首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was conducted to assess the effects of grazing a perennial ryegrass (Lolium perenne) / white clover (Trifolium repens) sward by sheep or goats on sward composition and structure and on subsequent diet selection, herbage intake and liveweight gain by weaned lambs. From mid-May to late July (phase 1), ewes with twin lambs or yearling Scottish Cashmere goats grazed continuously swards maintained at 4- or 8-cm sward surface height. From mid-August to the end of September (phase 2), weaned lambs continuously grazed the same swards maintained at 4 cm (treatment 4–4) or at 8 cm (treatment 8–8) or which had been allowed to increase from 4 cm to 8 cm (treatment 4–8). By the end of phase 1, swards grazed by goats had higher proportions of white clover in the whole sward (0.377 vs. 0.181; s.e.d 0.0382; P < 0.001) than those grazed by sheep, irrespective of sward height treatment. This resulted in phase 2 in a higher proportion of white clover selected ( P <0.001), higher herbage intakes ( P < 0.001) and higher liveweight gains ( P < 0.001) by weaned lambs grazing swards previously grazed by goats compared with those previously grazed by sheep. There were higher proportions of clover present in the swards from treatment 4–8 at the beginning of phase 2 compared with the other sward height treatments and consequently weaned lambs had, on this treatment, a higher proportion of clover in their diet ( P <0.001), higher herbage intakes ( P <0001) and higher liveweight gains ( P <0.001). It is concluded that goats can be integrated into sequential grazing systems with sheep on grass/clover swards and this can result in an increase in the proportion of clover in swards and increased sheep performance.  相似文献   

2.
The implications for UK upland sheep systems of reducing nitrogen fertilizer application to perennial ryegrass/white clover swards were studied over 3 years. Sward height (3·5–5·5 cm) was controlled for ewes with lambs until weaning using surplus pasture areas for silage; thereafter, ewes and weaned lambs were grazed on separate areas, and sward height was controlled by adjusting the size of the areas grazed and using surplus pasture areas for silage if necessary. Combinations from three stocking rates [10, 6 and 4 ewes ha−1 on the total area (grazed and ensiled)] and four nitrogen fertilizer levels (150, 100, 50 and 0 kg ha−1) provided six treatments that were replicated three times. Average white clover content was negatively correlated with level of nitrogen fertilizer. The proportion of white clover in the swards increased over the duration of the experiment. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain on all treatments. All treatments provided adequate winter fodder as silage. It is concluded that the application of nitrogen fertilizer can be reduced or removed from upland sheep pastures without compromising individual animal performance provided that white clover content and sward height are maintained. Resting pastures from grazing by changing ensiled and grazed areas from year to year sustained white clover content over a 3-year period.  相似文献   

3.
Changes in the crude protein (CP) concentration of white clover and perennial ryegrass herbage from a mixed sward were determined on six sampling dates from May to October in each of 2 years. The swards were grown without fertilizer N in an organic farming system and continuously grazed by dairy cows during the grazing season. The annual mean contents of white clover in the dry matter (DM) of the sward were 272·3 and 307·0 g kg−1 in Years 1 and 2. The mean CP concentrations of the white clover and perennial ryegrass herbage were 251·6 and 151·9 g kg−1 DM in Year 1 and 271·9 and 174·0 g kg−1 DM in Year 2 respectively. The CP concentration of the white clover increased significantly during the grazing season from 220·0 to 284·1 g kg−1 DM in Year 1 and from 269·0 to 315·5 g kg−1 DM in Year 2. In the perennial ryegrass herbage the CP concentration increased from 112·2 to 172·6 g kg−1 DM in Year 1 and from 142·7 to 239·5 g kg−1 DM in Year 2. The rate of increase during the season in the CP concentration of the perennial ryegrass herbage was similar to the rate of increase recorded in the white clover herbage.  相似文献   

