首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The objective of this study was to evaluate the potential role of gramineous weeds present near paddy fields as alternative hosts for the Fusarium graminearum species complex (FGSC) that causes fusarium head blight (FHB) in rice. A total of 142 weed samples were collected from 10 gramineous weed species near paddy fields from August to October 2018 in Jiangsu Province, China. Of the 145 isolates of seven Fusarium species isolated from the weed samples, F. asiaticum was the most abundant (86.9%), followed by F. fujikuroi (5.5%), F. proliferatum (2.8%), F. graminearum (2.1%), F. tricinctum (1.4%), F. acuminatum (0.7%), and F. sporotrichioides (0.7%). Genotype and mycotoxin analyses confirmed that 72.2% of F. asiaticum isolates were producers of deoxynivalenol (DON) with 3-acetyl deoxynivalenol (3ADON), and the remainder were nivalenol (NIV) producers. Pathogenicity assays showed that both 3ADON and NIV chemotypes of F. asiaticum could cause FHB in rice, but NIV chemotypes were significantly (p < .05) more aggressive than 3ADON chemotypes. Three Fusarium mycotoxins, DON, NIV, and zearalenone, occurred naturally at low concentrations in the weed samples. Taken together, this study provides insight into the mycotoxin production and aggressiveness of F. asiaticum isolates from gramineous weeds in China.  相似文献   

2.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

3.
山东省小麦赤霉病菌种群组成及其致病力分化   总被引:2,自引:2,他引:0  
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

4.
Fusarium graminearum species complexes (FGSCs), such as Fusarium asiaticum and F. graminearum, are important pathogens that cause Fusarium head blight (FHB) in several cereal crops worldwide. In this study, we collected 342 gramineous weed samples in the proximity of rice fields from May to June 2018 in Korea. Among the 500 Fusarium isolates from the weed samples, 13 species of Fusarium were identified, and F. asiaticum (41.2%), F. avenaceum (18.0%), F. acuminatum (16.4%) and F. graminearum (14.8%) were the most frequently isolated. The trichothecene genotype analysis showed that 206 F. asiaticum strains consisted of the nivalenol (NIV) genotype (n = 195, 94.7%) and 3-acetyldeoxynivalenol (3ADON) genotype (n = 11, 5.3%), whereas 74 F. graminearum strains consisted of the 15-acetyldeoxynivalenol (15ADON) genotype (n = 58, 78.4%) and 3ADON genotype (= 16, 21.6%). Geographical differences were observed in the FGSC and trichothecene genotype compositions, which appeared host-dependent between the southern provinces and mid-eastern provinces. The aggressiveness assessment of FHB showed that the 3ADON chemotype was most aggressive followed by the 15ADON and NIV chemotypes in wheat, while the NIV chemotype was most aggressive followed by the 3ADON and 15ADON chemotypes in rice. The F. asiaticum strains grew slowly and produced fewer conidia and perithecia than the F. graminearum strains, regardless of their chemotypes. The results of this study suggest that F. asiaticum with the NIV chemotype has a host preference for rice, and FHB-causing pathogens can be harboured in gramineous weeds, which play a role in the dispersal of FHB pathogens to rice and other cereal crops.  相似文献   

5.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

6.
通过对江苏、安徽、山东、河南、湖北、河北和四川7省小麦赤霉病菌对多菌灵抗性及敏感菌株Fusarium asiaticum和F.graminearum的鉴定、所产生毒素的化学型及多菌灵抗性菌株检出时序性的分析,初步推测了小麦赤霉病菌对多菌灵抗性群体在中国麦区的扩散路径。结果表明:江淮流域的江苏、安徽、湖北3省和四川省小麦赤霉病菌对多菌灵的抗性或敏感菌株优势群体均是F.asiaticum,而黄淮流域的山东、河南2省及河北省小麦赤霉病菌对多菌灵的敏感菌株优势群体为F.graminearum,抗性菌株优势群体则为F.asiaticum。江苏、安徽、山东和河南抗多菌灵菌株F.asiaticum产生毒素的化学型为3-AcDON和NIV,并以3-AcDON为主。江苏省连续使用多菌灵防治小麦赤霉病长达20多年后才检测到田间抗性菌株,而近年来检测到田间抗性菌株的山东、河南2省用多菌灵防治赤霉病的历史较短,且为偶尔使用,药剂的选择压力相对较小,因此推测山东和河南麦区出现的小麦赤霉病菌抗多菌灵菌株可能是通过种子调运及联合收割机跨区作业等方式从抗药性发生较早的江淮麦区流入的。  相似文献   

