首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ney Poovan banana, the most widely cultivated mixed diploid banana, has been reported to be susceptible to Fusarium wilt like many other varieties in the world. The identification of natural variants possessing disease tolerance or resistance is one strategy to prevent losses. The aim of this study was to identify resistant lines in Ney Poovan banana, through extensive field surveys and screening of putative variants using a detached leaf-based challenging technique. The selected lines were screened under field condition to determine their economic feasibility for commercial-scale use. A total of 26 lines were observed to be resistant to the disease, out of which 24 exhibited a commercially acceptable productivity index and five best lines possessing desirable attributes were obtained.  相似文献   

2.
The banana Xanthomonas wilt disease (BXW) has threatened the livelihood of millions of farmers in East Africa. Use of resistant varieties is the most cost-effective method of managing this bacterial disease. A reliable and rapid screening method is needed to select resistant banana varieties. An in vitro screening method was developed for early evaluation of Xanthomonas wilt resistance using small tissue culture-grown plantlets. Eight cultivars of banana were screened with sixteen isolates of Xanthomonas campestris pv. musacearum using this method. There were significant differences (P < 0.0001) in susceptibility among the various banana cultivars tested, whereas no significant difference (P = 0.92) in pathogenicity was observed between the pathogen isolates. The cv. Pisang Awak (Kayinja) was found to be highly susceptible and Musa balbisiana resistant. Nakitembe was found to be moderately resistant while cvs Mpologoma, Mbwazirume, Sukali Ndiizi, FHIA-17 and FHIA-25 were susceptible. The susceptibility of these cultivars was further tested in vivo by artificial inoculation of potted plants with similar results. This study shows that an in vitro screening test can serve as a convenient, cheap and rapid screening technique to discriminate BXW-resistant from BXW-susceptible banana cultivars.  相似文献   

3.
In order to accelerate breeding and selection for disease resistance to Fusarium wilt, it is important to develop bioassays which can differentiate between resistant and susceptible cultivars efficiently. Currently, the most commonly used early bioassay for screening Musa genotypes against Fusarium oxysporum f. sp. cubense (Foc) is a pot system, followed by a hydroponic system. This paper investigated the utility of in vitro inoculation of rooted banana plantlets grown on modified medium as a reliable and rapid bioassay for resistance to Foc. Using a scale of 0 to 6 for disease severity measurement, the mean final disease severities of cultivars expressing different levels of disease reaction were significantly different (P ≤ 0.05). Twenty-four days after inoculation with Foc tropical race 4 at 106 conidia ml−1, the plantlets of two susceptible cultivars had higher final disease severities than that of four resistant cultivars. Compared with ‘Guangfen No.1’, ‘Brazil Xiangjiao’ is highly susceptible to tropical race 4 and its mean final disease severity was the highest (5.27). The plantlets of moderately resistant cultivar ‘Formosana’ had a mean final disease severity (3.53) lower than that of ‘Guangfen No.1’ (4.33) but higher than that of resistant cultivars: ‘Nongke No.1’, GCTCV-119, and ‘Dongguan Dajiao’ (1.87, 1.73, and1.53, respectively). Promising resistant clones acquired through non-conventional breeding techniques such as in vitro selection, genetic transformation, and protoplast fusion could be screened by the in vitro bioassay directly. Since there is no acclimatization stage for plantlets used in the bioassay, it helps to improve banana breeding efficiency.  相似文献   

4.
The severity of fusarium wilt is affected by inoculum density in soil, which is expected to decline during intervals when a non‐susceptible crop is grown. However, the anticipated benefits of crop rotation may not be realized if the pathogen can colonize and produce inoculum on a resistant cultivar or rotation crop. The present study documented colonization of roots of broccoli, cauliflower and spinach by Fusarium oxysporum f. sp. lactucae, the cause of fusarium wilt of lettuce. The frequency of infection was significantly lower on all three rotation crops than on a susceptible lettuce cultivar, and the pathogen was restricted to the cortex of roots of broccoli. However, F. oxysporum f. sp. lactucae was isolated from the root vascular stele of 7·4% of cauliflower plants and 50% of spinach plants that were sampled, indicating a greater potential for colonization and production of inoculum on these crops. The pathogen was also recovered from the root vascular stele of five fusarium wilt‐resistant lettuce cultivars. Thus, disease‐resistant plants may support growth of the pathogen and thereby contribute to an increase in soil inoculum density. Cultivars that were indistinguishable based on above‐ground symptoms, differed significantly in the extent to which they were colonized by F. oxysporum f. sp. lactucae. Less extensively colonized cultivars may prove to be superior sources of resistance to fusarium wilt for use in breeding programmes.  相似文献   

