photosynthetic rate, sward leaf area index (LAI) and herbage mass declined with increase in GI. No effect of GI on specific leaf area was observed. Interactions between GI and grass mixtures on the dynamics of species composition, swards’ LAI and herbage mass were found. Large fluctuations in species composition with different GIs showed the poor species compatibility and sward persistence of these grass mixtures under high GI by sheep.  相似文献   

3.
Field survey and satellite image processing methods were used to estimate the total available forage over an area of 95 034 ha in north‐eastern Syria, and to assess grazing impact on the area. The above‐ground plant biomass was measured by a quadrat method at three sites in each of eight vegetation classes. Available forage was measured by excluding woody parts of shrubs from the whole aerial plant parts. The total above‐ground plant biomass and available forage were estimated by extrapolating the measured point data to the whole target area using classified vegetation data by satellite image processing. Grazing impact was assessed by calculating the differences between the total available forage at the end of growing season and the end of dry season. The values for the estimated total available forage (s.e. of mean) in the area were 55 628 000 (12 920 000) kg DM and 30 007 000 (2 437 000) kg DM at the end of growing season and dry season respectively. Although the area of the cereal fields covered only 0·315 of the area, about 0·69 and 0·82 of the available forage existed in the harvested cereal fields at the ends of growing season and dry season respectively. The integration of cereal fields and rangeland is a normal land use system for livestock management in the area. The higher cover of herbaceous vegetation types showed higher grazing impacts which reduced the total available forage at the end of the growing season by 0·817 (0·199) at the end of the dry season. Although these dense herbaceous vegetation types could possibly produce more available forage, they would incur more intensive grazing impact. On the contrary, lighter grazing impact would occur with a higher cover of shrub vegetation types. The importance of maintaining plant cover over the rangeland area to protect the land against soil erosion is stressed.  相似文献   

4.
Urine [12·3 g nitrogen (N) L?1], collected from native Tan sheep in rangeland of the Loess Plateau in north‐western China, was applied to vegetation patches dominated by Stipa bungeana (C3 grass) or Pennisetum flaccidum, (C4 grass) at either 0, 1·0, 2·0 or 4·0 L urine m?2 in early‐, mid‐, or late‐growing season, and herbage mass and tiller number per sample recorded, allowing calculation of the respective contributions of increases in tiller weight and tiller density to the response from N in urine. Such records were made three times in the growing season of application of urine, and at the end of the following growing season. Responses to urine were of the order of 1 and 5 kg herbage DM kg?1 N applied for S. bungeana and P. flaccidum, respectively. Except for early‐season application, responses of S. bungeana were mainly expressed in the season following urine application whereas responses of P. flaccidum tended to be expressed within the year of urine application, although with a residual response in the following year. The general pattern was for a tiller density‐mediated response in the period immediately after application, followed later by a tiller weight‐mediated response. Taken together with other recent research, S. bungeana can be considered a stress‐tolerating species with a limited response to N application and P. flaccidum an opportunist species able to capitalize on increased N supply.  相似文献   

5.
A symbiosis between grasses and systemic fungal endophytes exists in both natural and agricultural grassland communities. Our objective was to examine the effects of systemic endophytes on the competitive ability of two agronomically important grass species: meadow fescue [Festuca pratensis (Huds.) syn. Schedonorus pratensis (Huds.) P. Beauv] and tall fescue [Festuca arundinacea (Schreb.) syn. Schedonorus phoenix (Scop.)]. Plants of meadow and tall fescue were grown for 48 days in replacement series of interspecific mixture with a legume (red clover, Trifolium pratense L.) in different nutrient environments in a greenhouse. Neither of the grass species gained endophyte‐promoted competitive advantage over red clover in grass–clover mixtures. Endophyte infection increased the growth of meadow fescue monocultures by 89% compared to endophyte‐free monocultures in high‐nutrient soils, but plant competition or the cost of endophyte infection to the meadow fescue decreased the yield in resource‐limited conditions. On average, endophyte‐infected and endophyte‐free meadow fescues produced 0·15 and 0·17 g, and 0·14 and 0·14 g dry biomass per plant in mixtures with red clover in high‐ and low‐nutrient soils respectively. In contrast to meadow fescue, endophyte‐promoted growth of tall fescue monocultures was not detected. Endophyte‐infected and endophyte‐free tall fescue monocultures produced 0·76 and 0·95 g biomass per pot, respectively, in the high‐nutrient environment. Endophyte infection can increase the performance of the host grass, but the positive effects depend on the host species, the species composition and soil nutrient availability.  相似文献   

