首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The susceptibility/resistance to Aphanomyces euteiches of various genotypes (cultivars and breeding lines) of several grain legume species was assessed in controlled conditions. A total of 279 genotypes from the major grain legumes grown in temperate climates (faba bean, chickpea, lentil, lupin and common vetch) and three other legumes frequently cultivated in France (French bean, clover and alfalfa) were screened with one pea-infecting isolate from France. Four different categories of susceptibility/resistance were identified among the legume species/cultivars tested with the pea A. euteiches isolate: (1) susceptible legume species (lentil, alfalfa, French bean) among which low levels of partial resistance was observed; (2) legume species including susceptible genotypes and genotypes with high levels of resistance (common vetch, faba bean and clover), (3) species with a very high level of resistance (chickpea) and (4) species displaying no symptoms (lupin). It is therefore important to consider pathogen-species and pathogen-genotype interactions when defining the host specificity of A. euteiches and considering the possible role of different legume species in increasing or decreasing the soil inoculum potential.  相似文献   

2.
Pathogenicity of Aphanomyces spp. from Different Leguminous Crops in Sweden   总被引:1,自引:0,他引:1  
Host range and pathogenicity of a range of Aphanomyces spp. isolates obtained from pea roots but also from a range of other field-grown leguminous crops in southern Sweden was investigated. The Aphanomyces euteiches isolates originating from pea and the few obtained isolates originating from alfalfa, green bean and yellow sweet-clover were highly pathogenic only to pea. The A. euteiches isolated from common vetch differed from these isolates by being weakly pathogenic to pea and other legumes, but highly pathogenic to common vetch. Vetch isolates also formed a well-defined separate cluster based on principal component analysis of pathogenicity pattern on tested crops. Oospores of A. euteiches were observed in root tissue of pea as well as common vetch, alfalfa, green bean, broad bean, red clover and yellow sweet-clover in the greenhouse pathogenicity tests. An Aphanomyces sp. that morphologically differed from A. euteiches, was frequently isolated from several leguminous plants, but was non-pathogenic to all tested crops in the pathogenicity tests. In isozyme analysis the banding pattern of these isolates resembled the pattern of A. cladogamus. Another, different and so far unidentified Aphanomyces sp. from roots of green bean and broad bean, was also non-pathogenic to the tested legume species. Based on the isolates tested, the results obtained suggest that the population of Aphanomyces spp. infecting legume roots in Sweden consists of a pea-specific and a vetch-specific group of A. euteiches. Two other groups comprised (i) Aphanomyces sp. isolates that resembled A. cladogamus, and (ii) isolates, which resembled neither A. euteiches nor A. cladogamus. In addition, the host range of Swedish A. euteiches isolates was not as broad as reported for A. euteiches isolates from other countries.  相似文献   

3.
Aphanomyces euteiches (races 1 and 2) causes root rot of alfalfa; however, its population biology and distribution are poorly understood where alfalfa is a major crop. The objectives of this study were to (1) characterise the distribution and frequency of races of A. euteiches in Illinois alfalfa fields, (2) determine host range of A. euteiches on cultivated and native legumes, and (iii) to describe genetic diversity and population genetic structure of A. euteiches in alfalfa fields. To accomplish this, soil samples (n = 103) were collected from 30 alfalfa fields in 18 Illinois counties. Using the susceptible cv. ‘Saranac’, 148 isolates of A. euteiches were baited from the soil. The virulence phenotype of isolates representing all 18 counties was tested, and 54% were R1 and 46% were R2. Both races were detected in 61% of the counties, whereas only R1 was detected in 22% and R2 in 17%. Thirteen legume hosts for isolates from alfalfa fields were identified based on symptoms and/or production of oospores in roots. In addition to six previously known hosts, seven species were susceptible to infection: kura clover, purple prairie clover, white prairie clover, ladino clover, hairy vetch, Canadian milk vetch, and Illinois tick trefoil. AFLP analysis revealed high levels of genetic diversity among the isolates from different fields and counties and a lack of genetic structuring of populations based on race or geographical origin. The results suggest that populations of A. euteiches in alfalfa fields are diverse, often composed of races 1 and 2, and create risk for alfalfa and to multiple cultivated and native legume species.  相似文献   

