首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The species composition of a plant community can affect the distribution and abundance of other organisms including plant pathogens. The goal of this study was to understand the role of host diversity in the transmission of two Barley yellow dwarf virus (BYDV) species that share insect vectors and hosts. Greenhouse experiments measured the transmission rate of BYDV species PAV and PAS from infected oat plants to healthy agricultural and wild grasses and from these species back to healthy oat seedlings. In the field component of the study, the rate of spread of PAV and PAS was measured in monoculture plots planted with agricultural grasses. In greenhouse experiments, the aphid vector more readily transmitted PAV from agricultural grasses and more readily inoculated PAS to the wild grass species assayed. In the field experiment, disease prevalence was greater in wheat, but there was no difference in the rate of spread of PAV and PAS. These results indicate an interaction between vector and host genotype that selects for greater PAV transmission in grain crops, contributes to differences in disease prevalence between grass types, and maintains pathogen diversity within the larger plant community (i.e. agricultural and non‐agricultural hosts).  相似文献   

2.
Barley yellow dwarf virus (BYDV), an economically important virus, infects small grain cereal crops and over 150 other Poaceae species. BYDV infection plays an important role in competition among grasses in non‐managed systems, but many grasses remain unexamined as potential BYDV hosts. This study examined grass species that have not been reported as BYDV hosts but are commonly encountered in non‐managed grasslands throughout the United States and Canada. Laboratory inoculations with BYDVPAV using the aphid vector Rhopalosiphum padi were performed to examine the ability of 13 grass species and barley to be infected with the virus; eight of the grass species were not documented previously as virus hosts. Serological and molecular assays were used to confirm BYDV‐PAV infection. Plant height, number of leaves, number of tillers and weight were recorded to evaluate susceptibility or sensitivity to BYDV. Infection with BYDV was experimentally achieved for the first time on Achnatherum lettermanii, Achnatherum occidentale, Achnatherum thurberianum, Danthonia intermedia, Poa fendleriana, Sporobolus airoides and Sporobolus cryptandrus, but not on Alopecurus pratensis and Elymus wawawaiensis. Infection was confirmed in Bromus inermis, Elymus elymoides, Poa bulbosa, Poa secunda and Hordeum vulgare, which served as controls. BYDV infection caused reductions in plant height on P. bulbosa and P. fendleriana. BYDV‐infected P. secunda had more leaves per plant compared to healthy plants of the same species. BYDV‐infected A. lettermanii exhibited reduced dry weight in both below‐ground and above‐ground tissue. These findings have implications for the management and conservation of grassland habitats.  相似文献   

3.
Ventenata dubia (African wiregrass), a winter annual weed, is a non‐native species invading grasslands, rangelands and pastures throughout the USA. Limited information is available on its suitability as a host to pathogens and insects in its invaded range. The barley/cereal yellow dwarf virus (B/CYDV) complex occurs ubiquitously in Poaceae species. In non‐managed grasslands, BYDV infection influences competitive dynamics between native and invasive grasses and facilitates invasion by non‐native annual weeds. The Palouse prairie of south‐eastern Washington and northern Idaho, USA, is an endangered ecosystem. Surveys of V. dubia in Palouse prairie and neighbouring Conservation Reserve Program (CRP) habitats were conducted to determine whether B/CYDV viral species are present. Laboratory tests examined the suitability of V. dubia to host BYDVPAV and serve as an inoculum source. Plant growth and weight parameters were measured to gauge the impact of BYDV‐PAV on V. dubia. Infection of V. dubia in Palouse prairie and CRP habitats with two species of BYDV, PAV and SGV, was detected for the first time. The ability of BYDV‐PAV to infect V. dubia in the laboratory and transmission from infected V. dubia to barley were demonstrated. BYDV‐PAV‐infected V. dubia showed reductions in plant height, number of leaves and tillers per plant, and above‐ground dry weight, suggesting that V. dubia is sensitive to BYDV. Results demonstrate that V. dubia is a host to BYDV and may serve as a virus inoculum source with potential implications for its management, competitive dynamics between invasive and native grasses and future conservation of endangered grasslands.  相似文献   

