首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Downy mildew, caused by Plasmopara viticola, is one of the most destructive diseases of grapevine and is controlled with intense application of chemical fungicides. Treatment with Trichoderma harzianum T39 (T39) or benzothiadiazole‐7‐carbothioic acid S‐methyl ester (BTH) has been previously shown to activate grapevine resistance to downy mildew and reduce disease symptoms in the Pinot noir cultivar. However, enhancement of plant resistance can be affected by several factors, including plant genotype. In order to further extend the use of resistance inducers against downy mildew, the physiological and molecular properties of T39‐ and BTH‐activated resistance in different cultivars of table and wine grapes were characterized under greenhouse conditions. T39 treatment reduced downy mildew symptoms, but the degree of efficacy differed significantly among grapevine cultivars. However, efficacy of BTH‐activated resistance was consistently high in the different cultivars. Expression profiles of defence‐related genes differed among cultivars in response to resistance inducers and to pathogen inoculation. T39 treatment enhanced the expression of defence‐related genes in the responsive cultivars, before and after P. viticola inoculation. A positive correlation between the efficacy of T39 and the expression level of defence‐related genes was found in Primitivo and Pinot noir plants, while different genes or more complex processes were probably activated in Sugraone and Negroamaro. The data reported here suggest that the use of a responsive cultivar is particularly important to maximize the efficacy of resistance inducers and new natural inducers should be explored for the less responsive cultivars.  相似文献   

2.
Levels of resistance to Plasmopara viticola, from susceptible to highly resistant, of different grapevine cultivars were observed in vineyards and confirmed by the symptoms developed after inoculations. On the abaxial surface of infected leaves, P. viticola developed abundant sporangiophores on susceptible cultivars (Chasselas, Gamay, Gamaret and Pinot Noir), whereas on less susceptible cultivars (Seyval Blanc and Johanniter) the parasite produced few sporangiophores and some necrotic spots at the site of infection. On resistant cultivars (Bronner, Solaris, IRAC 2091), P. viticola induced a hypersensitive response and only necrotic spots were visible and the disease ceased to develop. Stilbenes were analyzed 4, 7, 24, 48 h post-infection (hpi) on small leaf samples cut from the site of infection. Large differences were observed between the cultivars at 24 and 48 hpi. Susceptible grapevines produced resveratrol and its glycoside, piceide. In contrast, resistant plants produced high concentration of ε- and δ-viniferin. Resveratrol and piceide have little or no toxicity activity against P. viticola, whereas δ-viniferin is highly toxic and can be considered an important marker for resistance of grapevine to downy mildew. The importance of oxidative dimerization of resveratrol in comparison to the extent of its glycosylation in defense reaction of grapevines against P. viticola is discussed.  相似文献   

3.
4.
The differential expression of 13 defence‐related genes during Phoma koolunga infection of stems and leaves of susceptible versus resistant field pea (Pisum sativum) was determined using qRT‐PCR. Expression, in terms of relative mRNA level ratios, of genes encoding ferredoxin NADP oxidoreductase, 6a‐hydroxymaackiain methyltransferase (hmm6), chalcone synthase (PSCHS3) and ascorbate peroxidase in leaves and stems differed during 6–72 hours post‐inoculation (hpi) and reflected known host resistance levels in leaves versus stems. In comparison to the susceptible genotype, at 24, 48 and 72 hpi, two genes, hmm6 (122.43‐, 206.99‐ and 32.25‐fold, respectively) and PSCHS3 (175.00‐, 250.13‐ and 216.24‐fold, respectively), were strongly up‐regulated in leaves of the resistant genotype, highlighting that resistance against P. koolunga in field pea is governed by the early synthesis of pisatin. At 24 hpi, leaves infected by P. koolunga showed clear differences in expression of target genes. For example, the gene encoding a precursor of the defensin ‘disease resistance response protein 39’ was substantially down‐regulated in leaves of both the susceptible and the resistant genotypes inoculated with P. koolunga. This contrasts with other studies on another pea black spot pathogen, Didymella pinodes, where this same gene is strongly up‐regulated in leaves of resistant and susceptible genotypes. The current study provides the first understanding of defence‐related genes involved in the resistance against P. koolunga, opening novel avenues to engineer new field pea cultivars with improved leaf and stem black spot disease resistance as the basis for developing more effective and sustainable management strategies.  相似文献   