6.
Economic costs and benefits for different grassland production systems were analysed. Comparisons included one native grassland (alpine meadow dominated by sedges) system, four perennial monocultures of smooth bromegrass (Bromus inermis Leyss, SB), Siberian wild ryegrass (Elymus sibricus Linn., SW), drooping wild ryegrass (Elymus nutans Griseb, DW) and crested wheatgrass (Agropyron cristatum Gaertn., CW), three mixtures of these grasses (SB + DW, SB + SW + CW and SB + SW + DW + CW), and two annual monocultures of forage oats (FO) and annual ryegrass (Lolium annual, AR) in the alpine grasslands of Qinghai‐Tibet, China. Perennial grass monocultures of SW and DW and perennial grass mixtures of SB + SW + DW + CW and SB + SW + CW had higher forage yields, total revenues, output:input ratios and net profits than native grassland. These grasses and mixtures can be used to reseed native grassland and improve degraded grassland in the alpine region of the Qinghai‐Tibetan Plateau. Perennial grass mixtures can replace FO for more sustainable agricultural production systems as they are comparable in economic value and superior in ecological value to FO.  相似文献   

7.
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions.  相似文献   

8.
An experiment was conducted in inland northern New South Wales (NSW) to assess the response of tropical perennial grasses Chloris gayana (Rhodes grass) cv. Katambora and Digitaria eriantha (digit grass) cv. Premier and annual forage sorghum (Sorghum bicolor ssp. bicolor × S. bicolor ssp. drummondii hybrid) cv. Sweet Jumbo fertilized with five rates of nitrogen (N; 0, 50, 100, 150 and 300 kg N ha?1) and defoliated every 2 or 6 weeks over two growing seasons. Tropical perennial grasses were highly responsive to N fertilizer, while there was no significant response by forage sorghum. Herbage production of Rhodes grass increased linearly whereas digit grass had a high response at 50–100 kg N ha?1. Nitrogen‐use efficiency was highest during the growing season when rainfall was higher. During this season, digit grass had the highest N efficiency (148 kg DM kg?1 N applied) at 50 kg N ha?1, and Rhodes grass (66 kg DM kg?1 N applied) at 100 kg N ha?1. Plant frequency of both perennial species increased and then stabilized at high levels (>84%, cell size 0·1 by 0·1 m) during the two growing seasons. Plant frequency of Rhodes grass declined over the winter period, but recovered within 6 weeks of commencement of the growing season. Soil nitrate levels indicated that unused nitrate moved down the soil profile during wet winters. Implications of leaching below the rooting zone are discussed.  相似文献   

9.
This study evaluated the effects of a ferulic acid esterase (FAE) and a non‐FAE‐producing inoculant applied alone or in combination with exogenous fibrolytic enzymes (EFE) on the fermentation and nutritive value of mixed grain (barley, oats and spring triticale) silage. The mixed crop was ensiled in laboratory mini‐silos either untreated (CON), or treated with a FAE inoculant (FAE), a non‐FAE inoculant (NFAE) or NFAE + EFE. Inoculated silages were lower (< 0·01) in water‐soluble carbohydrate, whereas NFAE and NFAE + EFE silages had higher (< 0·001) DM loss than other silages. FAE and NFAE silage had higher neutral detergent fibre (NDF), but were lower in NFAE + EFE than other silages (< 0·001). Copy numbers of 16S rRNA associated with Lactobacillus buchneri were higher (< 0·001) in NFAE and NFAE + EFE silages than in others, resulting in higher (< 0·001) acetic acid in these silages. NFAE + EFE silage had lower (< 0·001) in vitro gas production and NDF digestibility (NDFD) than other silages. FAE silage had higher (< 0·01) in situNDFD than CON and NFAE + EFE silages. Inoculation of mixed small‐grain silage with NFAE‐producing inoculants combining EFE reduced NDFD.  相似文献   

10.
Species‐rich alpine grasslands with Nardus stricta are important communities for both animal production and environmental conservation in Europe. We selected two contrasting types of Nardus grasslands (mesic and wet) within a rangeland of northern Spain and measured annual above‐ground net primary productivity (ANPP), botanical components, forage utilization and their respective seasonal patterns, during a 5‐year period. We analysed their chemical properties and recorded soil moisture and temperature in order to construct models able to explain grassland productivity. Mean annual ANPP of mesic Nardus grassland was about half (216 g DM m?2 year?1; ±29·8 s.e.) that of the wet grassland (406 g DM m?2 year?1; ±54·3 s.e.), with significant intra‐ and interannual variability. Mesic grassland, with a more important contribution of forbs and legumes over graminoids in its botanical composition, was the preferred forage source of grazing livestock and showed better chemical properties in spring and early summer. In summer and autumn, wet grassland had a higher utilization owing to its ability to maintain high biomass production. This was partially explained by soil moisture, a limiting factor of mesic grassland productivity. Our results provide new and relevant information on key aspects of species‐rich alpine Nardus grasslands, potentially useful for the definition of management options for these habitats of priority conservation.  相似文献   