4.
Swards of Phalaris aquatica-Trifolium subterraneum were subjected to four defoliation treatments—zero, low (11 sheep ha−1) and high (22 sheep ha−1) stocking rates, and weekly cutting. At high stocking rate the annual grass Hordeum leporinum dominated while clover was dominant at low and zero stocking rates. Weekly cutting suppressed species other than clover and so failed to simulate grazing.
There were similarities in net herbage production between zero and lightly grazed swards and between heavily grazed and repeatedly cut swards. Net herbage production decreased in the order undisturbed sward < lightly grazed sward < heavily grazed sward < repeatedly cut sward.
When sheep grazed swards where herbage mass was low their daily consumption of herbage, and therefore liveweight change, depended on their recent grazing experience. Sheep accustomed to swards where herbage mass was low ate more because they grazed for much longer each day than unaccustomed sheep, although they selected a diet of similar digestibility.  相似文献   

5.
Continuous stocking with sheep at high stocking rates may reduce the content of white clover (Trifolium repens) in mixed grass-clover swards. The present experiment was carried out to investigate the effects on sward production and composition of resting a perennial ryegrass (Lolium perenne)- white clover sward from grazing and taking a cut for conservation. Swards were set-stocked with 25 and 45 yearling wethers ha?1 either throughout a grazing season, or on swards that were rested for a 6-week period and then cut in early, mid- or late season. In an additional treatment swards were cut only and not grazed. Net herbage accumulation was higher at the lower of the two stocking rates and was marginally increased by the inclusion of a rest period at the high but not the low stocking rate. Clover content was higher at the lower stocking rate and was increased by the inclusion of a rest period by 30% at 45 sheep ha?1and by 11% at 25 sheep ha?1 The effect was most marked at the end of the rest period before cutting. When rested from grazing the tiller density of ryegrass decreased although tiller length increased, and clover stolon length, petiole length and leaflet diameter increased though leaf and node number per unit length of stolon decreased; the reverse applied when the sward was returned to grazing after cutting. At the high stocking rate, rest periods in mid-season or later maintained the greatest clover content and marginally increased total net herbage accumulation. At the low stocking rate the timing of the rest period had no significant effect on total net herbage accumulation or on clover content. These results show that the combination of grazing and cutting is of benefit where the stocking rate is high enough to threaten clover survival and limit sheep performance. However, at such a stocking rate, feed reserves are at a minimum throughout the grazing season and so opportunities for resting the sward are probably low.  相似文献   

6.
The effects on herbage intake and ingestive behaviour by ewes and weaned lambs of grazing aftermath and previously continuously grazed perennial ryegrass-dominant swards at two different sward heights (4 and 8 cm) in the autumn were studied. The experiment had a factorial design, was replicated twice and was conducted from mid-August to early November. There were six ewes and six weaned lambs per treatment plot and measurements were made in three periods. The effects of previous treatment of swards on herbage intake by ewes and weaned lambs were greatest in August, with herbage intakes being significantly lower on the aftermath swards. Differences disappeared by October. The lowest herbage intakes were obtained on the aftermath sward at the lowest sward height, with ewes being more affected under those conditions than lambs. Grazing time and biting rate increased with a reduction in sward height and were higher on aftermath swards. However, these increases did not compensate for reductions in estimated bite size on the aftermath swards. It was concluded that the effects of the sward management treatments in the summer on tissue turnover of the sward and herbage intake in the autumn were considerable in the early part of the autumn but had largely disappeared by the end of the autumn period.  相似文献   