5.
Peach gummosis, caused by Botryosphaeria spp. fungi, is the process of gum accumulation and exudation in plants. Ethephon (2‐chloroethylphosphonic acid) has profound effects on plants, including enhanced production of secondary metabolites and regulation of plant diseases. This study investigates the effects of application of ethephon before and after inoculation with Lasiodiplodia theobromae on gum formation. Gum formation was promoted by ethephon treatment prior to pathogen inoculation, but inhibited by ethephon applied after the pathogen. The inhibitory effect was counteracted by 1‐methylcyclopropane, which is an ethylene signal inhibitor. 1‐methylcyclopropane also promoted gum formation. Exposure of three isolates of Botryosphaeria to ethephon inhibited mycelial growth. Both treatment methods increased the sugar content at 12 and 24 h post‐inoculation (hpi). However, the sucrose, glucose and fructose contents were significantly higher in shoots with ethephon post‐treatment (application of ethephon after the pathogen inoculation) than those in shoots with ethephon pre‐treatment (application of ethephon prior to pathogen inoculation) at 48 and 72 hpi. The expression of two putative senescence‐related genes, SEN2 and SEN4, were significantly enhanced in pre‐ and post‐treated shoots with ethephon at 24, 48 and 72 hpi. Ethephon application also up‐regulated expression of the pathogenesis‐related protein PR4 while down‐regulating PR1a and PR10. The results show that ethephon has a dual function in regulating gum formation by affecting both the peach shoots and the pathogen.  相似文献   

6.
In this study peroxynitrite (ONOO?) is proposed as an important player in defence responses during the interaction of potato (Solanum tuberosum) and the oomycete pathogen Phytophthora infestans. The potato–avr P. infestans model system exhibited a transient programme of boosted ONOO? formation correlated in time with the burst of nitric oxide (NO) and superoxide during the first 6 h post‐inoculation (hpi). The early ONOO? over‐accumulation was not accompanied by TPx gene expression. In contrast, the compatible interaction revealed a 24 h delay of ONOO? formation; however, an enhanced level of NO and superoxide correlated with TPx up‐regulation was recorded within the earlier stages of pathogen infection. Peroxynitrite over‐accumulation in the susceptible potato coincided with an enhanced level of protein tyrosine nitration starting from 24 hpi. Surprisingly, the nitroproteome profile of the resistant potato did not show any visible difference after inoculation, apart from one band containing subtilisin‐like protease‐like proteins, which appeared 48 h after pathogen attack. An additional pharmacological approach showed that treatment of the susceptible genotype with ONOO? followed by inoculation with P. infestans contributed to slowing down of the colonization of host tissues by the pathogen via a faster and stronger up‐regulation of the key defence markers, including the PR‐1 gene. Taken together, the results obtained indicate that a precise control of emitted NO and superoxide in cooperation with thioredoxin‐dependent redox sensors in sites of pathogen ingress could generate a sufficient threshold of ONOO?, triggering defence responses.  相似文献   

7.
The soilborne pathogen Verticillium dahliae invades its host via the root, and spreads systemically throughout the plant. Although a functional root system of appropriate size is essential for water and nutrient uptake, to date, effects of pathogens on root morphology have not been frequently investigated. Therefore, this study aims to improve knowledge of how V. dahliae infection impairs root morphological characteristics of tomato, considering plant growth and physiological responses, particularly those involved in defence in roots and leaves over a growing period of up to 28 days post‐inoculation. Verticillium dahliae infection suppressed the growth of both shoot and root. Diseased plants developed a smaller leaf area, and exhibited a reduction in the rate of photosynthesis and stomatal conductance. An early response to pathogen invasion in the host root was the up‐regulation of several defence‐related genes, such as proteinase inhibitor II (Pin2), β‐1,3‐glucanase A (GluA) and two pathogenesis‐related genes (PR‐1a, PR‐1b). However, this response did not prevent colonization of the roots by the pathogen. Although a high variability in pathogen density was found within the root system, a significant increase of both the specific root length and surface area was observed in response to pathogen invasion; these traits correlated with water use efficiency. Morphological changes of the root may represent an adaptive response evolved to sustain the supply of both water and nutrients in the presence of the pathogen.  相似文献   

8.
9.
Y. Rondot  A. Reineke 《Plant pathology》2019,68(9):1719-1731
Fungal entomopathogens like Beauveria bassiana (Ascomycota: Hypocreales) are known as antagonists of insects with multiple functional and ecological roles, and have attracted increased attention as biocontrol agents in integrated pest management programmes. For some crop plants, it has been proven that endophytic B. bassiana, besides its entomopathogenic habit, can provide protection against plant pathogens or limit their damaging effects. However, for grapevine, limited knowledge is available on the influence of endophytic B. bassiana on fungal pathogens and about the mechanisms underlying putative protection effects. This study assessed the protective potential of endophytic B. bassiana against grapevine downy mildew Plasmopara viticola in greenhouse experiments. Three and seven days after a B. bassiana treatment, potted grapevine plants were inoculated with P. viticola and the evolving disease severity was assessed. Disease severity was significantly reduced in B. bassiana-treated plants compared to control plants, depending on the age of leaves. Furthermore, a microarray and an RT-qPCR analysis were performed to work out fundamental aspects of genes involved in the interaction between grapevine and B. bassiana. The results indicate an up-regulation of diverse defence-related genes in grapevine as a response to endophytic establishment of B. bassiana. Thus, endophytic establishment of an entomopathogenic fungus such as B. bassiana in grapevine plants would represent an alternative and sustainable plant protection strategy, with the potential for reducing pesticide applications in viticulture.  相似文献   