4.
South Australia is in the dry temperate zone where most cereal crops are grown in an area of low rainfall, with a crop-free season from December to April. The incidence of barley yellow dwarf virus (BYDV) was assessed by ELISA from 1989 to 1991 in wheat crops and irrigated pastures of South Australia. The incidence of BYDV was low in most wheat crops of the low-rainfall area in 1989 and 1990 (less than 1% of plants infected), but moderate levels of infection (1–10%) were observed in some early-sown crops. BYDV infection was more widespread in the high-rainfall area (south east of South Australia). A high incidence of BYDV was observed in the irrigated pastures of the three areas surveyed (4–86%). Of the five previously described strains, the Rhopalosiphum padi/Sitobion avenae strain (PAV) was the most common in wheat samples (> 90%). PAV and the R. padi-specific strain (RPV) were found in pasture grasses, alone or in mixed infection. Virus incidence was greater in Festuca spp. (56%) and Lolium perenne (30%) than in other species (2-–9%).  相似文献   

5.
从麦类种质资源中筛选大麦黄矮病毒(BYDV)抗原   总被引:6,自引:2,他引:6       下载免费PDF全文
用 ELISA 法鉴定了小麦近缘种赖草属(Leymus)、披碱草属(Elymus)、鹅冠草属(Roegneria)3个属的21个种,其中17个种抗 BYDV。21145份小麦品种中筛选到症状轻、病毒含量高的耐病品种忻县冬麦、江西早等29份。3604份大麦品种中筛选到症状轻、病毒含量低的抗病品种C13208、小麦近缘种(Agropyronintemedium)和普通小麦杂交的异源八倍体中4无芒,中5,远中7,陇远45、46,远中1001,忻4079以及附加系 L1。现已获得抗 BYDV 的以中4无芒、L1为亲本的杂交后代。  相似文献   

6.
ABSTRACT A large epidemiological study of the genetic variation of barley yellow dwarf virus (BYDV) serotype PAV involving different host plant species was conducted. French BYDV PAV isolates were collected from barley and ryegrass, and their capsid protein gene sequences characterized using restriction fragment length polymorphism, single-strand conformation polymorphism, and sequence analyses. The data show that BYDV PAV isolates from five different continents are separated into two distinct groups named cpA and cpB, which are distributed irrespective of geographical location. Amino acid identity of the capsid proteins ranged from 93 to 99.5% in group cpA and from 95 to 99.5% in group cpB, while this value was only from 82 to 88% between the groups. Moreover, isolates from each group were found preferentially (up to 98%) in one of the two plant species examined. These results show that host plant species play a role in isolate selection and maintenance and that they contribute to the genetic diversity of BYDV PAV.  相似文献   

7.
晋南冬麦区大麦黄矮病毒流行株系监测及防治策略探讨   总被引:2,自引:0,他引:2  
连续5年(1996~2000年)采集晋南冬麦区小麦黄矮病标样,采用生物学和血清学(酶联免疫吸附法)相结合的诊断方法对该地区的大麦黄矮病毒流行株系进行了鉴别。结果表明,该小麦黄矮病流行区近五年以GAV株系为主流株系,兼有少量GPV、PAV和混合株系存在。同时对小麦抗黄矮病新品种“临抗1号”进行了GPV和GAV两种株系的抗性测定,明确了该品种兼抗GPV和GAV两种株系。根据小麦黄矮病发生现状,提出了一套以选育推广抗耐病品种为主,以药剂防治为辅的综合防治措施。以期为当地小麦生产服务。  相似文献   

