首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxypropyl methylcellulose (HPMC) is a substituted cellulose that reduces serum cholesterol at modest intake levels. HPMC has also been used for decades in gluten-free breads at a level to optimize loaf volume. Because consumers resist the consumption of whole wheat breads, the sensory and physical properties of all oat and barley breads incorporating HPMC were evaluated. Oat and barley also contain β-glucan, a glucose polymer similar to HPMC that also lowers cholesterol. The textural and sensory properties of the breads were determined by instrumental and chemical methods and sensory panels. HPMC increased the loaf volume of the breads by up to 2 times and decreased hardness immediately after baking and after up to 3 days of storage. Barley bread with HPMC was rated the highest in overall acceptability by sensory panelists compared to oat and wheat breads with or without HPMC.  相似文献   

2.
The in vitro bile acid binding by rice bran, oat bran, dehulled barley, and β‐glucan enriched barley was determined using a mixture of bile acids at a duodenal physiological pH of 6.3. Six treatments and two blank incubations were conducted testing substrates on an equal protein basis. The relative in vitro bile acid binding of the cereal brans on an equal total dietary fiber (TDF) and insoluble dietary fiber (IDF) basis considering cholestyramine as 100% bound was rice bran 45 and 49%; oat bran 23 and 30%; dehulled barley 33 and 57%; and β‐glucan enriched barley 20 and 40%, respectively. Bile acid bindings on equal protein basis for the respective cereals were 68, 26, 41, and 49%. Bile acid binding by rice bran may account to a great extent for its cholesterol‐lowering properties, while bile acid binding by oat bran suggests that the primary mechanism of cholesterol lowering by oat bran is not due to the bile acid binding by its soluble fiber. Bile acid binding was not proportional to the soluble fiber content of the cereal brans tested. Except for dehulled barley, bile acid binding for rice bran, oat bran, and β‐glucan enriched barley appear to be related to their IDF content. Highest relative bile acid binding values for rice bran and β‐glucan enriched barley were observed on an equal protein basis, whereas highest values for dehulled barley were based on IDF. Data suggest that of all four cereals tested, bile acid binding may be related to IDF or protein anionic, cationic, physical and chemical structure, composition, metabolites, or their interaction with active binding sites.  相似文献   

3.
After the U.S. mandate of folic acid fortification of enriched grain products, a report indicated higher than expected fortification. Limited information is available on folic acid in enriched products. We measured the folate content in 92 sandwich breads (46 white breads and 46 whole wheat breads) in Birmingham, Alabama, during 2001-2003. The mean folate content in white bread declined significantly from 2001 to 2002 or 2003, whereas the decline in folate content in whole wheat bread containing enriched flour was not significant. White bread contained significantly more folate than whole wheat bread containing enriched flour in 2001 and 2003. In 2002 and 2003, >40% of breads made of enriched flour contained <115 microg of folate/100 g and >70% contained <160 microg/100 g. These percentages were markedly higher than those in 2001. Our data suggest that folic acid in breads containing enriched flour declined after 2001 and monitoring of fortification may be necessary.  相似文献   

4.
This study examined the effects of various cereal fibers and various amounts of β-glucan on cholesterol and bile acid metabolism. Hamsters were fed semisynthetic diets containing 0.12% cholesterol, 20% fat, and either 16% total dietary fiber (TDF) from wheat bran (control) or 10% TDF from oat bran, 13% TDF from oat bran concentrate or barley grains, 16% TDF from oat fiber concentrate, barley flakes, or rye bran. After five weeks, plasma total cholesterol and liver cholesterol concentrations were significantly lower (20 and 50%, respectively) only in hamsters fed rye bran. Diets containing any of the oat ingredients or barley had no effect on total cholesterol. Changes in the pattern of biliary bile acids occurred in hamsters fed 16% TDF from barley flakes or 10% TDF from oat bran. Hamsters fed rye bran had a significantly higher fecal bile acid excretion when compared with controls fed wheat bran. Because rye bran caused the most pronounced lowering effect of total cholesterol despite the lowest content of β-glucan and soluble fibers, components other than β-glucan and soluble fibers seem to be involved in its hypocholesterolemic action. Since the effects of the oat and barley ingredients were not solely correlated to the β-glucan content, structural changes occurring during processing and concentrating of the products may have impaired the hypocholesterolemic potential of the β-glucans, and other factors such as solubility and viscosity of the fiber components seem to be involved.  相似文献   