5.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

6.
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc‐SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.  相似文献   

7.
Xanthomonas campestris pv. musacearum (Xcm) is the causal agent of banana xanthomonas wilt, a major threat to banana production in eastern and central Africa. The pathogen is present in very high levels within infected plants and can be transmitted by a broad range of mechanisms; therefore early specific detection is vital for effective disease management. In this study, a polyclonal antibody (pAb) was developed and deployed in a lateral flow device (LFD) format to allow rapid in‐field detection of Xcm. Published Xcm PCR assays were also independently assessed: only two assays gave specific amplification of Xcm, whilst others cross‐reacted with non‐target Xanthomonas species. Pure cultures of Xcm were used to immunize a rabbit, the IgG antibodies purified from the serum and the resulting polyclonal antibodies tested using ELISA and LFD. Testing against a wide range of bacterial species showed the pAb detected all strains of Xcm, representing isolates from seven countries and the known genetic diversity of Xcm. The pAb also detected the closely related Xanthomonas axonopodis pv. vasculorum (Xav), primarily a sugarcane pathogen. Detection was successful in both naturally and experimentally infected banana plants, and the LFD limit of detection was 105 cells mL?1. Whilst the pAb is not fully specific for Xcm, Xav has never been found in banana. Therefore the LFD can be used as a first‐line screening tool to detect Xcm in the field. Testing by LFD requires no equipment, can be performed by non‐scientists and is cost‐effective. Therefore this LFD provides a vital tool to aid in the management and control of Xcm.  相似文献   

8.
W. Wu  G. B. Hu  J. H. Xie  X. J. Ge 《Plant pathology》2015,64(5):1061-1067
Target trait evaluation in crop wild relatives is an important prerequisite for efficiently using the potential useful genes located in this valuable germplasm. Over recent decades, Fusarium oxysporum f. sp. cubense tropical race 4 (Foc‐TR4) has seriously threatened worldwide banana plantations. Breeding new resistant cultivars from wild banana species is expected to provide invaluable additional resources. However, knowledge on resistance to Foc‐TR4 in wild Musa species is very limited. In this study, eight genotypes of wild banana relatives (Musa acuminata subsp. burmannica, Mbalbisiana, Mbasjoo, Mitinerans, Mnagensium, Mruiliensis, Mvelutina and Myunnanensis) were characterized for resistance to Foc‐TR4 in both greenhouse and field conditions. Most wild bananas showed higher resistance levels to Foc‐TR4 than the reference cultivars ‘Brazilian’ (AAA, susceptible) and ‘Goldfinger’ (AAAB, moderate resistance). Among the wild species, M. balbisiana showed the highest levels of disease intensity followed by Macuminata subsp. burmannica. Some individuals of Myunnanensis, Mnagensium, Mruiliensis and Mvelutina showed low levels of rhizome discolouration in greenhouse conditions, but were resistant in the field. No symptoms were observed on Mbasjoo and Mitinerans, suggesting higher levels of resistance to Foc‐TR4. The results revealed different sources of resistance to Foc‐TR4 in banana wild relatives, which constitute a valuable genetic resource for banana breeding programmes aiming to produce cultivars resistant to fusarium wilt.  相似文献   

