首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wang DZ 《Marine drugs》2008,6(2):349-371
Dinoflagellates are not only important marine primary producers and grazers, but also the major causative agents of harmful algal blooms. It has been reported that many dinoflagellate species can produce various natural toxins. These toxins can be extremely toxic and many of them are effective at far lower dosages than conventional chemical agents. Consumption of seafood contaminated by algal toxins results in various seafood poisoning syndromes: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), diarrheic shellfish poisoning (DSP), ciguatera fish poisoning (CFP) and azaspiracid shellfish poisoning (ASP). Most of these poisonings are caused by neurotoxins which present themselves with highly specific effects on the nervous system of animals, including humans, by interfering with nerve impulse transmission. Neurotoxins are a varied group of compounds, both chemically and pharmacologically. They vary in both chemical structure and mechanism of action, and produce very distinct biological effects, which provides a potential application of these toxins in pharmacology and toxicology. This review summarizes the origin, structure and clinical symptoms of PSP, NSP, CFP, AZP, yessotoxin and palytoxin produced by marine dinoflagellates, as well as their molecular mechanisms of action on voltage-gated ion channels.  相似文献   

2.
Saxitoxin (STX) and its 57 analogs are a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). PSTs are the causative agents of paralytic shellfish poisoning (PSP) and are mostly associated with marine dinoflagellates (eukaryotes) and freshwater cyanobacteria (prokaryotes), which form extensive blooms around the world. PST producing dinoflagellates belong to the genera Alexandrium, Gymnodinium and Pyrodinium whilst production has been identified in several cyanobacterial genera including Anabaena, Cylindrospermopsis, Aphanizomenon Planktothrix and Lyngbya. STX and its analogs can be structurally classified into several classes such as non-sulfated, mono-sulfated, di-sulfated, decarbamoylated and the recently discovered hydrophobic analogs—each with varying levels of toxicity. Biotransformation of the PSTs into other PST analogs has been identified within marine invertebrates, humans and bacteria. An improved understanding of PST transformation into less toxic analogs and degradation, both chemically or enzymatically, will be important for the development of methods for the detoxification of contaminated water supplies and of shellfish destined for consumption. Some PSTs also have demonstrated pharmaceutical potential as a long-term anesthetic in the treatment of anal fissures and for chronic tension-type headache. The recent elucidation of the saxitoxin biosynthetic gene cluster in cyanobacteria and the identification of new PST analogs will present opportunities to further explore the pharmaceutical potential of these intriguing alkaloids.  相似文献   

3.
Traditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms. In order to fully evaluate the risks of harmful algal bloom toxins in the marine food web, it is necessary to understand all potential routes of exposure. In the present study, extracellular and intracellular PST levels were measured in field seawater samples (collected weekly from June to October 2004–2007) and in Alexandrium spp. culture samples isolated from Sequim Bay, Washington. Measurable levels of intra- and extra-cellular toxins were detected in both field and culture samples via receptor binding assay (RBA) and an enzyme-linked immunosorbent assay (ELISA). Characterization of the PST toxin profile in the Sequim Bay isolates by pre-column oxidation and HPLC-fluorescence detection revealed that gonyautoxin 1 and 4 made up 65 ± 9.7 % of the total PSTs present. Collectively, these data confirm that extracellular PSTs are present during blooms of Alexandrium spp. in the Sequim Bay region.  相似文献   

4.
Marine pelagic diazotrophic cyanobacteria of the genus Trichodesmium (Oscillatoriales) are widespread throughout the tropics and subtropics, and are particularly common in the waters of New Caledonia. Blooms of Trichodesmium are suspected to be a potential source of toxins in the ciguatera food chain and were previously reported to contain several types of paralyzing toxins. The toxicity of water-soluble extracts of Trichodesmium spp. were analyzed by mouse bioassay and Neuroblastoma assay and their toxic compounds characterized using liquid chromatography coupled with tandem mass spectrometry techniques. Here, we report the first identification of palytoxin and one of its derivatives, 42-hydroxy-palytoxin, in field samples of Trichodesmium collected in the New Caledonian lagoon. The possible role played by Trichodesmium blooms in the development of clupeotoxism, this human intoxication following the ingestion of plankton-eating fish and classically associated with Ostreopsis blooms, is also discussed.  相似文献   