8.
Wheat blast of wheat (Triticum aestivum), caused by Magnaporthe oryzae pathotype triticum (MoT; anamorph Pyricularia oryzae) is a destructive disease in the South American countries of Brazil, Paraguay and Bolivia. In Argentina, the fungus was recently recorded on wheat and barley plants in the northeast part of the country, Buenos Aires and Corrientes Provinces, with a potential for spreading. This work aimed to study, for the first time, the morphocultural and pathogenic characteristics of Magnaporthe isolates collected from wheat and other herbaceous species in Argentina and three neighbouring countries (Paraguay, Brazil and Bolivia) and determine their aggressiveness on wheat varieties. Statistical differences among isolates, culture media, and development conditions were found for conidia colour, growth rate, size and sporulation rate. Pathogenicity tests performed on seedlings with 19 isolates of Magnaporthe spp. under greenhouse conditions showed a maximum disease severity of 55.3% and 66.7% for varieties BIOINTA 3004 and Baguette 18, respectively. Weed and grass isolates were infectious on wheat, demonstrating their potential epidemiological role on the disease. Spike disease severity was 34.6% for the host × pathogen interaction of BIOINTA 3004 × PY22. Observed symptoms included partial or total spike bleaching, and glume and rachis discolouration. The 1000‐grain weight was significantly reduced to 38.5% and 63.1% for cultivars BIOINTA 3004 and Baguette 18, respectively. The disease affected grain germination, which fell to 65.9% for seeds infected with the PYAR22 isolate. Symptoms observed in infected grains were partial spotting, grain softening, and rot symptoms with the presence of a greyish mould.  相似文献   

9.
10.
The occurrence and geographic distribution of powdery mildew on cucurbits was studied in the Czech Republic, Austria, France, Germany, Great Britain, Italy, Slovakia, Slovenia, Spain, Switzerland, the Netherlands, as well as in Turkey and Israel, during the period 1995–2000. In total, 599 leaf samples with powdery mildew symptoms were collected from cucurbits from 166 locations within the Czech Republic; an additional 69 samples were collected from 42 locations elsewhere. Two powdery mildews (Golovinomyces cichoracearum and Podosphaera xanthii) were identified. The host range included the cultivated cucurbits (Cucumis melo, C. sativus, Cucurbita pepo, C. maxima, and Citrullus lanatus) and several other species. P. xanthii was the only powdery mildew pathogen found in Spain, Israel, and Turkey. P. xanthii and G. cichoracearum were detected in the other surveyed countries, occurring in both mixed infections and separately. In the more northerly latitudes and higher elevations, G. cichoracearum is more often the single species. G. cichoracearum was the dominant powdery mildew species in the Czech Republic (detected in 98.8% of the locations there); P. xanthii was found as the lone species in 1.2% of locations. At 28.4% of locations, G. cichoracearum was found with P. xanthii as mixed infections. The hyperparasitic fungus Ampelomyces quisqualis was found in 30% of the samples from the Czech Republic and was also recorded in Austria, Italy, Slovenia, Switzerland, and Great Britain.  相似文献   

11.
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (= 43 isolates), Brazil (= 35), and Uruguay (= 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (= 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates.  相似文献   

12.
ABSTRACT Wheatgrass (Thinopyrum intermedium) possesses a high level of resistance to barley yellow dwarf virus (BYDV) subgroup I and subgroup II strains. A wheat line (P29), in which the 7D chromosome has been substituted with a group 7 chromosome from T. intermedium, was examined for the level of resistance to two subgroup I and two subgroup II BYDV strains. In P29 plants inoculated with the subgroup I PAV strains, the titer of virus in leaf and stem tissue was typically reduced 42 to 52% when compared with the BYDV-susceptible cv. Abe. P29 and 'Abe' had the same content of PAV in roots. These results and the absence of detectable virus in inoculated T. intermedium plants indicate that the complete resistance to subgroup I possessed by the wheatgrass has not been introgressed into P29. In contrast, P29 was completely resistant throughout the plant to the subgroup II strains, NY-RPV and NY-RMV, demonstrating that the complete resistance to subgroup II in T. intermedium was incorporated into P29. Further analysis of this resistance to NY-RPV showed that NY-RPV can replicate in mesophyll protoplasts of P29 and 'Abe', suggesting that this resistance is not operating at the single-cell level. Molecular marker analysis confirmed that the T. intermedium chromosome present in P29 is a different group 7 wheatgrass chromosome than that present in L1, a wheat line with BYDV resistance properties similar to those of P29.  相似文献   