9.
本文研究了枯草芽胞杆菌Bacillus subtilis TR21在大田对抗病品种粉杂1号枯萎病的防控效果及其与病原菌不同组合处理种苗根系抗性相关信号物质累积情况,评估了菌株TR21与粉杂1号结合减轻大田发病率的应用价值。田间试验设置清水对照区、菌株TR21可湿性粉剂喷叶区、菌株TR21可湿性粉剂喷叶+叶腋接种1次胶囊剂型区、菌株TR21可湿性粉剂喷叶+叶腋接种1次栓剂剂型区,并统计田间发病率、抽蕾率、断蕾率和产量。室内采用清水处理、菌株TR21叶腋接种、香蕉枯萎病菌FOC004孢子根系接种、菌株TR21叶腋接种后再在根系接种FOC004孢子的挑战接种4种处理方式,测定接种后不同时间点根系NO、H2O2和水杨酸(SA)变化。结果表明,TR21可湿性粉剂的不同处理均能降低粉杂1号发病率,其中喷叶区防效达72%,此外增加1次栓剂处理可以显著增加单株产量,并显著缩短粉杂1号生育期。对抗性信号物质测定发现,只有挑战处理能够在接种早期(4 h)激发NO的显著升高,并维持较长时间(72 h);3种处理均能够在早期(4 h)显著减少根系产生H2O2;病原菌和挑战处理在早期(4 h)能够激发根系SA含量显著升高。TR21叶腋喷施通过提高粉杂1号对枯萎病的抗性来降低田间发病率。  相似文献   

10.
A rapid glasshouse‐based bioassay method to screen large numbers of cotton plants for responses to Fusarium oxysporum f. sp. vasinfectum (Fov) was developed. Different Fov inoculum concentrations and methods of inoculation were assessed using resistant and susceptible cotton cultivars. Cotton seeds were planted directly into Fov‐inoculated soil. Studies of seed germination, seedling establishment, seedling mortality and fusarium wilt symptoms (i.e. stunting, foliar symptoms and vascular browning) were performed to optimize the bioassay parameters. Growing seedlings in Fov‐inoculated soils at 5 × 104 or 1 × 105 CFU g?1 soil, in individual seedling tubes with 12 h at 28–30°C and 12 h at 15–18°C, gave consistent results when assessing Fov disease responses 6 weeks after inoculation. When fusarium wilt resistance ranks (FWRRs) and vascular browning index (VBI) means of 18 Australian and other cotton cultivars from the Fov glasshouse bioassay were compared against their fusarium field performance ranks (F‐ranks), assessed on adult plants for cotton cultivar release, Pearson’s correlation was highly significant for both comparisons. The level of congruence between field and glasshouse data indicated that this protocol should be an effective tool for large‐scale screening for Fov‐resistance responses in diverse germplasm and breeding populations and for advancing genetic research to develop molecular markers for Fov resistance in cotton.  相似文献   

11.
The aim of this study was to evaluate the ability of nonpathogenic F. oxysporum and Trichoderma isolates from suppressive soils in South Africa to suppress fusarium wilt of banana in the glasshouse. Several biological control agents and commercial biological control products were included in the study. The isolates were first screened in vitro on potato dextrose agar. In glasshouse evaluations, the fungal and bacterial isolates were established on banana roots before they were replanted in pathogen-infested soil, while the commercial biocontrol agents were applied as directed by the supplier. Banana plantlets were evaluated for disease development after 7 weeks. In vitro tests showed none of the nonpathogenic isolates suppressed Fusarium oxysporum f.sp. cubense ( Foc ), while slight suppression was observed with the two Trichoderma isolates. Results of the glasshouse evaluations revealed that two of the nonpathogenic F. oxysporum isolates, CAV 255 and CAV 241, reduced fusarium wilt incidence by 87·4 and 75·0%, respectively. The known biological control agent Fo47 did not suppress Foc significantly. Pseudomonas fluorescens strain WCS 417, known for its ability to suppress other fusarium wilt diseases (WCS 417), reduced disease incidence by 87·4%. These isolates should be further evaluated for potential application in the field, independently and in combination.  相似文献   