5.
Dinoflagellates of the genus Ostreopsis are known to cause (often fatal) food poisoning in tropical coastal areas following the accumulation of palytoxin (PLTX) and/or its analogues (PLTX group) in crabs, sea urchins or fish. Ostreopsis spp. occurrence is presently increasing in the northern to north western Mediterranean Sea (Italy, Spain, Greece and France), probably in response to climate change. In France, Ostreopsis. cf. ovata has been associated with toxic events during summer 2006, at Morgiret, off the coast of Marseille, and a specific monitoring has been designed and implemented since 2007. Results from 2008 and 2009 showed that there is a real danger of human poisoning, as these demonstrated bioaccumulation of the PLTX group (PLTX and ovatoxin-a) in both filter-feeding bivalve molluscs (mussels) and herbivorous echinoderms (sea urchins). The total content accumulated in urchins reached 450 μg PLTX eq/kg total flesh (summer 2008). In mussels, the maximum was 230 μg eq PLTX/kg (summer 2009) compared with a maximum of 360 μg found in sea urchins during the same period at the same site. This publication brings together scientific knowledge obtained about the summer development of Ostreopsis spp. in France during 2007, 2008 and 2009.  相似文献   

6.
7.
Evidence for shellfish toxin illness in British Columbia (BC) on the west coast of Canada can be traced back to 1793. For over two hundred years, domestically acquired bivalve shellfish toxin illnesses in BC were solely ascribed to paralytic shellfish poisonings caused by algal blooms of Alexandrium. This changed in 2011, when BC experienced its first outbreak of diarrhetic shellfish poisoning (DSP). As a result of this outbreak, Canada’s first DSP symposium was held in November, 2012, in North Vancouver, BC. Three of the objectives of the symposium were to provide a forum to educate key stakeholders on this emerging issue, to identify research and surveillance priorities and to create a DSP network. The purpose of this paper is to review what is known about shellfish poisoning in BC and to describe a novel volunteer network that arose following the symposium. The newly formed network was designed for industry shellfish growers to identify harmful algae bloom events, so that they may take actions to mitigate the effects of harmful blooms on shellfish morbidity. The network will also inform public health and regulatory stakeholders of potentially emerging issues in shellfish growing areas.  相似文献   

8.
Pacific oysters (Crassostrea gigas) may bio-accumulate high levels of paralytic shellfish toxins (PST) during harmful algal blooms of the genus Alexandrium. These blooms regularly occur in coastal waters, affecting oyster health and marketability. The aim of our study was to analyse the PST-sensitivity of nerves of Pacific oysters in relation with toxin bio-accumulation. The results show that C. gigas nerves have micromolar range of saxitoxin (STX) sensitivity, thus providing intermediate STX sensitivity compared to other bivalve species. However, theses nerves were much less sensitive to tetrodotoxin. The STX-sensitivity of compound nerve action potential (CNAP) recorded from oysters experimentally fed with Alexandrium minutum (toxic-alga-exposed oysters), or Tisochrysis lutea, a non-toxic microalga (control oysters), revealed that oysters could be separated into STX-resistant and STX-sensitive categories, regardless of the diet. Moreover, the percentage of toxin-sensitive nerves was lower, and the STX concentration necessary to inhibit 50% of CNAP higher, in recently toxic-alga-exposed oysters than in control bivalves. However, no obvious correlation was observed between nerve sensitivity to STX and the STX content in oyster digestive glands. None of the nerves isolated from wild and farmed oysters was detected to be sensitive to tetrodotoxin. In conclusion, this study highlights the good potential of cerebrovisceral nerves of Pacific oysters for electrophysiological and pharmacological studies. In addition, this study shows, for the first time, that C. gigas nerves have micromolar range of STX sensitivity. The STX sensitivity decreases, at least temporary, upon recent oyster exposure to dinoflagellates producing PST under natural, but not experimental environment.  相似文献   