7.
Fusarium head blight (FHB), caused principally by Gibberella zeae (Fusarium graminearum), is a devastating disease of small grains such as wheat and barley worldwide. Grain infected with G. zeae may be contaminated with trichothecene mycotoxins such as deoxynivalenol (DON) and nivalenol (NIV). Strains of G. zeae that produce DON may also produce acetylated derivatives of DON: 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON). Gradients (clines) of 3‐ADON genotypes in Canada have raised questions about the distribution of G. zeae trichothecene genotypes in wheat fields in the eastern USA. Tri3 and Tri12 genotypes were evaluated in 998 isolates of G. zeae collected from 39 winter wheat fields in New York (NY), Pennsylvania (PA), Maryland (MD), Virginia (VA), Kentucky (KY) and North Carolina (NC). Ninety‐two percent (919/998) of the isolates were 15‐ADON, 7% (69/998) were 3‐ADON, and 1% (10/998) was NIV. A phylogenetic analysis based on portions of three genes (PHO, RED and URA) from 23 isolates revealed two species of Fusarium (F. graminearum sensu stricto and one isolate of F. cerealis (synonym F. crookwellense)). An increasing trend of 3‐ADON genotypes was observed from NC (south) to NY (north). Punctuated episodes of atmospheric transport may favour a higher frequency of 3‐ADON genotypes in the northeastern USA, near Canada, compared with the mid‐Atlantic states. Discoveries of the NIV genotype in NY and NC indicate the need for more intensive sampling in the surrounding regions.  相似文献   

8.
We screened 188 isolates of Fusarium graminearum, which originated from northwest Europe, the USA and Nepal, for genetic diversity using a sequence-characterised amplified region polymorphism (SCAR). On the basis of this analysis, 42 of the 118 isolates were selected for random amplified polymorphic DNA (RAPD) analysis. Three groups were identified, two of which, A and B, contained the isolates from Nepal, and a third, group C, contained the isolates from Europe and the USA. In pathogenicity tests on wheat and maize seedlings, group C isolates were more pathogenic than the group A and B isolates. The isolates were assigned chemotypes based on their ability to produce the trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON). Isolates from group A were equally likely to produce NIV or DON while group B isolates produced predominantly NIV, and group C isolates produced predominantly DON. Within group A, isolates of the two chemotypes were equally pathogenic to wheat but isolates with the NIV chemotype were significantly more pathogenic to maize. The results confirm that distinct genetic groups exist within F. graminearum and demonstrate that these groups have different biological properties, especially with respect to their pathogenicity to two of the most economically important hosts of this pathogen.  相似文献   

9.
The presence of Fusarium spp. causing Fusarium head blight (FHB) of wheat was studied in Flanders (Belgium) in 2007 and 2008. Symptoms, deoxynivalenol content (DON), Fusarium spp. and trichothecene chemotypes were determined at seven locations on different commercial wheat varieties. Overall, significant differences in disease pressure between locations and varieties were observed within 1 year. In addition, we were able to detect consistent and significant resistance differences among the common varieties both under high disease pressure (2007) and low disease pressure (2008). The accumulation of DON was not related to the presence of F. graminearum but showed a clear correlation with rainfall during and after the period of anthesis. During the two-year survey, characterisation of 756 Fusarium samples by species-specific PCR designated F. poae and F. graminearum as the predominant species in Flanders. Furthermore, most of the ears were colonised by multiple FHB pathogens in 2007 whereas the Fusarium population was less complex in 2008. Log-linear analysis of these multiple (two- and three-way) species interactions revealed a clear correlation between F. poae and several pathogens of the FHB disease complex. Finally, chemotype analysis showed that F. culmorum and F. graminearum were respectively of the NIV chemotype and DON chemotype. 3-ADON and 15-ADON chemotypes occurred in more or less equal amounts within the F. graminearum population both in 2007 and 2008. The congruence of these results with observations throughout Europe are discussed.  相似文献   