10.
11.
Eutypa lata is the causal agent of eutypa dieback, a highly damaging trunk disease affecting all grape‐growing areas, with currently neither an efficient curative treatment nor an early non‐destructive diagnostic method. The present work was carried out to discover grapevine genes expressed in response to the presence of E. lata that could be useful to develop an early (before visible foliar symptoms) and non‐destructive (using grapevine leaves) diagnostic tool. Microarray analyses were carried out from (i) infected plants showing characteristic E. lata foliar and vascular symptoms and positive pathogen recovery from vascular lesions (S+R+), (ii) infected plants showing no symptoms (S?R+), and (iii) symptomless plants with negative pathogen recovery (S?R?). Vineyard and greenhouse‐grown plants, naturally or artificially infected respectively, and uninoculated controls were characterized and leaf RNA was hybridized with 15k operon grapevine oligonucleotide microarrays. Among the grapevine genes differentially expressed between S?R+ and S?R? plants in greenhouse and vineyard conditions, 10 were highlighted as robust candidate genes for diagnosis: seven were specifically involved in response to infection and three were associated with symptom absence. Five were confirmed to be effective diagnostic marker genes usable in a qRT‐PCR‐based test performed on RNA extracted from grapevine leaves cultivated in either greenhouse or vineyard conditions. Furthermore, their expression profiles in response to infection with E. lata or other major grapevine fungi (Erysiphe necator, Plasmopara viticola, Botrytis cinerea) could be distinguished. The usefulness of these genes to develop an early and non‐destructive method for diagnosis of E. lata infection is discussed with regard to the advantages and drawbacks of previous Elata diagnostic studies.  相似文献   

12.
The identification of effectors from pathogenic microbes is one of the most important subjects for elucidating infection mechanisms. Wheat blue dwarf (WBD) phytoplasma causes dwarfism, witches' broom, and yellow leaf tips in wheat plants, resulting in severe yield loss in northwestern China. In this study, 37 candidate effector proteins were transiently expressed in Nicotiana benthamiana. Plants expressing the SAP11‐like protein SWP1 exhibited typical witches' broom. Interestingly, another protein, SWP11, induced both cell death and defence responses, including H2O2 accumulation and callose deposition. Analysis by qRT‐PCR was used to show that a marker gene of the hypersensitive response, HIN1, and three pathogenesis‐related genes, PR1, PR2 and PR3, were significantly up‐regulated in leaves of N. benthamiana expressing SWP11. In addition, SWP12 and SWP21 (TENGU‐like) were shown to suppress SWP11‐, BAX‐, and/or INF1‐induced cell death. These results indicated that SWP21 has a distinct role in virulence compared with TENGU and that WBD phytoplasma possesses effectors that target plant proliferation and defence responses. The ability of these effectors to trigger or suppress plant immunity provides new insights into the phytoplasma–plant interaction.  相似文献   

13.
14.
15.
Biological control of Rhizoctonia solani with Trichoderma harzianum has been demonstrated in several studies. However, none have reported the dynamics of expression of defence response genes. Here we investigated the expression of these genes in potato roots challenged by R. solani in the presence/absence of T. harzianum Rifai MUCL 29707. Analysis of gene expression revealed an induction of PR1 at 168 h post-inoculation (hpi) and PAL at 96 hpi in the plants inoculated with T. harzianum Rifai MUCL 29707, an induction of PR1, PR2 and PAL at 48 hpi in the plants inoculated with R. solani and an induction of Lox at 24 hpi and PR1, PR2, PAL and GST1 at 72 hpi in the plants inoculated with both organisms. These results suggest that in the presence of T. harzianum Rifai MUCL 29707, the expression of Lox and GST1 genes are primed in potato plantlets infected with R. solani at an early stage of infection. Mycothèque de l’Université catholique de Louvain of S. Cranenbrouck's affiliation is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).  相似文献   