9.
Voltage-gated sodium channels (VGSCs) play a central role in the generation and propagation of action potentials in excitable neurons and other cells and are targeted by commonly used local anesthetics, antiarrhythmics, and anticonvulsants. They are also common targets of neurotoxins including shellfish toxins. Shellfish toxins are a variety of toxic secondary metabolites produced by prokaryotic cyanobacteria and eukaryotic dinoflagellates in both marine and fresh water systems, which can accumulate in marine animals via the food chain. Consumption of shellfish toxin-contaminated seafood may result in potentially fatal human shellfish poisoning. This article provides an overview of the structure, bioactivity, and pharmacology of shellfish toxins that act on VGSCs, along with a brief discussion on their pharmaceutical potential for pain management.  相似文献   

10.
Laboratory experiments were designed to study the toxin content and profile of the Alexandrium catenella strain ACT03 (isolated from Thau Lagoon, French Mediterranean) in response to abiotic environmental factors under nutrient-replete conditions. This dinoflagellate can produce various paralytic shellfish toxins with concentrations ranging from 2.9 to 50.3 fmol/cell. The toxin profile was characterized by carbamate toxins (GTX3, GTX4 and GTX5) and N-sulfocarbamoyl toxins (C1, C2, C3 and C4). C2 dominated at 12–18 °C, but only for salinities ranging from 10 to 25 psu, whereas GTX5 became dominant at temperatures ranging from 21 to 30 °C at almost all salinities. There was no significant variation in the cellular toxin amount from 18 °C to 27 °C for salinities ranging between 30 and 40 psu. At salinities of 10 to 25 psu, the toxin concentrations always remained below 20 fmol/cell. Toxin content was stable for irradiance ranging from 10 to 70 μmol photons/m2/s then slightly increased. Overall, the toxin profile was more stable than the toxin content (fmol/cell), except for temperature and/or salinity values different from those recorded during Alexandrium blooms in Thau Lagoon.  相似文献   

11.
12.
Lipophilic marine toxins pose a serious threat for consumers and an enormous economic problem for shellfish producers. Synergistic interaction among toxins may play an important role in the toxicity of shellfish and consequently in human intoxications. In order to study the toxic profile of molluscs, sampled during toxic episodes occurring in different locations in Galicia in 2014, shellfish were analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS), the official method for the detection of lipophilic toxins. The performance of this procedure was demonstrated to be fit for purpose and was validated in house following European guidelines. The vast majority of toxins present in shellfish belonged to the okadaic acid (OA) group and some samples from a particular area contained yessotoxin (YTX). Since these toxins occur very often with other lipophilic toxins, we evaluated the potential interactions among them. A human neuroblastoma cell line was used to study the possible synergies of OA with other lipophilic toxins. Results show that combination of OA with dinophysistoxin 2 (DTX2) or YTX enhances the toxicity triggered by OA, decreasing cell viability and cell proliferation, depending on the toxin concentration and incubation time. The effects of other lipophilic toxins as 13-desmethyl Spirolide C were also evaluated in vitro.  相似文献   

13.
In the context of the French Phytoplankton and Phycotoxins Monitoring Network (REPHY) programme, shellfish samples were harvested from different locations where harmful algae blooms were known to have occurred. For all shellfish samples found positive by the mouse bioassay for diarrhetic shellfish poisoning (DSP) toxins, liquid chromatography (LC) coupled with mass spectrometry (MS) was used to search for the following lipophilic toxins: okadaic acid (OA), dinophysistoxins (DTXs), pectenotoxins (PTXs), azaspiracids (AZAs), yessotoxins (YTXs), spirolides (SPXs) and gymnodimines (GYMs). In order to investigate the presence of acyl-OAs and/or acyl-DTX-1,-2 (DTX-3), alkaline hydrolysis was performed on all samples, and LC/MS analyses were carried out on the samples before and after hydrolysis. The results revealed different lipophilic toxin profiles as a function of the shellfish sampling location. The primary finding was that all of the samples contained OA and acyl-OA. In addition, other lipophilic toxins were found in shellfish samples: DTX-2, acyl-DTX-2 and SPXs (SPX-A, SPX-desMeC) on the Atlantic coast (Southern Brittany, Arcachon), and pectenotoxins (PTX-2, PTX-2-seco-acid and 7-epi-PTX-2-seco-acid) on the Mediterranean coast (Thau lagoon, the island of Corsica). This paper reports on the first detection of PTX-2, SPX-A and their derivatives in French shellfish.  相似文献   