7.
In three successive years, sward height was maintained at 3, 5, 7 or 9 cm on grass swards receiving a total of 300 kg N ha?1 in six equal monthly dressings from April, and on grass/clover swards receiving 50 kg N ha?1 as a single dressing in early spring. From turnout in April until weaning in July, 64 ewes and their lambs (mean litter size 1·5) were continuously grazed at the four sward surface heights on the two sward types. White clover content of grass/clover swards remained low throughout the experiment ranging from 0·2 to 7·4% of the herbage mass. During the first two years, lamb gains averaged over sward types were 204, 260, 285 and 308 g d?1 up to weaning, while in the third year gains were 238, 296, 296 and 260 g d?1 on 3, 5, 7 and 9 cm swards respectively. Ewes lost live weight on 3 cm swards but apart from this sward height had little effect on performance. During the autumn, weaned lambs gained — 27, 87, 147 and 167 g d?1 on 3, 5, 7 and 9 cm swards respectively. Sward type had only a small effect on the performance of lambs up to weaning but in the autumn, mean gains of weaned lambs were lower on grass/N swards (73 g d?1) than on grass/clover swards (115 g d?1). Relative to 3 cm swards, carrying capacities of 5, 7 and 9 cm swards were 0·76, 0·57 and 0·52 respectively from turnout to weaning and 0·66, 0·52 and 0·44 respectively during autumn. Grass/clover swards carried 0·67 of the ewes carried by grass/N swards from turnout to weaning and 0·51 of the live weight carried by grass/N swards during autumn. The reaction of the two sward types to sward height did not appear to differ but in the third year there was evidence of a reduction in white clover content when swards were grazed at 9 cm. The data suggest that lamb growth rates will increase as sward height increases up to 9 cm and the evidence for this was stronger with weaned lambs in autumn than with suckling lambs in spring.  相似文献   

8.
Two experiments are described in which the effect of grazing or defoliating mixed swards at different times over winter and spring on clover content and development was investigated. In the first experiment swards were grazed with sheep (to about 3 cm) for a short period in (a) November, (b) November, January and March, (c) March or (d) not at all, in three consecutive years. All swards were grazed intermittently during the grazing season with cattle and cut for silage once each year. Each plot received either 0 or 50 kg N ha?1 in March. The effect of N fertilizer was to reduce clover content in each summer and clover growing point density in the third year. In two of the three years, treatments involving grazing in March had lower subsequent net annual herbage accumulation compared with the other two treatments and higher clover content in summer of the third year. Reduction in growing point density in all plots during the grazing season was associated with cattle grazing when conditions were wet, suggesting that stolon burial was implicated. Grazing with sheep in November, January and March resulted in significantly more visible (when counted in situ) clover growing points in April in year 2 and more total growing points (counted after dissection of turves) in the third year than the November grazed and ungrazed treatments which had, on occasions, higher grass tiller density. In a microplot experiment, high herbage mass standing over winter was associated with lower potential photosynthesis per unit clover lamina area and lower growing point density in March. Cutting herbage in March to 2-3 cm resulted in higher clover content and higher growing point number per unit stolon length. The latter was significantly correlated with total irradiance and red: far red at the canopy base. Potential photosynthesis of clover was not affected by cutting in March. It is concluded that growing point density can be increased by grazing or cutting during winter or spring. However, in order for these new stolons to contribute to clover yield during the summer, they have to be maintained until then by ensuring that competition from grass is minimized by keeping the sward short in winter and spring and avoiding the burial of stolons during grazing.  相似文献   

9.
Abstract The implications for the agricultural productivity of the UK upland sheep systems of reducing nitrogen fertilizer application and lowering stocking rates on perennial ryegrass/white clover swards were studied over 4 years at a site in Wales. The system involved grazing ewes and lambs from birth to weaning on swards maintained at a constant height with surplus herbage made into silage, thereafter ewes and weaned lambs grazed on separate areas until the onset of winter with adjustments to the size of the areas grazed and utilizing surplus pasture areas for silage. Four stocking rates [SR 18, 15, 12 and 9 ewes ha?1 on the total area (grazed and ensiled)] and two levels of annual nitrogen fertilizer application (N 200 and 50 kg ha?1) were studied in five treatments (N200/SR18, N200/SR15, N50/SR15, N50/SR12 and N50/SR9). Average white clover content was negatively correlated with the level of annual nitrogen fertilizer application. White clover content of the swards was maintained over the duration of the experiment with an increasing proportion of clover in the swards receiving 50 kg N ha?1. Control of sward height and the contribution from white clover resulted in similar levels of lamb liveweight gain from birth to weaning in all treatments but fewer lambs reached the slaughter live weight by September at the higher stocking rates and with the lower level of fertilizer application. Three of the five treatments provided adequate winter fodder as silage (N200/SR15, N50/SR12 and N50/SR9). Because of the failure to make adequate winter fodder and the failure of white clover to fully compensate for reduction in nitrogen fertilizer application, it is concluded that nitrogen fertilizer can only be reduced on upland sheep pastures if accompanied by reduced stocking rates.  相似文献   