5.
The properties of a white wheat bread could be changed by adding normal or heat‐treated barley flour in small amounts (2 and 4%) to a white wheat bread recipe. Differences regarding gelatinization as well as retrogradation properties were found when analyzing the two flours in model systems. The heat‐treated flour was fully gelatinized due to prior time, temperature, and pressure treatment and could therefore absorb larger amounts of water than the other flours. In gelatinized model systems with 40% flour (dwb), the heat‐treated barley flour contained less retrograded amylopectin as compared with normal barley flour after storage for up to 14 days, whereas no differences were found with 20% flour (dwb). However, stored breads showed an increased retrogradation of amylopectin (as measured by differential scanning calorimetry [DSC]) when 2% pretreated barley flour was added as compared with addition of 2% normal barley flour. On the other hand, there were no significant differences at the 4% level. Addition of either of the barley flours resulted in less firm breads during storage as compared with the control breads. Increased water absorption in barley flour and thus increased water content in the breads or different water‐binding capacities of the flour blends could explain these results. The present study indicated that water had a stronger influence on bread firmness than the retrogradation of amylopectin. This conclusion was based on breads with pretreated barley flour being less firm than breads with normal barley flour, although the retrogradation, as determined by DSC, was higher.  相似文献   

6.
The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.  相似文献   

7.
Free asparagine is an important precursor for acrylamide in cereal products. The content of free asparagine was determined in 11 milling fractions from wheat and rye. Whole grain wheat flour contained 0.5 g/kg and whole grain rye flour 1.1 g/kg. The lowest content was found in sifted wheat flour (0.2 g/kg). Wheat germ had the highest content (4.9 g/kg). Fermentation (baker's yeast or baker's yeast and sourdough) of doughs made with the different milling fractions was performed to investigate whether the content of free asparagine was reduced by this process. In general, most of the asparagine was utilized after 2 hr of fermentation with yeast. Sourdough fermentation, on the other hand, did not reduce the content of free asparagineas efficiently but had a strong negative impact on asparagine utilization by yeast. This indicates that this type of fermentation may result in breads with higher acrylamide content than in breads fermented with yeast only. The effect of fermentation time on acrylamide formation inyeast‐leavened bread was studied in a model system. Doughs (sifted wheat flour with whole grain wheat flour or rye bran) were fermented for a short (15+15 min) or a long time (180+180 min). Compared with short fermentation time, longer fermentation reduced acrylamide content in bread made with whole grain wheat 87%. For breads made with rye bran, the corresponding reduction was 77%. Hence, extensive fermentation with yeast may be one possible way to reduce acrylamide content in bread.  相似文献   

8.
The effects of Trametes hirsuta laccase and Pentopan Mono BG xylanase and their combination on oat, wheat, and mixed oat-wheat doughs and the corresponding breads were investigated. Laccase treatment decreased the content of water-extractable arabinoxylan (WEAX) in oat dough due to oxidative cross-linking of feruloylated arabinoxylans. Laccase treatment also increased the proportion of water-soluble polysaccharides (WSNSP) apparently due to the beta-glucanase side activity present in the laccase preparation. As a result of the laccase treatment, the firmness of fresh oat bread was increased. Xylanase treatment doubled the content of WEAX in oat dough and slightly increased the amount of WSNSP. Increased stiffness of the dough and firmness of the fresh bread were detected, probably because of the increased WEAX content, which decreased the amount of water available for beta-glucan. The combination of laccase and xylanase produced slight hydrolysis of beta-glucan by the beta-glucanase side activity of laccase and enhanced the availability of AX for xylanase with concomitant reduction of the amount and molar mass of WSNSP. Subsequently, the volume of oat bread was increased. Laccase treatment tightened wheat dough, probably due to cross-linking of WEAX to higher molecular weight. In oat-wheat dough, laccase slightly increased the proportion of WSNSP between medium to low molecular weight and increased the specific volume of the bread. Xylanase increased the contents of WEAX and WSNSP between medium to low molecular weight in oat-wheat dough, which increased the softness of the dough, as well as the specific volume and softness of the bread. The results thus indicate that a combination of laccase and xylanase was beneficial for the textures of both oat and oat-wheat breads.  相似文献   