14.
With the move away from use of mouse bioassay (MBA) to test bivalve mollusc shellfish for paralytic shellfish poisoning (PSP) toxins, countries around the world are having to adopt non-animal-based alternatives that fulfil ethical and legal requirements. Various assays have been developed which have been subjected to single-laboratory and multi-laboratory validation studies, gaining acceptance as official methods of analysis and approval for use in some countries as official control testing methods. The majority of validation studies conducted to date do not, however, incorporate shellfish species sourced from Latin America. Consequently, this study sought to investigate the performance of five alternative PSP testing methods together with the MBA, comparing the PSP toxin data generated both qualitatively and quantitatively. The methods included a receptor binding assay (RBA), two liquid chromatography with fluorescence detection (LC-FLD) methods including both pre-column and post-column oxidation, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and a commercial lateral flow assay (LFA) from Scotia. A total of three hundred and forty-nine shellfish samples from Argentina, Mexico, Chile and Uruguay were assessed. For the majority of samples, qualitative results compared well between methods. Good statistical correlations were demonstrated between the majority of quantitative results, with a notably excellent correlation between the current EU reference method using pre-column oxidation LC-FLD and LC-MS/MS. The LFA showed great potential for qualitative determination of PSP toxins, although the findings of high numbers of false-positive results and two false negatives highlighted that some caution is still needed when interpreting results. This study demonstrated that effective replacement methods are available for countries that no longer wish to use the MBA, but highlighted the importance of comparing toxin data from the replacement method using local shellfish species of concern before implementing new methods in official control testing programs.  相似文献   

15.
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world’s major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries’ demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.  相似文献   

16.
Okadaic acid (OA) group toxins may accumulate in shellfish and can result in diarrhetic shellfish poisoning when consumed by humans, and are therefore regulated. Purified toxins are required for the production of certified reference materials used to accurately quantitate toxin levels in shellfish and water samples, and for other research purposes. An improved procedure was developed for the isolation of dinophysistoxin 2 (DTX2) from shellfish (M. edulis), reducing the number of purification steps from eight to five, thereby increasing recoveries to ~68%, compared to ~40% in a previously reported method, and a purity of >95%. Cell densities and toxin production were monitored in cultures of Prorocentrum lima, that produced OA, DTX1, and their esters, over ~1.5 years with maximum cell densities of ~70,000 cells mL−1 observed. Toxin accumulation progressively increased over the study period, to ~0.7 and 2.1 mg L−1 of OA and DTX1 (including their esters), respectively, providing information on appropriate harvesting times. A procedure for the purification of OA and DTX1 from the harvested biomass was developed employing four purification steps, with recoveries of ~76% and purities of >95% being achieved. Purities were confirmed by LC-HRMS, LC-UV, and NMR spectroscopy. Additional stability observations led to a better understanding of the chemistry of these toxins.  相似文献   

17.
Numerous species of marine dinoflagellates synthesize the potent environmental neurotoxic alkaloid, saxitoxin, the agent of the human illness, paralytic shellfish poisoning. In addition, certain freshwater species of cyanobacteria also synthesize the same toxic compound, with the biosynthetic pathway and genes responsible being recently reported. Three theories have been postulated to explain the origin of saxitoxin in dinoflagellates: The production of saxitoxin by co-cultured bacteria rather than the dinoflagellates themselves, convergent evolution within both dinoflagellates and bacteria and horizontal gene transfer between dinoflagellates and bacteria. The discovery of cyanobacterial saxitoxin homologs in dinoflagellates has enabled us for the first time to evaluate these theories. Here, we review the distribution of saxitoxin within the dinoflagellates and our knowledge of its genetic basis to determine the likely evolutionary origins of this potent neurotoxin.  相似文献   