11.
Yield profile characteristics of tall fescue (Festuca arundinacea Schreb.), cv. Retu, were compared with those of meadow fescue (Festuca pratensis Huds.). The study was conducted in Finland and was based on official variety trial data recorded between 1980 and 1998 at 17 trial sites between latitudes 60° and 66°N. The crops were managed according to silage‐cutting regimes. The pattern of yield formation of the tall fescue cv. Retu differed significantly from that of meadow fescue cultivars, both within a growing season as well as in sward age. Tall fescue cv. Retu established slowly, and the dry‐matter (DM) yield from the first cut, made in the first year of harvest, was significantly lower than that for meadow fescue. In the second and third years, the DM yield from the first cut did not differ between tall fescue and meadow fescue. Tall fescue produced significantly higher DM yield as regrowth (second and third cuts) than meadow fescue. The sward age significantly affected total DM production. In first‐year swards, there were no significant differences in total DM yield between tall fescue and meadow fescue but, in the second‐ and third‐year swards, tall fescue produced significantly higher DM yields than meadow fescue. The difference in yield profile between tall fescue and meadow fescue was similar in all the environments included in the study. DM yield for the first cut (kg DM ha–1) for tall fescue cv. Retu, in comparison with meadow fescue cultivars, was 2495 vs. 3099 (P < 0·001), 3735 vs. 3741 (NS, P=0·94) and 3553 vs. 3468 (NS, P=0·30) in the first‐, second‐ and third‐year swards respectively. The respective DM regrowth yields (second plus third cut) were: 6059 vs. 5416 (P < 0·001); 5445 vs. 4221 (P < 0·001); and 5580 vs. 4113 (P < 0·001) in first‐, second‐ and third‐year swards. Total DM yields per season for tall fescue vs. meadow fescue were (kg DM ha–1) 8554 vs. 8515 (NS, P=0·69), 9180 vs. 7962 (P < 0·001) and 9133 vs. 7581 (P < 0·001) in first‐, second‐ and third‐year swards respectively. Over the three‐year sward rotation period, which is common in Finland, tall fescue produced on average 12% higher DM yield than meadow fescue. Both tall fescue and meadow fescue suffered little winter damage in Finnish conditions; the differences between cultivars of the two species were small. The results indicated that tall fescue cv. Retu is a productive and persistent forage species suited to Finnish growing conditions.  相似文献   

12.
The savannah of central Brazil occupies 208 million ha, of which about 54 million ha have been converted to cultivated pasture. The aim of this study was to provide the dynamics of evapotranspiration (ET) in a Brachiaria brizantha cultivated pasture in the Brazilian Savannah region at the beginning of the rainy season and determine biological and environmental factors that influence ET by using the decoupling approach. A meteorological station and an eddy covariance system were placed at the studied site. The above‐ground biomass production of the B. brizantha pasture responded rapidly to the onset of the rainy season. Leaf area index (LAI) increased from 0·4 to 1·1 between 15 November and 3 December, with a corresponding increase in live biomass. Average ET during the study period was 2·6 ± 0·9 mm. Daily ET was significantly correlated with maximum vapour pressure deficit and precipitation. The average of daytime decoupling factor obtained over 2 d without rain was 0·50 ± 0·06. The B. brizantha pasture deployed in this region showed an intermediate coupling which takes ET to be influenced by both atmospheric conditions and by the available radiation at the canopy.  相似文献   

13.
Vegetation indices are widely used as model inputs and for non‐destructive estimation of biomass and photosynthesis, but there have been few validation studies of the underlying relationships. To test their applicability on temperate fens and the impact of management intensity, we investigated the relationships between normalized difference vegetation index (NDVI), leaf area index (LAI), brown and green above‐ground biomass and photosynthesis potential (PP). Only the linear relationship between NDVI and PP was management independent (R2 = 0·53). LAI to PP was described by a site‐specific and negative logarithmic function (R2 = 0·07–0·68). The hyperbolic relationship of LAI versus NDVI showed a high residual standard error (s.e.) of 1·71–1·84 and differed between extensive and intensive meadows. Biomass and LAI correlated poorly (R2 = 0·30), with high species‐specific variability. Intensive meadows had a higher ratio of LAI to biomass than extensive grasslands. The fraction of green to total biomass versus NDVI showed considerable noise (s.e. = 0·13). These relationships were relatively weak compared with results from other ecosystems. A likely explanation could be the high amount of standing litter, which was unevenly distributed within the vegetation canopy depending on the season and on the timing of cutting events. Our results show there is high uncertainty in the application of the relationships on temperate fen meadows. For reliable estimations, management intensity needs to be taken into account and several direct measurements throughout the year are required for site‐specific correction of the relationships, especially under extensive management. Using NDVI instead of LAI could reduce uncertainty in photosynthesis models.  相似文献   