9.
We compared the effects of spontaneous fermentation of the bran fraction and fermentation with added yeast or added yeast and lactic acid bacteria (Lactobacillus brevis) on the quality of wheat bread supplemented with bran. Prefermentation of wheat bran with yeast or with yeast and lactic acid bacteria improved the loaf volume, crumb structure, and shelf life of bread supplemented with bran. The bread also had added flavor and good and homogenous crumb structure. Elasticity of the crumb was excellent. Spontaneous fermentation of the bran fraction did not have the same positive effects on bread quality. The microstructure of the breads was characterized by light microscopy. The positive effect of fermentation of bran on bread quality was evident when comparing the well‐developed protein network structure of the breads baked with fermented bran with the control bread. Prefermentation of the bran with yeast and lactic acid bacteria had the greatest effect on the structure of starch. The starch granules were more swollen and gelatinized in the breads made with prefermented bran. The pretreatments of the bran fraction had no detectable effect on the microstructure of the cell wall particles in the test breads.  相似文献   

10.
Effects of a Trichoderma reesei tyrosinase (TYR) and a Trametes hirsuta laccase (LAC) on breadmaking performance of gluten-free oat flour were investigated by SDS-PAGE analysis of oat protein fractions, large deformation rheology, and microscopy of the doughs, as well as on the basis of specific volume and firmness of the gluten-free breads. TYR induced the formation of higher molecular weight proteins in the SDS-PAGE assay. Microscopical analysis showed more intensive protein aggregation in the TYR-treated dough than in the dough without TYR. TYR also increased the firmness of the dough, which was assumed to be because of the cross-linking of oat globulins. LAC did not affect the oat globulins. TYR alone, or together with a commercial Thermomyces lanuginosus xylanase (XYL), increased significantly the specific volume of the gluten-free oat bread. A combination of TYR and XYL also increased the softness of the bread, whereas a combination of LAC and XYL improved the specific volume but did not affect the softness of oat bread. The results thus indicate that cross-linking of oat globulins by TYR, especially with the addition of XYL, was beneficial for improving the texture of gluten-free oat bread.  相似文献   

11.
Gluten-free breads are usually characterized by deficient quality characteristics as compared to wheat breads. Problems related to volume and crumb texture are associated with gluten-free breads even when rice flour is used, which seems to be the best raw material for this type of bread. The potential use of cyclodextrin glycosyl transferase (CGTase) as a rice bread improver is presented. The effect of CGTase addition to rice flour on dough rheology and bread quality was investigated. In addition, an experimental design was developed to optimize the levels of CGTase, hydroxypropylmethylcellulose (HPMC), and oil. The addition of CGTase produced a reduction in the dough consistency and also in the elastic modulus. With regard to the rice bread quality, better specific volume, shape index, and crumb texture were obtained. The amount of cyclodextrins in the bread crumb was quantified to explain the action of this enzyme. The data indicate that the improving effect of the CGTase results from a combination of its hydrolyzing and cyclizing activities, the latter being responsible for the release of cyclodextrins, which have the ability to form complexes with lipids and proteins.  相似文献   