4.
The relation between the frequency of legume crops in a rotation and the root rot severity in pea was examined in a field survey. Additionally, greenhouse experiments were performed with soil samples from legume rotation trials or from farmers' fields. The frequency of pea crops in current rotations proved to be much less than the recommended value of one in six years. The correlation between pea root rot and the number of years that pea or other legumes were not grown on the field under consideration (called crop interval) was weak. Root rot severity correlated better with the frequency of peas or legumes in general over a period of 18 years, but the frequency still explained only a minor fraction of the variation in disease index. Some experimental data pointed to the occurrence of a highly specific pathogen microflora with continuous cropping of only one legume species, but this phenomenon probably does not occur in farmers' fields. In field samples, root disease index for pea correlated well with that for field bean. The survival of resting structures of pathogens such asAphanomyces euteiches probably explains why the frequency of legume cropping has a higher impact than crop interval on root disease incidence. Pea-free periods and legume frequencies have a poor predictive value for crop management purposes.  相似文献   

5.
Aphanomyces root rot ( Aphanomyces euteiches ) has become a very destructive disease in French pea crops since 1993. The host specificity of the French pea-infecting populations of this pathogen was investigated by inoculating pea, common vetch, alfalfa, broad bean and green bean with 91 pea-infecting A. euteiches isolates, originating from the main areas of infestation in France. These isolates were compared to 13 isolates from various countries and hosts (pea, green bean, alfalfa). Virulence phenotypes were defined according to the pathogenicity data on the different hosts: all isolates from France infected two to five legume species, with most infecting pea, vetch, alfalfa and broad bean. Four pathotypes were characterized within the French isolates: one type corresponded to broad host range isolates, the second was composed of isolates preferentially agressive on pea/vetch/alfalfa and weakly aggressive on broad bean, and two others corresponding to more specialized isolates that preferentially infected pea/vetch or pea/vetch/alfalfa. Most isolates from France were preferentially pathogenic on pea, like the pea-infecting isolates from other countries, but were less specialized than the alfalfa- and green bean-infecting isolates from other countries. These results suggest that A. euteiches isolates may be maintained on wild or cultivated legumes other than pea in France.  相似文献   

6.
The effect of early and late sowing dates on the establishment of Orobanche crenata Forsk. (crenate broomrape) in resistant and susceptible cultivars of faba bean (Vicia faba L.) and vetch (Vicia sativa L.) were studied over four seasons in southern Spain. Differences in establishment, development and shoot emergence of the parasite were compared. With resistant faba bean and vetch cultivars, there was reduced attachment and shoot emergence of O. crenata with all sowing dates. Susceptible cultivars were more severely affected by the parasite with early sowing. Orobanche crenata development was also delayed in resistant cultivars. Crop yield, estimated by the number of pods per plant, decreased with late sowings. The combined use of resistant cultivars and early sowing is a useful tool as part of an integrated control strategy. Resistant cultivars allow early sowing (with low O. crenata attack), thus avoiding yield losses due to the short crop cycle with late sowing.  相似文献   

7.
Alfalfa (Medicago sativa) is one of several legumes that is affected by Aphanomyces root rot (ARR) caused by Aphanomyces euteiches. Symptoms of ARR on alfalfa seedlings include a yellow-grey discolouration of roots, rotting and loss of lateral roots, stunted growth, chlorotic foliage and reduction of nitrogen-producing nodules on roots. Infection can also occur on adult plants leading to loss of lateral roots and nodules. At the seedling stage, ARR decreases alfalfa stand establishment, and field longevity is reduced when adult plants are infected. A. euteiches is an oomycete pathogen that has motile zoospores and thick-walled oospores that can survive for many years in soil. Two races are currently recognized by pathogenicity on differential alfalfa check cultivars. Most alfalfa cultivars contain race 1 resistance, but there is an increasing development of cultivars with resistance to race 2. Management strategies include planting resistant cultivars, avoiding planting in fields with poor drainage and rotating crops with nonhost plants.  相似文献   

8.
The interactions between the root parasitic weed Orobanche crenata Forsk. and its host plant faba bean ( Vicia faba L.) were quantified under controlled and field conditions at ICARDA's Tel Hadya research station. In the field experiments conducted in 1993–94 and 1994–95 faba beans were sown on two dates, in plots with 0, 50, 200 and 600 O. crenata seeds kg–1 soil, under both limited and sufficient moisture supply. The effects of temperature on the duration of the early developmental stages of O. crenata were investigated in a growth chamber. The extent of O. crenata infestation was closely related to the number of parasite seeds in the soil. The seed-density treatment with 600 seeds kg–1 soil resulted in complete crop failure. Furthermore, O. crenata infestation was higher under sufficient than under limiting water supply conditions, irrespective of sowing date. Only in the moderately infested plots, did shifting of the planting time of faba bean result in a significant decrease in parasite dry weight and an increase in crop seed yield. The timing of germination, attachment and further developmental stages of O. crenata was not related to faba bean growth stage and was affected primarily by soil temperature. The duration of O. crenata developmental stages was estimated using the thermal time concept. The relationship between total number of parasite attachments at the harvest of the faba bean crop and O. crenata seed density was dependent on maximum faba bean root-length density measured by the start of pod-filling in each treatment combination of sowing date and moisture supply. The results are discussed with reference to implications for the development of a dynamic simulation model for the prediction of faba bean yield losses caused by O. crenata .  相似文献   