14.
The nutritive value of pasture is an important determinant of the performance of grazing livestock. Proximal sensing of in situ pasture is a potential technique for rapid prediction of nutritive value. In this study, multispectral radiometry was used to obtain pasture spectral reflectance during different seasons (autumn, spring and summer) in 2009–2010 from commercial farms throughout New Zealand. The analytical data set (n = 420) was analysed to develop season‐specific and combined models for predicting pasture nutritive‐value parameters. The predicted parameters included crude protein (CP), acid detergent fibre (ADF), neutral detergent fibre (NDF), ash, lignin, lipid, metabolizable energy (ME) and organic matter digestibility (OMD) using a partial least squares regression analysis. The calibration models were tested by internal and external validation. The results suggested that the global models can predict the pasture nutritive value parameters (CP, ADF, NDF, lignin, ME and OMD) with moderate accuracy (0·64 ≤ r2 ≤ 0·70) while ash and lipid are poorly predicted (0·33 ≤ r2 ≤ 0·40). However, the season‐specific models improved the prediction accuracy, in autumn (0·73 ≤ r2 ≤ 0·83) for CP, ADF, NDF and lignin; in spring (0·61 ≤ r2 ≤ 0·78) for CP and ash; in summer (0·77 ≤ r2 ≤ 0·80) for CP and ash, indicating a seasonal impact on spectral response.  相似文献   

15.
The objective of this experiment was to evaluate the Fieldscout CM 1000 NDVI and Yara N‐Tester as easy‐to‐use and cost‐effective tools for predicting foliar chlorophylls (a, b and total) and crude protein (CP) concentrations in herbage from three tropical grass species. Optical chlorophyll measurements were taken at three stages (4, 8 and 12 weeks) of regrowth maturity in Guinea grass (Panicum maximum) and Mulato II (Brachiaria hybrid) and at 6 and 12 weeks maturity in Paspalum spp (Paspalum atratum). Grass samples were harvested subsequent to optical measurements for laboratory analysis to determine CP and solvent‐extractable chlorophylls (a, b and total) concentrations. Optical chlorophyll measurements and CP concentrations were highly correlated (Yara N‐Tester: r2 = 0·77–0·89; Fieldscout CM 1000 NDVI: r2 = 0·52–0·84). Crude protein prediction models from the Yara N‐Tester and Fieldscout CM 1000 NDVI accounted for 70–89% and 44–73% CP variability, respectively, in Mulato II and Guinea grass. The Yara N‐tester produced more accurate and reliable CP estimates based on very high concordance correlation coefficient [CCC (0·73–0·91)] and low rMSPE, mean and regression bias. It is concluded that the Yara N‐Tester produces more accurate and reliable CP estimates of tropical pastures.  相似文献   

16.
The experiment was conducted in 2005–2007 to evaluate weight performance, blood parameters associated with forage nutrient‐use and anaemia from gastrointestinal nematode (GIN) infection, and faecal egg count (FEC) patterns of meat‐goat kids finished on alfalfa (Medicago sativa L.; ALF); red clover/grass mixture (Trifolium pratense L.; RCG); and orchardgrass (Dactylis glomerata L; OGR) pastures. Forage mass, crude protein (CP) and total digestible nutrients (TDN) displayed complex interactions between treatment and time (< 0·001) across the grazing seasons. Final body weight was greater for goats finished on ALF and RCG than on OGR, except in 2006 when ALF was greater than RCG or OGR. The TDN/CP ratios in forages and blood urea nitrogen concentrations in grazing goats were highly correlated (r = 0·99; = 0·02) and suggested that animals were wasting forage protein. Faecal egg count was variable over the grazing season each year (date and treatment × date interaction; < 0·001), but in general, FEC indicated that goat kids grazing ALF were less affected by GIN than kids grazing RCG or OGR. Research is needed to determine whether strategic energy supplementation would improve protein‐use efficiency and resilience to parasite infection when finishing meat goats on pastures managed for high forage nutritive value.  相似文献   