10.
The combined benefits of a high crude protein concentration, and possible protein protection and growth‐promoting properties, make forage legumes potentially attractive as a natural means of increasing liveweight gain and time to slaughter of lambs in lamb finishing systems. An experiment was conducted to compare the production performance and meat quality of grazing lambs finished on red clover (Trifolium pratense), lucerne (Medicago sativa) or perennial ryegrass (Lolium perenne) swards. Replicate (n = 2) swards of red clover, lucerne and perennial ryegrass were rotationally grazed by ten ram lambs and ten ewe lambs from weaning until selection for slaughter at UK fat class 3L. Lambs grazing the red clover sward had a significantly higher liveweight gain and required significantly fewer days to slaughter than lambs grazing the lucerne sward (305 g d?1 vs. 243 g d?1; 38 d vs. 50 d), which in turn had a higher liveweight gain and required fewer days to slaughter than lambs grazing the perennial ryegrass sward (184 g d?1; 66 d). Lambs grazing the red clover and lucerne swards had significantly higher herbage intakes than those grazing the perennial ryegrass sward (2·06, 1·72 and 1·16 kg DM d?1 respectively), but in vivo digestibility of herbage was similar. Lambs grazing the red clover and lucerne swards also had significantly higher serum urea concentrations than those grazing ryegrass (12·5, 11·1 and 6·2 mmol L?1 respectively). Killing‐out percentage was significantly higher for lambs grazing the red clover sward than for lambs grazing the perennial ryegrass sward (48% vs. 46%). There were no significant effects of finishing system on meat flavour, but meat from lambs finished on the lucerne sward was oxidatively less stable than that from lambs finished on the perennial ryegrass sward. Grazing the forage legume swards significantly increased the proportion of linoleic and linolenic acid in muscle tissue, and therefore the proportion of unsaturated to saturated fatty acids (0·19, 0·16 and 0·12 for the red clover, lucerne and perennial ryegrass swards respectively). However, the n?6/n?3 ratio was significantly lower for the muscle of lambs grazing the perennial ryegrass sward compared with those grazing the forage legume swards (1·13, 1·08 and 0·98 for the red clover, lucerne and perennial ryegrass swards respectively). The results indicate that by grazing lambs on forage legume swards it is possible to increase individual lamb performance without compromising meat quality.  相似文献   

11.
This experiment was carried out to study the responses of sward components (particularly white clover, Trifolium repens ) to grazing management in a natural sward dominated by smooth-stalked meadowgrass ( Poa pratensis ) syn. Kentucky bluegrass. Treatments during two grazing seasons (1989–90) were: cattle grazing alone (C); cattle grazing followed by topping (CT); cattle grazing followed by sheep grazing (CS); and sheep grazing alone (S). Mean target pre- and post-grazing herbage masses were 2200 and 1100 kg DM ha−1, estimated by single-probe electronic capacitance meter. Sward component dynamics were monitored using turf dissections, marked white clover stolons, and ring-toss white clover leaf counts. Component and sward data for the C, CT, CS and S treatments respectively, were: number of white clover leaves m−2, 1295, 1384, 1408, 900 (s.e. ± 108); number of leaves per growing point, 3·2, 3·4, 3·0, 2·8 (s.e. ± 0·2); herbage accumulation (t DM ha−1), 5·16, 5·02, 5·87, 8·28 (s.e. ±0 08); rejected herbage (% pasture area) 39·7, 7·7, 16·0, 0 (s.e. ± 75); and annual net herbage production (t DM ha−1) 3·39, 4·35, 4·99, 8·28 (s.e. ± 0.07). Swards grazed by sheep alone contained less white clover, but regrew quicker and produced more herbage than other treatments. Close topping or grazing by sheep following dairy cattle grazing decreased sward rejection by cattle. These treatments maintained more of the pasture in better condition for subsequent cattle grazing, resulting in greater net herbage production than where no post-cattle grazing treatment was used.  相似文献   