9.
Uromyces viciae-fabae, rust of faba bean, parasitizes other legume crops such as lentils (Lens culinaris) and field peas (Pisum sativum) in some environments. In this study we examined the host range of two Australian isolates of U. viciae-fabae collected and purified from a faba bean crop and classified as U. viciae-fabae ex V. faba. Field pea (P. sativum), chickpea (Cicer arientinum), lupin (Lupinus spp.), lentil (L. culinaris), and mung bean (Vigna radiata) genotypes were tested with these isolates, as well as resistant and susceptible genotypes of the faba bean host. Race specificity for these two pathogen isolates was observed on Vicia faba, with two faba bean genotypes showing partial resistance. Both U. viciae-fabae isolates also colonized field pea seedlings and successfully produced uredinia under glasshouse conditions, despite this fungus not being known as a pathogen of Australian field pea crops. No sporulation of either isolate of U. viciae-fabae ex V. faba was observed on any of the remaining legume species tested. However, obvious differences in fungal growth were observed, ranging from small infection sites with very rare haustorium formation in mung bean to more extensive growth and the development of potential uredinial structures in chickpea. These observations are discussed in relation to the phylogenetic relationship of these host and nonhost species.  相似文献   

10.
M. DI VITO  N. GRECO 《EPPO Bulletin》1994,24(2):489-494
Control of food legume nematodes should consider the nematode species, type of crops, whether for grain or fresh pod production, environmental conditions and the economics of the crops. In general, 3–4-year crop rotations could provide sufficient control of Heterodera goettingiana and H. ciceri and to a lesser extent also of Meloidogyne artiellia. Soil solarization has shown promise in controlling Pratylenchus thornei and H. ciceri on chickpea and has also been reported to be effective against Meloidogyne spp. The use of fumigants such as 1,3-dichloropropene or 1,3-dichloropropene + methylisothiocyanate and also of non-volatile nematicides (aldicarb, oxamyl, carbofuran, thionazin and fenamiphos) gives good control of these nematodes resulting in impressive yield increases in heavily infested soil. However, both nematicides and soil solarization are expensive and their use may not be economic in most cases. The use of resistant cultivars is, so far, of little importance due to very limited number of those with good agronomic characteristics. To ensure good yield of faba bean, attention must also be paid to producing seed stocks free from Ditylenchus dipsaci. In addition, quarantine regulations must avoid spread of this nematode among different countries.  相似文献   

11.
The dagger nematode Xiphinema index has a high economic impact in vineyards by direct pathogenicity and above all by transmitting the Grapevine fanleaf virus (GFLV). Agrochemicals have been largely employed to restrict the spread of GFLV by reducing X. index populations but are now banned. As an alternative to nematicides, the use of fallow plants between two successive vine crops was assessed. We selected plant species adapted to vineyard soils and exhibiting negative impact on nematodes and we evaluated their antagonistic effect on X. index in greenhouse using artificially infested soil, and in naturally infested vineyard conditions. The screening was conducted with plants belonging to the families Asteraceae (sunflower, marigold, zinnia, and nyjer), Poaceae (sorghum and rye), Fabaceae (white lupin, white melilot, hairy vetch, and alfalfa), Brassicaceae (rapeseed and camelina), and Boraginaceae (phacelia). In the greenhouse controlled assay, white lupin, nyjer, and marigold significantly reduced X. index populations compared with that of bare soil. The vineyard assay, designed to take into account the aggregative pattern of X. index distribution, revealed that marigold and hairy vetch are good candidates as cover crops to reduce X. index populations in vineyard. Moreover, this original experimental design could be applied to manage other soilborne pathogens.  相似文献   