16.
The role of salicylic acid (SA) was investigated in basal defence and induced resistance to powdery mildew ( Oidium neolycopersici ) and grey mould ( Botrytis cinerea ) in tomato ( Lycopersicon esculentum ) and tobacco ( Nicotiana tabacum ). A comparison of NahG transgenic tomato and tobacco (unable to accumulate SA) to their respective wild types revealed that in tomato, SA was not involved in basal defence against O. neolycopersici but NahG tobacco showed an enhanced susceptibility to O. neolycopersici infection, the effect becoming more obvious as the plants grew older. In contrast, SA played no role in the basal defence of tobacco against B. cinerea , but seemed to contribute to basal defence of tomato against B. cinerea. Activation of the SA-dependent defence pathway via benzothiadiazole (BTH) resulted in induced resistance against O. neolycopersici in tobacco but not in tomato. Microscopic analysis revealed that BTH treatment could prevent penetration of the Oidium germ tube through tobacco leaves, whereas penetration was successful on tomato leaves irrespective of BTH treatment. In contrast, soil or leaf treatment with BTH induced resistance against B. cinerea in tomato but not in tobacco. It is concluded that the SA-dependent defence pathway is effective against different pathogens in tomato and tobacco.  相似文献   

17.
The application of the nonpathogenic isolate Fusarium oxysporum 47 (Fo47) reduced the symptoms of verticillium wilt, phytophthora root rot and phytophthora blight in pepper plants. Botrytis cinerea was also tested on the leaves of plants treated with Fo47, but no protection was observed. Verticillium dahliae colonies cultured in the presence of Fo47 grew slower than control cultures, but Phytophthora capsici growth was unaffected by Fo47. At least part of the protection effect observed against V. dahliae could therefore be due to antagonism or competition. In order to search for induced resistance mechanisms, three defence genes previously related to pepper resistance were monitored over time. These genes encode a basic PR‐1 protein (CABPR1), a class II chitinase (CACHI2) and a sesquiterpene cyclase (CASC1) involved in the synthesis of capsidiol, a phytoalexin. These three genes were transiently up‐regulated in the roots by Fo47 in the absence of inoculation with the pathogen, but in the stem only CABPR1 was up‐regulated. In plants that were inoculated with V. dahliae after the Fo47 treatment, the three genes had a higher relative expression level than the control in both the roots and the stem.  相似文献   

18.
Benthiavalicarb is a new fungicide active against Oomycetes fungal plant pathogens. The present study shows that benthiavalicarb is effective for controlling the Oomycete fungal pathogen Plasmopara viticola, which causes downy mildew in grapevines. The fungicide did not affect zoospore discharge from sporangia of P. viticola, but strongly inhibited zoospore encystment, cystospore germination in vitro and mycelial growth, together with sporangial production in vivo. Benthiavalicarb showed strong prophylactic and local activity in intact plants or detached leaves and low translaminar activity. The compound was not translocated from leaf to leaf in either a acropetal or basipetal direction. Benthiavalicarb applied at 1, 3 and 6 days post-inoculation protected grapevine plants against downy mildew and inhibited sporulation of the pathogen. Similar results were obtained on leaf disks if benthiavalicarb was applied up to 96 h post-inoculation. Benthiavalicarb diminished the sporulation of P. viticola when applied to established disease in the tissue. Benthiavalicarb remained active on leaves for a period up to 28 days. Two foliar applications of benthiavalicarb, 2 weeks apart, to field-grown grapevines inhibited downy mildew development and were as effective as the standard metalaxyl-Cu treatment in controlling the disease. A formulated mixture of benthiavalicarb + Folpet was similar or superior in performance to metalaxyl-Cu and the new strobilurin trifloxystrobin in controlling downy mildew. The effectiveness of benthiavalicarb makes it well suited for integration into a control programme against downy mildew disease in vineyards, and as a component to delay resistance buildup.  相似文献   

19.
20.
As a major component of the cell wall, lignin has been suggested to play an important role in the plant defence response to various pathogens. However, how lignin is involved in plant pathogen interaction is still unclear. Here, a series of transgenic tobacco lines were cultivated with a range of differences in lignin content and composition. Evaluation of pathogen resistance in these plants indicated that lower total lignin content aggravated the severity of tobacco black shank and bacterial wilt diseases, while increased sinapyl lignin (S) alleviated the disease symptoms. The regression analysis indicated both lignin content and S lignin were positively correlated with disease resistance. These two factors had additive effects, exhibiting stronger correlation with disease resistance when they were combined. Neither guaiacyl lignin (G) nor S/G ratio showed close correlation with disease resistance. The expression of pathogenesis‐related protein genes PR2 and PR3 was induced after pathogen inoculation. However, the up‐regulation of PR2 and PR3 was not associated with a disease resistance‐induced increase in lignin content. These data collectively suggest that both total lignin content and S lignin are main factors that contribute to the basic defence response in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号