10.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

11.
Within-field variability in the Fusarium head blight (FHB) and its associated mycotoxins was studied in four European countries. At each of 14 sites, each FHB pathogen and associated mycotoxins were quantified in 16 quadrat samples at harvest. Overall, the incidence of quadrat samples with detectable and quantifiable pathogen DNA was significantly lower in the grain than in the corresponding chaff. Deoxynivalenol (DON) was the most frequently detected toxin in the samples and its accumulation was most strongly associated with the presence of Fusarium graminearum. Nivalenol (NIV) accumulation was significantly associated only with the presence of F. culmorum. Zearalenone (ZON) accumulation was strongly associated with the presence of all three pathogens (F. graminearum, F. culmorum and F. poae). The levels of both DON and ZON concentrations were positively related to the amount of F. graminearum DNA in the grain or in the chaff. The presence/absence of FHB pathogens within a single quadrat appeared to be independent of each other. The presence of a particular FHB pathogen and the amount of its DNA, as well as the associated mycotoxin(s), varied greatly among samples at each site. This study demonstrated the large extent of within-field variability of FHB and its associated mycotoxins, and the importance of representative sampling in FHB studies.  相似文献   

12.
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (= 43 isolates), Brazil (= 35), and Uruguay (= 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (= 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates.  相似文献   

13.
Twenty four isolates of Fusarium graminearum, half of which were 3-acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) chemotypes, were tested for their ability to produce deoxynivalenol and to cause Fusarium head blight (FHB) in spring wheat cultivars. The objectives of this study were to determine (1) whether 3-ADON isolates differ in aggressiveness, as measured by the FHB index, and DON production from 15-ADON isolates under field conditions, and (2) whether the performance of resistant host cultivars was stable across isolates. Field tests of all isolates were conducted with three replicates at each of two locations in Canada and Germany in 2008 with three host genotypes differing in FHB resistance level. The resistant host genotype showed resistance regardless of the chemotype or location. The differences between mean FHB indices of 3-ADON and 15-ADON isolates were not significant for any wheat genotype. In contrast, average DON production by the 3-ADON isolates (10.44 mg kg−1) was significantly (P < 0.05) higher than for the 15-ADON isolates (6.95 mg kg−1) at three of the four locations where moderately resistant lines were tested, and at both locations where susceptible lines were evaluated. These results indicate that 3-ADON isolates could pose a greater risk to food safety. However, as the mean aggressiveness and DON production of 3-ADON and 15-ADON chemotypes was similar on highly resistant lines, breeding and use of highly resistant lines is still the most effective measure of reducing the risks associated with DON in wheat.  相似文献   

14.
Fusarium head blight and mycotoxin contamination of wheat,a review   总被引:9,自引:0,他引:9  
Summary An infection of bread wheat by fusarium head blight contaminates the crop with mycotoxins, particularly deoxynivalenol (DON) and nivalenol (NIV). The toxicity and natural occurrence of these mycotoxins in wheat are reviewed. Based on 8 years data of fusarium head blight epidemics of wheat in the Netherlands, DON contamination of the grain was estimated. Fusarium head blight ratings averaged an infection of 1.7% of all spikelets; estimates for DON contamination averaged 0.9 mg kg–1. Taking a guideline level for DON in uncleaned bread wheat of 2 mg kg–1, in 1979 and 1982 a wheat crop was produced with estimated DON concentrations above the limit of tolerance. Human and animal exposure to mycotoxins in the Netherlands appears to be small but chronic. The information presented in this paper illustrates the need for an annual evaluation of the crop for fusarium head blight incidence and mycotoxin content, and the necessity of fusarium head blight resistant wheat cultivars.Samenvatting Aaraantasting van tarwe doorFusarium culmorum enFusarium graminearum leidt tot vorming van mycotoxinen in het graan, waarvan deoxynivalenol (DON) en nivalenol (NIV) de belangrijkste toxinen zijn. In dit artikel wordt een overzicht gegeven van de toxicologische aspecten, en het voorkomen van deze toxinen in tarwe. Informatie over DON en NIV in tarwe in West-Europa is schaars. Gebaseerd op gegevens vanFusarium epidemieën in de jaren 1979–1986 wordt een schatting gegeven van de concentratie DON in Nederlandse tarwe. Rekening houdend met de herkomst en verwerking van tarwe, blijken zowel in dierlijk als menselijk voedsel lage concentraties DON chronisch voor te komen. Op basis van een maximaal toelaatbare dagelijkse dosis DON van 3 g kg–1 lichaamsgewicht is de schatting van de dagelijkse opname van DON in het jaar volgend op de oogst van 1982 net op de grens. Zowel een jaarlijkse inventarisatie vanFusarium aantasting en DON besmetting van het graan, als de ontwikkeling vanFusarium-resistente rassen zijn noodzakelijk.  相似文献   