12.
The occurrence ofAphanomyces euteiches Drechs. in Dutch soils is reported for the first time. Isolates of the pathogen were obtained from peas (Pisum sativum L.). A bioassay was used that baited the pathogen from soil into the cortex of stem and root of seedlings of a highly susceptible pea cultivar. The pathogen could subsequently be isolated on a semi-selective medium. Screening of soil samples from 13 fields known to be infested with fungi causing foot and root rot demonstrated the presence ofA. euteiches in 10 cases. In a second screening on soil samples from 43 fields, the pathogen was present in 16 cases. A positive correlation was found between the disease severity caused byA. euteiches in the seedling bioassay and the disease severity caused by the complex of foot and root pathogens in the same soils as evidenced by a mature plant bioassay. It is considered probable thatA. euteiches has since long been a common component of the foot and root rot complex in Dutch soils but has not been detected previously due to inadequate sampling and isolation techniques.Samenvatting De aanwezigheid vanAphanomyces euteiches Drechs. in Nederlandse gronden is voor het eerst aangetoond. Isolaten van het pathogeen werden verkregen van erwten (Pisum sativum L.). De pathogene schimmel werd in petrischalen uit grond in het schorsweefsel van wortel en stengel van een zeer vatbaar erwteras gelokt. Met behulp van een semiselectief medium konden vervolgens isolaten van de schimmel worden verkregen. Toetsing van grondmonsters afkomstig van 13 percelen, waarvan bekend was dat ze besmet waren met schimmels die voetziekten in erwten veroorzaken, toonde de aanwezigheid vanA. euteiches aan in 10 gevallen. In een tweede biotoets op grondmonsters van 43 percelen bleken 16 monsters het pathogeen te herbergen. Er werd een positieve correlatie gevonden tussen de ernst van de aantasting doorA. euteiches van kiemplanten en de aantasting van volwassen planten in een biotoets in de kas. Het is waarschijnlijk dat de schimmel reeds lang in Nederlandse akkers voorkomt, maar door inadequate bemonsterings- en isolatietechnieken over het hoofd is gezien.  相似文献   

13.
L. MOL  K. SCHOLTE  J. VOS 《Plant pathology》1995,44(6):1070-1074
Microsclerotia of Verticillium dahliae are produced in large numbers on senescing parts of host plants and remain viable in the soil for many years. Changes in the population density, i.e. density of microsclerotia, in the soil were measured in micro-plots using two isolates of V. dahtiae , specific to either field bean or potato, several crop sequences comprising potato, field beans and barley, and either the removal of aerial debris of the crops or incorporation into soil.
Potato was more susceptible to the potato isolate and field bean more susceptible to the field bean isolate. Removal of debris of potato and field bean reduced numbers of microsclerotia in the soil in the subsequent years, but removal of barley straw had no effect. Initially non-infested control micro-plots became infested, probably by the growth of potato roots into the naturally infested subsoil. The rate of increase of the microsclerotial population in the non-infested control micro-plots was larger than in the initially infested treatments, because more colonized debris was produced. It is concluded that removal of aerial debris of host crops is important to reduce the soil population of V. dahtiae.  相似文献   

14.
ABSTRACT Ascochyta spp. (teleomorphs: Didymella spp.) infect a number of legumes, including many economically important species, and the diseases they cause represent serious limitations of legume production worldwide. Ascochyta rabiei, A. fabae, A. pisi, A. lentis, and A. viciae-villosae are pathogens of chickpea (Cicer arietinum), faba bean (Vicia faba), pea (Pisum sativum), lentil (Lens culinaris), and hairy vetch (V. villosa), respectively. Inoculations in the greenhouse and in growth chambers demonstrated that A. fabae, A. lentis, A. pisi, A. rabiei, and A. viciae-villosae were host specific. Isolates caused no visible disease symptoms on "nonhost" plants (plants other than the hosts they were originally isolated from) but were recovered consistently from inoculated, surface-disinfested, nonhost tissues. Interspecific crosses of A. pisi x A. fabae and A. viciae-villosae x A. lentis produced pseudothecia with viable ascospores, and the hybrid status of the ascospore progeny was verified by the segregation of mating type and amplified fragment length polymorphism (AFLP) markers. Interspecific progeny were morphologically normal in culture but exhibited more phenotypic variation compared with progeny from intraspecific crosses. Mating type and the majority of AFLP markers segregated in Mendelian 1:1 ratios in both intraspecific and interspecific crosses. A total of 11 and 7% of AFLP markers showed segregation distortion among progeny from interspecific crosses and intraspecific crosses, respectively; however, this difference was not significant (P = 0.90). Only 30 of 114 progeny isolates from the A. fabae x A. pisi cross inoculated in the greenhouse caused lesions on pea and only 4 caused disease on faba bean. In all, 15 of 110 progeny isolates were pathogenic to pea and none were pathogenic to faba bean under growth chamber conditions. Although no obvious postzygotic, intrinsic isolating barriers were identified in any of the interspecific crosses, it appears that host specialization may act as both a prezygotic, ecological isolating barrier and a postzygotic, extrinsic, ecological isolating barrier in these fungi. Host specificity, coupled with low pathogenic fitness of hybrids, may be an important speciation mechanism contributing to the maintenance of hostspecific, phylogenetic lineages of these fungi.  相似文献   