12.
The potential productivity of perennial ryegrass/ white clover swards (GC) under continuous stocking management was assessed by comparing their performance, when grazed by sheep at sward surface heights of 3, 6 and 9 cm, with that of an all–grass sward (G) maintained at 6 cm and fertilized with 420 kg N ha–1 The grass/clover swards received no nitrogen fertilizer. The different grazing treatments had a marked effect on animal performance. In the first year for example, for treatments GC3, GC6, GC9 and G6–420 respectively, mean stocking rates to weaning were 19–7, 14–3, 8–9 and 18–4 ewes ha–1 (plus twin lambs); lamb growth rates were 223, 268, 295 and 260 g d–1and so total lamb live weight gain was 1054, 920, 630 and 1148 kg h a–1. The relative performance of the treatments was similar in all three years. All three grazing treatments had a similar effect on the composition of the grass/clover swards. Clover content increased in 1985, and was sustained in 1986 and 1987 during the main grazing season, although a marked decline in clover content during the winter led to a progressive long–term decline in both the proportion and the amount of clover.
It is suggested that a management based on maintaining a sward surface height close to 6 cm (as in all–grass swards) leads to optimum performance in grass/white clover swards grazed using continuous stocking with sheep. Despite the presence of a small and declining clover content, the output of the mixed grass/clover sward managed in this way was 80%, 80% and 82% of that of a grass sward supplied with 420 kg N ha–1 in 1985, 1986, and 1987 respectively and, similarly, 83% of the output in 1987 of a grass sward receiving 210 kg N ha–1.  相似文献   

13.
An experiment was conducted lo compare the effects of the grazing by ewes and weaned lambs on aftermath and previously continuously grazed perennial ryegrass-dominant swards, at two sward heights (4 and 8 cm) in (he autumn, on changes in structure and growth of the swards. The experiment had a factorial design, was replicated twice and was conducted from mid-August to early November with measurements being made on three occasions in the autumn. Aftermath swards had lower tiller population densities and lower herbage masses than those that had been previously continuously grazed, the differences being greatest in August. On an area basis net growth rates of herbage on aftermaths were lower than those on previously continuously grazed swards in August and September but not in October. Growth rates of herbage were higher on the taller sward, but the senescence rates were similar at the two sward heights. It was concluded that autumn swards may be managed at taller sward heights than summer swards without increasing senescence of the sward and a consequent reduction in efficiency of utilization. The effects of previous sward management on tissue turnover in the autumn were not long lasting.  相似文献   

14.
Diet selection from ryegass-and prairie grass-white clover swards, vertically stratified into three horizons (A > 6 cm, B 3–6 cm, C > 3 cm), was studied using oesophageally fistulated sheep during summer and autumn. Animals grazed for 3-day periods. Apparent herbage intake was calculated from total herbage disappearance. The composition of each horizon and of the diet selected was measured daily.
Herbage mass (DM ha-1) and sward height (cm) prior to grazing were not significantly different between swards in each season, and were 2·0 and 20 in summer and 1·6 and 10 in autumn. In summer, 36% and 5% of the green grass leaf (GGL) for prairie grass and ryegrass, respectively, was distributed in horizons A and B. In autumn 39% and 29% of GGL occurred above 3 cm for prairie grass and ryegrass, respectively. GGL distribution determined which sward horizons were grazed. Sheep grazed horizon C (0–3 cm) of summer ryegrass pasture, and the surface canopy (>3 cm) of all other swards.
In summer, apparent intake achieved by sheep grazing prairie grass swards was 87% higher than that achieved on ryegrass swards. In autumn a greater GGL distribution above 3 cm with prairie  相似文献   