12.
BACKGROUND: Yellow stem borer (Tryporyza incertulas Walker), striped stem borer (Chilo suppressalis Walker) and leaf folder (Cnaphalocrocis medinalis Guenec) are three lepidopteran pests that cause severe damage to rice in many areas of the world. In this study, novel insect‐resistant transgenic rice was developed in which Bt protein expression was nearly absent in the endosperm. The resistant gene, cry1C*, driven by the rice rbcS promoter (small subunit of ribulose‐1,5‐bisphosphate carboxylase/oxygenase), was introduced into Zhonghua 11 (Oryza sativa L. ssp. japonica) by Agrobacterium‐mediated transformation. RESULTS: A total of 83 independent transformants were obtained, 19 of which were characterised as single‐copy foreign gene insertion. After preliminary screening of the T1 families of these 19 transformants in the field, six highly insect‐resistant homozygous lines were selected. These six homozygous transgenic lines were field tested for resistance to leaf folders and stem borers, and for their agronomic performance. The Cry1C* protein levels in leaves and endosperm were measured by ELISA. Subsequently, the elite transgenic line RJ5 was selected; this line not only possessed high resistance to leaf folders and stem borers, normal agronomic performance, but also Cry1C* expression was only 2.6 ng g?1 in the endosperm. CONCLUSION: These results indicated that RJ5 has the potential for widespread utility in rice production. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

14.
Twelve wild Solanum accessions were tested in a glasshouse at the seedling stage for resistance to Fusarium oxysporum f. sp. melongenae, the causal agent of fusarium wilt of aubergine. Four isolates of the fungus (three Turkish and one Italian) were used. Solanum incanum and S. linneanum were highly susceptible, whereas S. sisymbrifolium, S. torvum and S. aethiopicum Gilo group (one accession) were resistant. In Solanum aethiopicum Aculeatum (two accessions), S. aethiopicum Gilo, S. viarum and S. macrocarpon there were both resistant and susceptible individuals. The sources of resistance found in these wild Solanum spp. could be conveniently used to breed aubergine cultivars resistant to fusarium wilt.  相似文献   

15.
16.
The time course of accumulation of two phytoalexins, the terpenoid rishitin and the polyacetylene cis-tetradeca-6-ene-1,3-diyne-5,8-diol, was determined in near-isogenic susceptible and resistant tomato lines inoculated with either Verticillium albo-atrum or Fusarium oxysporum f.sp. lycopersici.Cultivars containing the Ve gene for verticillium wilt resistance accumulated phytoalexins at a rate similar to that in susceptible plants following stem inoculation with V. albo-atrum. Higher amounts of phytoalexins were isolated from susceptible than from resistant plants at 11 days after inoculation. Inoculum concentrations of 105, 106, 107 and 108 conidia ml−1 had no differential effect on phytoalexin accumulation at 3 days after inoculation. Also, no differences were observed between fungal growth in susceptible and resistant cultivars during that period.A cultivar containing the I-1 gene for fusarium wilt resistance contained more rishitin than did susceptible plants at 2 and 3 days after inoculation with 107 conidia of F. oxysporum f.sp. lycopersici ml−1, but at 7 and 11 days after inoculation more rishitin had accumulated in the susceptible plants.No difference was observed between the rate of accumulation of phytoalexin in stem segments from resistant and susceptible plants inoculated by vacuum-infiltration.To estimate the concentration of phytoalexins in the xylem fluid, sap was expressed from vascular tissue and amounts of phytoalexins were determined in the sap and in the expressed tissue. Less than 5% of the phytoalexins present in stem segments was recovered from the sap, indicating that their concentration in the xylem fluid may be relatively low.The role of phytoalexins in resistance to verticillium and fusarium wilt is discussed.  相似文献   