15.
Potential antagonists ofFusarium solani f. sp.pisi (Fsp) were selected from soil samples with varying degrees of receptivity to this pathogen. They were tested against Fsp isolate 48 (Fs48), in increasingly complex systems. Most species testedin vitro were able to antagonize Fs48. No relation could be establishedin vitro between the receptivity of the soil from which an isolate originated and its antagonism to Fs48. In soils naturally infested with pea root rot pathogens, which were stored humid at 4°C for a period longer than a year, various isolates ofFusarium, Gliocladium andPenicillium spp. were able to reduce root rot. After sterilization of these soils, onlyGliocladium roseum isolates, added at 105 conidia g–1 dry soil, significantly reduced disease severity and prevented root weight losses caused by Fs48 at 104 conidia g–1 dry soil. In soils in which the biota were activated by growing peas before the assays, doses of 106 and 107 ofG. roseum were required to reduce root rot. In these soils, the antagonistic effects of fluorescent pseudomonad strains from soil of low receptivity to Fsp were variable. Some strains of fluorescent pseudomonads, from soil moderately receptive to Fsp and from highly infested soils, were also able to reduce root rot. Disease suppression by pseudomonad strains was more evident in the absence than in the presence ofAphanomyces euteiches in the root rot pathogen complex. The role of receptiveness of the soil with regard to potential antagonists is discussed.  相似文献   

16.
Research on root rot pathogens of peas in the Netherlands has confirmed the prevalence ofFusarium solani, F. oxysporum, Pythium spp.,Mycosphaerella pinodes andPhoma medicaginis var.pinodella. Aphanomyces euteiches andThielaviopsis basicola were identified for the first time as pea pathogens in the Netherlands. Other pathogens such asRhizoctonia solani andCylindrocarpon destructans were also found on diseased parts of roots. F. solani existed in different degrees of pathogenicity, and was sometimes highly specific to pea, dwarf bean of field bean, depending on the cropping history of the field.A. euteiches was specific to peas, whereasT. basicola showed some degree of physiological specialization.  相似文献   

17.
The oomycete pathogen Aphanomyces euteiches causes root rot in various legume species. In this study we focused on A. euteiches causing root rot in pea (Pisum sativum), thereby being responsible for severe yield losses in pea production. We aimed to understand the genetic diversity of A. euteiches in Europe, covering a north-to-south gradient spanning from Sweden, Norway and Finland to the UK, France and Italy. A collection of 85 European A. euteiches strains was obtained, all isolated from infected pea roots from commercial vining pea cultivation fields. The strains were genotyped using 22 simple-sequence repeat markers. Multilocus genotypes were compiled and the genetic diversity between individual strains and population structure between countries was analysed. The population comprising strains from Italy was genetically different and did not share ancestry with any other population. Also, strains originating from Finland and the eastern parts of Sweden were found to be significantly different from the other populations, while strains from the rest of Europe were more closely related. A subset of 10 A. euteiches strains from four countries was further phenotyped on two susceptible pea genotypes, as well as on one genotype with partial resistance towards A. euteiches. All strains were pathogenic on all pea genotypes, but with varying levels of disease severity. No correlation between the genetic relatedness of strains and virulence levels was found. In summary, our study identified three genetically distinct groups of A. euteiches in Europe along a north-to-south gradient, indicating local pathogen differentiation.  相似文献   