17.
Pasture herbage is a major source of minerals for livestock in pasture‐based production systems. Herbage mineral concentrations vary throughout the growing season, whereas mineral supplementation to livestock is often constant. The study objectives were to analyse the seasonal variation in herbage mineral concentrations in tall fescue [Schedonorus phoenix (Scop.) Holub]‐based pasture with regard to beef cattle mineral requirements and to create a statistical model to predict variation in herbage mineral concentrations across the growing season. Pasture herbage was analysed from 12 grazing systems in Virginia to determine its mineral concentration from April to October of 2008–2012. The pasture herbage, grown without fertilization, contained adequate macronutrient concentrations to meet the requirements of dry beef cows through the growing season and the requirements of lactating beef cows in April. Phosphorus supplementation appeared to be unnecessary for dry beef cows given adequate concentrations in pasture herbage. A model using month of harvest, soil moisture and relative humidity explained 75% of the variation in an aggregated mineral factor. The 90% prediction intervals indicated that N, P, K, S and Cu concentrations could be predicted within 1·35, 0·08, 0·80 and 0·07% and 3·83 mg kg?1 respectively. Prediction of herbage mineral concentrations could help to improve livestock health, reduce costs to producers and limit nutrient losses to the environment.  相似文献   

18.
Genetic diversity was investigated for forty populations of ten Elymus species from the Tibetan and Inner Mongolian plateaus of China using allozyme and micro‐satellite markers. The two assays differed in the amount of polymorphism detected. Micro‐satellites detected the higher amounts of polymorphism. For allozymes and micro‐satellite markers, between populations of each species, the proportion of polymorphic loci, heterozygosity and Shannon's Information index ranged from 0·1667 to 0·833, and 0·455 to 1·00, respectively, 0·0800 to 0·2528 and 0·1622 to 0·3619, respectively, and 0·1173 to 0·3769 and 0·2248 to 0·5318 respectively. As for gene flow at the species and population levels, limited gene flow was found between populations within species and between species. From a geographical standpoint, samples from different regions showed a range of values. Populations from the Tibetan Plateau of China had higher genetic variation than from the Inner Mongolian plateau both using allozyme and micro‐satellite markers.  相似文献   

19.
The productivity and nutritive value of some cultivated perennial grasses, Bromus inermis (B), Elymus sibricus (S), E. nutans (N), Agropyron cristatum (A), Poa crymophila (P) and mixtures B + N, S + A, B + S + A, S + B + N, N + S + A, B + S + N + A, B + N + A + P, B + S +A + P and S + N + A + P, in the alpine region of the Tibetan Plateau were investigated. Elymus nutans and E. sibricus and the mixtures, B + S + N + A, B + S +A + P and S + N + A + P, were most productive with yields of dry matter (DM) of between 11 000 and 14 000 kg?1 of biomass annually in the second harvest year. Acid‐detergent fibre (ADF) concentrations increased (P < 0·05), and crude protein (CP) concentrations and in sacco DM degradability values decreased (P < 0·05) with the maturity of the cultivated grasses. Swards, based on these species and mixtures, have the potential to be the main choices for cultivation in the Tibetan Plateau because they produce more nutrients than other grass species and mixtures. Late August (flowering stage of dominant grasses) is the optimum time for harvesting as the yield of rumen‐degradable CP is highest that of DM relatively high and the DM degradability is satisfactory.  相似文献   

20.
There are potential agronomic and environmental benefits from incorporating warm‐season (C4) grasses into temperate pasture systems, usually dominated by cool‐season (C3) grasses, but there is a lack of information on how frequency and height of defoliation affects C4 grasses. Three greenhouse experiments were conducted under (i) spring, (ii) summer and (iii) spring + summer clipping regimes. In each experiment, the effects of clipping frequency (weekly and monthly) and clipping height (clipped to 5 and 10 cm) were determined on above‐ and below‐ground net primary production (ANPP and BNPP) and total and seasonal dry matter (DM) yield for Andropogon gerardii Vitman (big bluestem, C4 grass) and Bromus inermis Leyss (smooth brome, C3 grass). Six replicates per treatment were used. In all experiments, ANPP and BNPP of smooth brome was greater than that of big bluestem although during late summer months big bluestem had higher DM yields of herbage than smooth brome. There were different effects of frequency and height of clipping for both species on two similar measurements: total annual DM yield and ANPP, indicating that the ability to generalize about the effects of defoliation from ecological and agronomic grassland standpoints is questionable. Clipping effects on ANPP and BNPP were different for summer‐clipped pots than for spring, and spring + summer‐clipped pots, indicating that management could be tailored to meet specific agronomic or conservation goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号