15.
Wheat crops in southeast Queensland (Qld) and northern New South Wales (NSW) were infected with fusarium head blight (FHB)‐like symptoms during the 2010–11 wheat growing season. Wheat crops in this region were surveyed at soft dough or early maturity stage to determine the distribution, severity, aetiology and toxigenicity of FHB. FHB was widespread on bread wheat and durum, and Fusarium graminearum and/or F. pseudograminearum were diagnosed from 42 of the 44 sites using species‐specific PCR primers directly on spikelets or from monoconidial cultures obtained from spikelets. Stem base browning due to crown rot (CR) was also evident in some samples from both states. The overall FHB and CR severity was higher for NSW than Qld. Deoxynivalenol (DON) concentration of immature grains was more than 1 mg kg?1 in samples from 11 Qld and 14 NSW sites, but only 13 of 498 mature grain samples sourced from the affected areas had more than 1 mg kg?1 DON. DON concentration in straw also exceeded 1 mg kg?1 in eight Qld and all but one NSW sites but this was not linked to DON concentration of immature grains. The proportion of spikelets with positive diagnosis for F. graminearum and/or F. pseudograminearum and weather‐related factors influenced DON levels in immature grains. The average monthly rainfall for August–November during crop anthesis and maturation exceeded the long‐term monthly average by 10–150%. Weather played a critical role in FHB epidemics for Qld sites but this was not apparent for the NSW sites, as weather was generally favourable at all sites.  相似文献   

16.
Fusarium graminearum causes fusarium head blight (FHB) of wheat and gibberella ear rot (GER) of corn in Canada and also contaminates grains with trichothecene mycotoxins. Very little is known about trichothecene diversity and population structure of the fungus from corn in Ontario, central Canada. Trichothecene genotypes of Fgraminearum isolated from corn (= 452) and wheat (= 110) from 2010 to 2012 were identified. All the isolates were deoxynivalenol (DON) type. About 96% of corn isolates and 98% of wheat isolates were 15‐acetyl deoxynivalenol (15ADON) type. The fungal population structures from corn (= 313) and wheat (= 73) were compared using 10 variable number tandem repeat (VNTR) markers. The fungal populations and subpopulations categorized based on host, cultivar groups, years and geography showed high gene (= 0.818–0.928) and genotypic (GD = 0.999–1.00) diversity. Gene flow was also high between corn and wheat population pairs (Nm = 8.212), and subpopulation pairs within corn (Nm = 7.13–23.614) or wheat (Nm = 19.483) populations. Phylogenetic analysis revealed that isolates from both hosts were F. graminearum clade 7. These findings provide baseline data on 3‐acetyl deoxynivalenol (3ADON) and 15ADON profiles of Fgraminearum isolates from corn in Canada and are useful in evaluating mycotoxin contamination risks in corn and wheat grains. Understanding the fungal genetic structure will assist evaluation and development of resistant cultivars/germplasm for FHB on wheat and GER on corn.  相似文献   