18.
Subterranean clover (Trifolium subterraneum) is an important pasture legume in Australia (29 million ha) and elsewhere. However, severe pasture decline occurs in association with several root pathogens, including Aphanomyces trifolii, that has been misidentified for decades as A. euteiches until recently confirmed as A. trifolii. A series of controlled environment experiments was undertaken to identify host resistance to A. trifolii in subterranean clover and to compare virulence and phylogeny of isolates. In experiment 1, Dalkeith, Bacchus Marsh, Riverina and Yarloop were the most resistant of 38 cultivars with a percentage disease index (PDI) ≤10 for both tap and lateral roots. Experiment 2 confirmed resistance of Yarloop, but a change in some relative varietal resistances suggested physiological specialization among A. trifolii isolates. Experiment 3 confirmed extensive variation in virulence and physiological specialization across 23 isolates of A. trifolii, with three distinct clades, two of which were distinct from isolates collected previously. Experiment 4 identified host resistance(s) effective against a mixture of 20 A. trifolii isolates, but the most resistant cultivars (Antas, Uniwager, Leura) still showed significant disease. This is the first study to show physiological specialization in A. trifolii and to identify host resistance. This study defines A. trifolii as a significant but largely unknown contributor to severe root disease of subterranean clover in southern Australia. Finally, development and calibration of a new soil commercial DNA test not only enables field quantification of the disease, but development of appropriate breeding, selection and farm management strategies to reduce its impact.  相似文献   

19.
Phytophthora niederhauserii, P. pisi, P. sojae and P. vignae are closely related species that are pathogenic to various legume plants. While P. sojae and P. vignae are reported to specifically infect soybean and cowpea, respectively, P. pisi is reported to attack pea and faba bean. Phytophthora niederhauserii is considered to have a broad host range. Zoospores of some Phytophthora species are chemotactically attracted to the isoflavones that are secreted by their host plants. The focus of the current study was to determine the chemotaxic behaviour of zoospores from closely related legume‐root infecting Phytophthora species and to investigate the correlation, if any, to host preference as determined by greenhouse pathogenicity tests. The results showed that P. sojae and P. vignae were attracted to the non‐soybean isoflavone prunetin as well as to the soybean isoflavones genistein and daidzein, which is in contrast with their host specificity on soybean and cowpea, respectively. On the other hand, P. pisi and P. niederhauserii were only attracted to prunetin, previously reported to be produced by pea, but not to the isoflavones associated with the non‐host soybean. The lack of responsiveness to genistein and daidzein in P. pisi may represent a recent adaptation to the host specialization towards pea. However, the affinity of P. niederhauserii to prunetin shows that this trait can also be present in taxa not specifically associated with legume hosts.  相似文献   

20.
Ascochyta/legume interactions are attractive systems for addressing evolutionary questions about the role of host specificity in fungal speciation because many wild and cultivated cool season food legumes are infected by Ascochyta spp. and most of these fungi have described teleomorphs (Didymella spp.) that can be induced in the laboratory. Recent multilocus phylogenetic analyses of a worldwide sample of Ascochyta fungi causing ascochyta blights of chickpea (Cicer arietinum), faba bean (Vicia faba), lentil (Lens culinaris), and pea (Pisum sativum) have revealed that fungi causing disease on each host formed a monophyletic group. Host inoculations of these fungi demonstrated that they were host-specific, causing disease only on the host species from which they were isolated. In contrast to the strict association between monophyletic group and host observed for pathogens of cultivated legumes, Ascochyta fungi causing disease on wild bigflower vetch (Vicia grandiflora) were polyphyletic. Genetic crosses between several pairs of closely related, host-specific, and phylogenetically distinct Ascochyta fungi were fully sexually compatible. Progeny from these crosses had normal cultural morphology and segregation of molecular markers indicating a lack of intrinsic, post-zygotic mating barriers between the parental taxa. However, when progeny from a cross between a faba bean-adapted isolate (A. fabae) and a pea-adapted isolate (A. pisi) were assessed for their pathogenicity to the parental hosts, almost all progeny were non-pathogenic to either faba bean or pea. These results suggest that although these fungi have retained the ability to mate and produce progeny with normal saprophytic fitness, progeny are severely compromised in parasitic fitness. The host specificity of these fungi, coupled with the inability of hybrid progeny to colonize and reproduce on a host, may constitute strong extrinsic, pre-zygotic and post-zygotic mating barriers in these fungi and promote the genetic isolation and speciation of host-specific taxa. A phylogeny of the host plants is also being developed, and with more extensive sampling of pathogens and hosts from sympatric populations in the centre of origin, the hypothesis of cospeciation of pathogens and hosts will be tested. The objectives of this review are: (1) to summarize recent phylogenetic, host specificity and speciation studies of Ascochyta fungi, and (2) to suggest how current and future research using these pathosystems may lead to a better understanding of the role of host specificity in the speciation of plant-pathogenic fungi and the cospeciation of pathogens and their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号