15.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

16.
Extending the grazing season through the production and utilization of high‐quality forage is a key objective in grassland‐based dairy production systems. Grazing swards to a low post‐grazing sward height (PGSH) is a strategy for improving grass utilization. A grazing experiment conducted in Ireland investigated immediate and subsequent effects of PGSH on sward production, utilization and structural characteristics. Swards were grazed to 2·7 cm (severe; S1) or 3·5 cm (moderate; M1) from 10 February to 18 April 2010 (Period 1; P1). From 19 April, each P1 paddock was halved and grazed to either 3·8 cm (S2) or 4·8 cm (M2), until 30 October (Period 2; P2). The first grazing rotation was +7 d on S1 swards compared with M1 swards (45 d), due to greater herbage utilization (+0·22). Herbage production during P1 was not affected by PGSH but a severe PGSH during this period reduced subsequent herbage production: 13·9 (S1) vs. 15·5 t dry matter (DM) ha?1 (M1) by the end of the study. Leaf proportion was increased (+0·10) on S2 swards compared with M2 swards, but M2 swards produced 1·2 t DM ha?1 more herbage during P2. Despite the relatively lower level of sward utilization obtained from moderate grazing in P1 (3·5 cm) and P2 (4·5–5·0 cm), such levels of PGSH increased DM production while maintaining sward quality, compared with severe grazing (2·7 cm in P1 and 3·5–4·0 cm in P2).  相似文献   

17.
The long-term influence of sward height from April to July (Phase 1) and from July to early October (Phase 2) on total herbage and white clover production was measured over four years (1988–1991) as herbage accumulation. A subsidiary experiment to determine the influence of leaf area index (LAI) on gross canopy photosynthesis was conducted to aid interpretation of growth from herbage accumulation data. Target sward heights in 0·5 ha plots in two blocks were 5,7 or 9 cm in Phase 1 and 7 or 9 cm in Phase 2, although mean actual heights per phase were slightly higher. Net herbage accumulation (NHA) was measured within mobile exclosure areas over successive two-week intervals. Gross photosynthesis was measured in circular turves removed from the trial area representing a range of LAIs with an at least reasonable clover content. Despite wide differences in mean sward height and herbage mass, NHA and net clover accumulation for a given phase were not generally affected by treatments. Positive effects of grazing at 5 cm in Phase 1 on NHA and clover accumulation later in the year, and of grazing at 7 cm in Phase 2 on NHA in the following spring were sometimes apparent. Gross canopy photosynthesis (g CO2 m?2 h?1) at 1500 μE m?2 s?1 and 18–21°C was linearly related to LAI described by 1·003 + 1·165 LAI over the LAI range 0·7 to 4·5. Total herbage and clover growth, interpreted from NHA by a previously described model, was predicted to be marginally lower in shorter swards. Similarity in NHA and clover accumulation between treatments was considered to be because of lower senescene and decomposition, and a higher proportion of new tissue being assigned to lamina growth, despite lower LAI and gross photosynthesis in the shorter swards. It was concluded that stocking intensity in swards continuously stocked with cattle did not have a strong influence on net total herbage and clover growth.  相似文献   

18.
The objectives of this experiment were to study the effects of different grazing managements in spring on herbage intake and performance of summer-calving dairy cows and to examine the effects of regrowth in early June on herbage intake and cow performance. Four spring-grazing treatments were applied to predominantly perennial ryegrass swards: Control (C), sward grazed by cows to 6–8 cm sward surface height (SSH); CG16, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to a target SSH of 16cm in early June; CG8, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to 8cm in early June; and SG8, sward grazed by sheep to 2–3 cm SSH in May and allowed to regrow to 8 cm in early June, All swards were continuously stocked by summer-calving (May and July) primiparous and multiparous cows from 16 June to 7 September, to a target SSH of 8–10cm. Spring treatments bad marked effects on herbage intakes and milk production. Estimated in July by n alkane analysis, the mean herbage intake ± s.e.d. of cows on each treatment were 1·8, 1·4, 1·4 and 3·0 ± 0·31 kg dry matter (DM) 100 kg live weight (LW)?1 d?1 (P < 0·01) for treatments C, CG16, CG8 and SG8 respectively. Measured in August, intakes were 1·8, 20, 2·1 and 2·4 ± O·33kg DM 100kg LW?1 d?1 respectively. Severe spring grazing led to increased milk yield and reduced milk fat content from summer-calving cows fed 5·2 kg d?1 of a proprietary concentrate. Average milk yields for the eleven experimental cows on each treatment were 24·3, 23·4, 26·2 and 29·0 ± 1·20 kgd?1 (P < 0·01) for C, CG16, CG8 and SG8, and average milk fat contents were 45·4. 42·4, 43·9 and 40·9 ± 1·02gkg?1 (P<0·05) respectively. The results suggest that severe grazing of swards in early season could improve herbage intake and milk yield of summer-calving cows in mid- and late season. The most favourable spring treatment in this respect was severe grazing by sheep. However, this advantage could be negated in midseason by lax grazing at that time.  相似文献   