13.
Since 1911, dothistroma needle blight, caused by Dothistroma septosporum, has been recorded in most European countries. In the Czech Republic, the fungus has become an important disease of pines since 2000, especially Austrian pines in plantations of Christmas and ornamental trees. The aim of this study was to analyse the population structure, gene flow and mode of reproduction of this pathogen. Microsatellite and mating‐type markers were analysed in a Dothistroma population in the southeastern part of the country using reference isolates from other European countries. The haplotypic diversity was high, with 87 unique and 13 shared haplotypes (probable clones) identified in 121 samples. Based on structure analysis, the isolates were divided into two populations, with an uneven distribution over the sampling sites. The grouping of the sites to the populations did not follow a geographical pattern because certain isolates that were sympatrically co‐occurring at the same site were placed in different populations. Tests for random mating (the index of association and a parsimony tree‐length permutation test) showed a significant clonal mode of reproduction in most cases, but the intrapopulation haplotypic diversity is unexpectedly high. Although a teleomorphic stage of D. septosporum has not been previously observed in the Czech Republic, the high intrapopulation haplotypic diversity can be explained by infrequent sexual reproduction consistent with the occurrence of both mating types.  相似文献   

14.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

15.
The epidemiology ofMetopolophium dirhodum and its natural enemies on winter wheat was studied from 1975 to 1979 inclusive. AlateM. dirhodum colonize wheat from the middle of May onwards. Immigration occurs until mid-June. Population growth rates ofM. dirhodum can be as high as or occasionally even higher than those ofSitobion avenae. InM. dirhodum alatae are formed in a high proportion throughout the epidemic whereas inS. avenae the % of alatae becomes high at the end. In both species most of these alatae seem to emigrate. Both species have a similar potential to become a pest.Samenvatting De epidemiologie vanMetopolophium dirhodum werd bestudeerd van 1975–1989 en vergeleken met die vanSitobion avenae. Beide soorten migreren naar tarwe in de loop van mei. De relatieve populatie groeisnelheid vanM. dirhodum bleek tijdelijk zeer hoog te zijn (verdubbelingstijd 1,7 dag tegenover 2,0 voorS. avenae). Over de gehele periode van de epidemie is er weinig verschil in dagelijkse relatieve groeisnelheid van de populatie.Bij de ineenstorting, die altijd begint voor het deegrijpstadium van de tarwe, is van belang het ontstaan van gevleugelde bladluizen. Deze verlaten merendeels het gewas. Het belang van de natuurlijke vijanden voor de afname van de populatie is niet altijd duidelijk maar is soms groot en veroorzaakt dan een vroege ineenstorting van de plaag. M. dirhodum heeft even grote mogelijkheden de plaagstatus te bereiken alsS. avenae maar door zijn soms tijdelijk groter vermeerderingsvermogen zal het voorspellen moeilijker zijn.  相似文献   

16.
M. B halov 《EPPO Bulletin》2006,36(3):467-469
The State Phytosanitary Administration of the Czech Republic (SPA) conducted a survey of Bursaphelenchus xylophilus in 2004 and 2005. In 2004 97 locations were surveyed and 60 samples were taken. B. xylophilus was not found in any of the samples. In 2005, the SPA performed 120 phytosanitary inspections on solitary conifers, and in forest stands and clumps of trees. Checks were performed on Pinus sylvestris and Pinus nigra trees and in coniferous woodland mainly in areas at risk of invasion from B. xylophilus. Of 70 phytosanitary inspections performed in at risk areas, 13 samples were taken for laboratory processing and analysis. Fifty phytosanitary inspections were carried out outside risk areas, mainly in forests and parks, and 28 samples were taken. The Czech University of Agriculture in Prague together with the diagnostic laboratory of the SPA carried out a second survey in 2005. Fifty‐eight samples were taken from 58 surveyed locations in forests where coniferous trees with symptoms had been found. Laboratories performed a survey of B. xylophilus vectors to find only one vector species, Monochamus galloprovincialis subsp. pistor. In total in 2005, 178 phytosanitary inspections were carried out in the Czech Republic. B. xylophilus was not detected in either samples or vectors. Thus the results of the surveying were negative in both 2004 and 2005. The status of Bursaphelenchus xylophilus in the Czech Republic is: absent, confirmed by survey.  相似文献   