17.
Environmental conditions in Sardinia (Tyrrhenian Islands) are conducive to fusarium root rot (FRR) and fusarium head blight (FHB). A monitoring survey on wheat was carried out from 2001 to 2013, investigating relations among these diseases and their causal agents. FHB was more frequently encountered in the most recent years while FRR was constantly present throughout the monitored period. By assessing the population composition of the causal agents as well as their genetic chemotypes and EF‐1α polymorphisms, the study examined whether the two diseases could be differentially associated to a species or a population. Fusarium culmorum chemotypes caused both diseases and were detected at different abundances (88% 3‐ADON, 12% NIV). Fusarium graminearum (15‐ADON genetic chemotype) appeared only recently (2013) and in few areas as the causal agent of FHB. In Fculmorum, two haplotypes were identified based on an SNP mutation located 34 bp after the first exon of the EF‐1α partial sequence (60% adenine, 40% thymine); the two populations did not segregate with the chemotype but the A‐haplotype was significantly associated with FRR in the Sardinian data set (= 0·001), suggesting a possible fitness advantage of the A‐haplotype in the establishment of FRR that was neither dependent on the sampling location nor the sampling year. The SNP determining the Sardinian haplotype is distributed worldwide. The question whether the A‐haplotype segregates with characters facilitating FRR establishment will require further validation on a specifically sampled international data set.  相似文献   

18.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

19.
Lodging is one possible risk factor that leads to increased cereal mycotoxin contamination, but few reports have been published on the subject. We examined the effects of lodging on the level of deoxynivalenol (DON) and nivalenol (NIV) contamination in wheat, barley, and rice infected with the Fusarium graminearum species complex. Case-control and intervention studies were applied to test the hypothesis that lodging increases the level of mycotoxin contamination. A total of 66 grain samples were collected from each field in 12 Japanese prefectures from 2002 to 2006. Each sample set consisted of grains from lodged and nonlodged plants. The concentration of DON + NIV in lodged plants was significantly higher than in nonlodged plants. All samples of wheat and barley were contaminated with DON and NIV; however, most of the lodged rice samples were contaminated only with NIV. In intervention trials to investigate the effects of lodging duration, a small area of wheat inoculated with the pathogen was completely lodged by trampling. Even with 5 days of lodging, the levels of DON + NIV in wheat grain at harvest increased by 27–51% compared to nonlodged control plots. For rice, half of each plot area was completely lodged by trampling 20 days before harvest. The level of NIV in lodged rice grain was significantly higher than that in nonlodged rice at optimum and delayed harvests, because lodging significantly increased the level of Fusarium mycotoxins in the three crops. Thus, practices (e.g., rational use of fertilizers) to avoid lodging should reduce the risk of mycotoxin contamination. This is the first epidemiological study on the effect of lodging on mycotoxin production by the F. graminearum species complex in wheat, barley, and rice.  相似文献   

20.
Fusarium head blight (FHB) is an important disease of wheat, which can result in the contamination of grains with mycotoxins such as deoxynivalenol (DON). Artificial inoculation of flowering ears with conidial suspensions is widely used to study FHB diseases. Our goal was to compare four inoculation treatments in which a conidial suspension was sprayed on flowering ears and to study the effect of the application of moisture during kernel setting and filling with a mist-irrigation system. Ten wheat genotypes were inoculated with a DON-producing Fusarium culmorum strain. Inoculation treatments varied in time of application of the inoculum (morning or evening) and in the method of controlling humidity during inoculation (bagging or mist irrigation). A wet season was simulated with a mist-irrigation system, keeping the crop canopy wet for at least 26 days after flowering. The severity of FHB symptoms (area under disease progress curve (AUDPC)), yield loss and DON contamination in the grains were determined. AUDPC data obtained with the different inoculation treatments were highly correlated (r=0.85–0.95). Mist irrigation after inoculation resulted in a higher mean disease severity, but in a overall lower toxin contamination as compared to the non-irrigated treatments. Genotypic differences in DON accumulation were present: for one wheat line toxin contamination significantly increased when irrigated, while two genotypes accumulated significantly less toxin. The closest relationships (r=0.73–0.89) between the visual symptoms and the DON content were obtained under moderate mean infection pressure. This relation between visual symptoms and the DON content deteriorated at higher infection levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号