17.
Fusarium oxysporum f. sp. lentis is the most important pathogen of lentil plants, and most areas under lentil cultivation are reported to have a fusarium wilt disease background. The plants are infected in the seedling stage and later stages of their development. Fusarium wilt disease, which has appeared at high incidence rates during recent years, has caused sharp drops in the yield, especially in Moghan, in the northwest of Iran. Forty-five isolates of the pathogen were collected from different regions of the country with two isolates from ICARDA in the summer of 2008 and identified using Nelson’s key. The pathogenicity of the collected isolates was studied on a sensitive line (ILL 4605) under greenhouse conditions and significant differences in pathogenicity were found among them. The most pathogenic isolates from three provinces, East Azerbaijan (EA 30), Ardebil (Ar 3) and Khorasan (Kh 45), were selected and used in screening of 55 developed lines under greenhouse and field conditions. In the greenhouse, test plants were inoculated by immersing root tips in spore suspension and sowing seeds in pre-infested pot soil. Field tests were carried out in a naturally highly infested farm. At all stages, the plant response to the disease was based on the percentage of dead plants. Cluster analyses of the greenhouse and field data led to the selection of three lines (81S15, FLIP2007-42 L and FLIP2009-18 L) that were resistant under greenhouse and field conditions.  相似文献   

18.
Pre-inoculation with the endobacterium Serratia marcescens (strain UPM39B3) induced the production of host defence enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia lyase, total soluble phenols and lignothioglycolic acid in banana plantlets. The levels of these enzymes were evidently higher in plantlets pre-treated with the endobacterium compared to the control. The production of host-induced enzymes benefitted the crop plants as they may have a role in suppressing Fusarium wilt incidence in the plantlets. This was evident when plantlets pre-treated with the endobacterium showed a lower disease severity (50%) compared to diseased plantlets lacking the endobacterium (74%). The results of this study thus highlight the potential of the isolate Serratia marcescens (strain UPM 39B3) as a biological control agent for Fusarium wilt management in bananas, reducing disease severity via stimulation of host defences.  相似文献   

19.
Fusarium oxysporum is a soil borne hyphomycete that causes vascular wilts in several crop plants. A variety of remedial measures such as the use of fungicides, soil amendments and biological antagonists have proved insufficient in controlling F. oxysporum. Ever since it was first reported in banana crop, the only effective control strategy known is planting of resistant cultivars. However, presumably due to the high mutation rates and rapid co-evolution with its host, Fusarium wilt has surmounted host defense barriers and has already begun infecting even the resistant Cavendish varieties that dominate export markets worldwide. Transgenic banana plants showing enhanced resistance to Fusarium wilt have been developed in recent past, but they remain largely confined to the laboratory. The importance of banana as source of food and income in developing countries world over and the need to develop Fusarium wilt tolerant cultivars by novel biotechnological approaches is detailed herein. In this communication, we review the biology and management of Fusarium wilt in banana with the aim of providing the baseline of information to encourage much needed research on integrated management of this destructive banana crop disease problem.  相似文献   

20.
Ascochyta blight caused by Ascochyta rabiei and fusarium wilt caused by Fusarium oxysporum. f. sp. ciceris are the two most serious diseases of chickpea (Cicer arietinum). Quantitative trait loci (QTL) or genes for ascochyta blight resistance and a cluster of resistance genes for several fusarium wilt races (foc1, foc3, foc4 and foc5) located on LG2 of the chickpea map have been reported independently. In order to validate these results and study the linkage relationship between the loci that confer resistance to blight and wilt, an intraspecific chickpea recombinant inbred lines (RIL) population that segregates for resistance to both diseases was studied. A new LG2 was established using sequence tagged microsatellite sites (STMS) markers selected from other chickpea maps. Resistance to race 5 of F. oxysporum (foc5) was inherited as a single gene and mapped to LG2, flanked by the STMS markers TA110 (6.5 cM apart) and TA59 (8.9 cM apart). A QTL for resistance to ascochyta blight (QTLAR3) was also detected on LG2 using evaluation data obtained separately in two cropping seasons. This genomic region, where QTLAR3 is located, was highly saturated with STMS markers. STMS TA194 appeared tightly linked to QTLAR3 and was flanked by the STMS markers TR58 and TS82 (6.5 cM apart). The genetic distance between foc5 and QTLAR3 peak was around 24 cM including six markers within this interval. The markers linked to both loci could facilitate the pyramiding of resistance genes for both diseases through MAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号