17.
This study, using RT‐PCR, is the first comprehensive assessment since 1991 of a generic detection method for the Luteoviridae. Thirteen Luteoviridae species were detected using three separate sets of low‐degeneracy generic primers with RT‐PCR to amplify 68‐, 75‐ and 129/156‐bp regions of the Luteoviridae coat‐protein gene. Species detected include all members of the genus Luteovirus [Barley yellow dwarf virus (BYDV)‐PAV, BYDV‐PAS, BYDV‐MAV (129 and/or 156 bp amplicons), Soybean dwarf virus, Bean leafroll virus (68 bp amplicon)] and eight of nine species from the genus Polerovirus [Beet western yellows virus, Beet chlorosis virus, Beet mild yellowing virus, Turnip yellows virus, Potato leafroll virus, Cucurbit aphid‐borne yellows virus, Cereal yellow dwarf virus‐RPV (68‐bp amplicon) and Sugarcane yellow leaf virus (75‐bp amplicon)]. These primers were not able to detect Carrot red leaf virus, Sweet potato leaf speckling virus (both belong to unassigned Luteoviridae) and Pea enation mosaic virus‐1 (genus Enamovirus). A synthetic positive control containing all primer sequence priming sites was designed to facilitate this method as a generic tool for use with a variety of host plants. The Luteoviridae primers described in this study present a simple infection‐detection tool of benefit to biosecurity authorities in nursery‐stock surveillance, disease management or outbreak prevention, and may also be useful in detection of as‐yet undiscovered species within the Luteovirus and Polerovirus genera.  相似文献   

18.
 大麦黄矮病毒PAV株系由麦长管蚜和禾谷缢管蚜传毒。本研究通过RT-PCR、克隆和序列测定后,确认所得到的我国小麦PAV分离物的外壳蛋白基因片段由600个核苷酸组成,编码199个氨基酸。序列同源性比较结果显示,与BYDV的其它株系典型分离物的外壳蛋白基因同源性最高为74.5%,而与国外发表的PAV 8个分离物的CP基因核苷酸同源性为81%左右,且同源性比较的分值也较其它株系高。氨基酸序列的比较中,仅在46到60位氨基酸差别较大。  相似文献   

19.
Ramularia leaf spot (RLS) is a newly important disease of barley across temperate regions worldwide. Despite this recent change in importance, the infection biology of the causal agent Ramularia collo‐cygni (Rcc) remains poorly understood. Confocal microscopy of the infection process of two transgenic Rcc isolates, expressing either GFP or DsRed reporter markers, was combined with light microscopy during field infection to track the progression of Rcc in planta. Infection of stomata, including the development of a previously unreported stomatopodium structure, results in symptomless development and intercellular colonization of the mesophyll tissue. Transition to necrotrophy is associated with breakdown of host chloroplasts and the formation of aggregates of conidiophores. In addition to barley, Rcc forms a compatible interaction with winter wheat and a number of perennial grass species. An incompatible reaction was observed with two dicotyledonous species. These results provide further insights into the host interactions of this fungus and suggest that RLS could be a potential threat to other agriculturally important crops.  相似文献   

20.
Pyrenophora tritici‐repentis (Ptr) is a destructive fungal pathogen of wheat worldwide. In addition to wheat, Ptr has been isolated from various other hosts in the family Poaceae, yet the nature of its interaction with those hosts is unknown. The Ptr–barley relationship was explored and the existence of a specific interaction between Ptr and barley is described for the first time; symptom development on several barley genotypes was evaluated in bioassays and by toxin infiltration into barley leaves. Ptr ToxB‐producing isolates of the fungus were able to cause significant damage when inoculated onto certain barley genotypes, and Ptr ToxB was able to induce chlorosis in a highly selective manner when infiltrated into those same genotypes. Ptr–barley specificity is subtle and can break with slight changes in temperature after infection. To understand the infection process in barley, a cytological analysis and in planta fungal biomass estimation using quantitative PCR were performed. The fungus penetrates through the host epidermal cells and advances to colonize the mesophyll layer intercellularly, with the infection process on barley closely resembling that on wheat. Here, evidence is provided for a specific interaction between barley and Ptr, expanding understanding of Ptr host specificity and breaking the assumption that the highest level of specificity seen with Ptr is restricted to particular genotypes of the wheat host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号