19.
Groups of mature, non-lactating sheep and cattle grazed a Nardus stricta community during the growing season for six consecutive years from 1984 to 1989. Three unreplicated treatments were applied by continuous variable stocking to maintain between-tussock sward height at (a) 4·5 cm by cattle grazing and (b) 4·5 cm or (c) 3·5 cm by sheep grazing. Diet composition and herbage intake were measured from 1984 to 1987 on three occasions in the growing season, and live weight and stock density were recorded from 1984 to 1988. The diet of cattle usually contained more dead herbage, Nardus, sedges and rushes but less forbs and other fine-leaved grasses than the diet of sheep. Principal coordinate analysis showed different trends across years in diet composition, especially between the sheep and cattle treatments at 4·5 cm. Diet digestibility was usually higher for sheep treatments than for the cattle treatment. Diet digestibility and herbage intake increased between 1984 and 1985, and 1986; they also declined from spring to late summer. Regression of diet digestibility on independent principal components — which were derived from diet composition measurements — showed that the two most important principal components accounted for 72% of the variation in digestibility. Stock-carrying capacity (kg LW × d ha?1, calculated from live weight, grazing days and stock density) was greater on the cattle treatment than on either sheep treatment. Stock-carrying capacity also increased more in successive years on the cattle than on either sheep treatment, and it was greater on the sward maintained at 3·5 cm than at 4·5 cm by sheep. These increases in stock-carrying capacity were generally positively associated with the increase in the percentage specific frequency both of live material and of the more productive grasses in the swards. These data indicate that sheep-only stocking tends to Nardus dominance and suggest that further study using productive cattle — either alone or mixed with sheep — is needed, preferably in association with measurements of floristic change both within and between tussocks.  相似文献   

20.
An experiment was designed to examine the changes in clover content of three mixed perennial ryegrass/white cover swards of differing initial clover contents subjected to different grazing height management regimes and their effect on lactation performance of 48 Friesian dairy cows and heifers. Two paddocks were established for each treatment and grazed on alternate days. Treatments T17 and Tl3 consisted of swards with initial clover contents of 0·17 and 0·13 of the dry matter (DM) mass, respectively, grazed to maintain compressed sward heights of 6 cm throughout the season. A third treatment, SI5, consisted of a sward with an initial clover content of 0·15 grazed to maintain a compressed sward height of 4·5 cm for the first 78 days of the grazing season (period 1). Throughout period 1, half the animals on each treatment each received 4 kg of a concentrate supplement daily, while the others remained unsupplemented. From days 79 to 90, the cattle on treatment S15 grazed a similar sward, while the compressed sward height of the S15 paddocks was allowed to increase to 6 cm before re introduction of the animals. The three swards were then grazed for a further 47 days (period 2) before the animals were housed and milk yield recorded for a further 63 days (period 3). While sward T17 showed little change in clover content over the first 29 days of grazing, remaining at just below 0·18 of DM mass, swards T13 and S15 showed a marked decline in clover content to 0·05 and 0·07 of DM mass respectively. However, by the end of period 1 the clover content of all three swards had increased markedly (0·25, 0·15 and 0·15 of DM mass respectively). By the end of period 2, clover proportions were slightly higher than initial values (0·19. 0·15 and 0·15 of DM mass for treatments T17, T13 and S15, respectively). Owing to the relatively small differences in clover content of swards TI7 and T13, there were no significant effects of these two treatments on milk yield or composition in any period. Supplementation had no effect on milk composition and had little effect on milk yield, except when sward height was maintained at 4·5 cm. There was no carryover effect of supplementation on milk yield or composition in periods 2 or 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号