18.
Cyanobacterial blooms are a major and growing problem for freshwater ecosystems worldwide that increasingly concerns public health, with an average of 60% of blooms known to be toxic. The most studied cyanobacterial toxins belong to a family of cyclic heptapeptide hepatotoxins, called microcystins. The microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cell damage following cellular uptake via organic anion-transporting proteins (OATP). Their intracellular biologic effects presumably involve inhibition of catalytic subunits of protein phosphatases (PP1 and PP2A) and glutathione depletion. The microcystins produced by cyanobacteria pose a serious problem to human health, if they contaminate drinking water or food. These toxins are collectively responsible for human fatalities, as well as continued and widespread poisoning of wild and domestic animals. Although intoxications of aquatic organisms by microcystins have been widely documented for freshwater ecosystems, such poisonings in marine environments have only occasionally been reported. Moreover, these poisonings have been attributed to freshwater cyanobacterial species invading seas of lower salinity (e.g., the Baltic) or to the discharge of freshwater microcystins into the ocean. However, recent data suggest that microcystins are also being produced in the oceans by a number of cosmopolitan marine species, so that Hepatotoxic Seafood Poisoning (HSP) is increasingly recognized as a major health risk that follows consumption of contaminated seafood.  相似文献   

19.
From June 2006 to January 2007 passive samplers (solid phase adsorbing toxin tracking, SPATT) were tested as a monitoring tool with weekly monitoring of phytoplankton and toxin content (liquid chromatography–mass spectrometry, LC-MS) in picked cells of Dinophysis and plankton concentrates. Successive blooms of Dinophysis acuminata, D. acuta and D. caudata in 2006 caused a long mussel harvesting closure (4.5 months) in the Galician Rías (NW Spain) and a record (up to 9246 ng·g resin-week−1) accumulation of toxins in SPATT discs. Best fit of a toxin accumulation model was between toxin accumulation in SPATT and the product of cell densities by a constant value, for each species of Dinophysis, of toxin content (average) in picked cells. Detection of Dinophysis populations provided earlier warning of oncoming diarrhetic shellfish poisoning (DSP) outbreaks than the SPATT, which at times overestimated the expected toxin levels in shellfish because: (i) SPATT accumulated toxins did not include biotransformation and depuration loss terms and (ii) accumulation of toxins not available to mussels continued for weeks after Dinophysis cells were undetectable and mussels were toxin-free. SPATT may be a valuable environmental monitoring and research tool for toxin dynamics, in particular in areas with no aquaculture, but does not provide a practical gain for early warning of DSP outbreaks.  相似文献   

20.
Here we summarize the current knowledge on the transfer and accumulation of harmful algal bloom (HAB)-related toxins in cephalopods (octopods, cuttlefishes and squids). These mollusks have been reported to accumulate several HAB-toxins, namely domoic acid (DA, and its isomers), saxitoxin (and its derivatives) and palytoxin (and palytoxin-like compounds) and, therefore, act as HAB-toxin vectors in marine food webs. Coastal octopods and cuttlefishes store considerably high levels of DA (amnesic shellfish toxin) in several tissues, but mainly in the digestive gland (DG)—the primary site of digestive absorption and intracellular digestion. Studies on the sub-cellular partitioning of DA in the soluble and insoluble fractions showed that nearly all DA (92.6%) is found in the cytosol. This favors the trophic transfer of the toxins since cytosolic substances can be absorbed by predators with greater efficiency. The available information on the accumulation and tissue distribution of DA in squids (e.g., in stranded Humboldt squids, Dosidicus gigas) is scarcer than in other cephalopod groups. Regarding paralytic shellfish toxins (PSTs), these organisms accumulate them at the greatest extent in DG >> kidneys > stomach > branchial hearts > posterior salivary glands > gills. Palytoxins are among the most toxic molecules identified and stranded octopods revealed high contamination levels, with ovatoxin (a palytoxin analogue) reaching 971 μg kg−1 and palytoxin reaching 115 μg kg−1 (the regulatory limit for PlTXs is 30 μg kg−1 in shellfish). Although the impacts of HAB-toxins in cephalopod physiology are not as well understood as in fish species, similar effects are expected since they possess a complex nervous system and highly developed brain comparable to that of the vertebrates. Compared to bivalves, cephalopods represent a lower risk of shellfish poisoning in humans, since they are usually consumed eviscerated, with exception of traditional dishes from the Mediterranean area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号