12.
《Cereal Chemistry》2017,94(6):991-1000
Wheat, an important crop in North Dakota and the United States, is often used for bread. Health concerns related to chronic diseases have caused a shift toward consumption of whole wheat bread. There has been some indication that the rate and amount of starch digestibility of whole wheat breads may be lower than for their refined flour counterparts. This research investigated the components of whole wheat bread that may reduce starch digestibility and impact nutritional quality. Six formulations of flour were used, which included two refined flours, two whole wheat flours, and two whole wheat flours with added starch. The starch was added to whole wheat flours to increase the starch level to that of the refined flour so that we can determine whether or not the dilution of the starch in whole wheat bread was a factor in lowering the estimated glycemic index (eGI) of whole wheat bread. White and whole wheat flours and breads were evaluated for chemical composition, baking quality by 1 , and eGI by the Englyst assay. Whole wheat breads had significantly (P < 0.05) higher mineral, protein, arabinoxylan, and phenolic acid contents, as well as significantly (P < 0.05) lower eGI. The starch molecular weight was also significantly (P < 0.05) higher for whole wheat and whole wheat + starch breads compared with white breads. The eGIs of refined flour breads were 93.1 and 92.7, whereas the eGIs of whole wheat and whole wheat + starch breads ranged from 83.5 to 85.1. Overall, several factors in the whole wheat bread composition can be found to affect the quality and starch hydrolysis.  相似文献   

13.
沙蒿籽粉和谷朊粉对燕麦全粉食品加工品质的影响   总被引:2,自引:0,他引:2  
为了探讨全燕麦粉面包、馒头加工品质及燕麦粉冷冻面团品质特性,以燕麦全粉为原料,研究了添加沙蒿籽和谷朊粉对燕麦全粉食品(含冷冻面团食品)加工品质改良效果。试验结果表明,谷朊粉对面包制作影响较大;沙蒿籽粉对馒头制作影响较大;沙蒿籽粉和谷朊粉共同使用的效果优于两者单独使用;加入2.5%沙蒿籽粉和8%谷朊粉对燕麦全粉面包和馒头品质改善效果最好。对冷冻面团加工而言,随着冷冻时间的延长面团品质不断下降,冻藏4 d后燕麦全粉冷冻面团面包、馒头品质显著降低。  相似文献   

14.
Abstract

Oat (Avena sativa L.) and waxy hulless barley (Hordeum vulgare L.) are important sources of water soluble plant fiber (ß‐glucan) needed in human diets to lower serum cholesterol. Recent studies have shown grain ß‐glucan content is influenced by soil type and environment, however, nitrogen (N) response data for oat and waxy hulless barley are lacking. In this study, we evaluated N effects on grain ß‐glucan content and yield; grain yield, protein content, and test weight; and total dry matter production and N utilization of oat and waxy hulless barley. Rates of applied N were 0, 34, 67, and 101 kg N/ha at three field environments in central Montana during 1989 and 1990. Nitrogen increased all variables except test weight and ß‐glucan content. Waxy hulless barley grain yields fluctuated from 0.82 to 4.11 Mg/ha, ß‐glucan content from 62 to 76 g/kg, and ß‐glucan yields from 51 to 354 kg/ha. Oat yields ranged from 0.85 to 3.83 Mg/ha, ß‐glucan content from 37 to 51 g/kg, and ß‐glucan yields from 35 to 178 kg/ha. Oat ß‐glucan content was positively related to grain protein content, and waxy hulless barley ß‐glucan content was positively related to test weight. ß‐glucan content appeared more related to environmental factors other than N.  相似文献   

15.
Bread was prepared from wheat flour and wheat flour fortified with either 3, 5, and 7% legume hulls or insoluble cotyledon fibers, or with 1, 3, and 5% soluble cotyledon fibers isolated from pea, lentil, and chickpea flours. Incorporation of hulls or insoluble fibers resulted in increases in dough water absorption by 2–16% and increases in mixing time of dough by 22–147 sec. Addition of soluble fiber resulted in decreases in water absorption as the substitution rate increased and similar mixing times to the control dough. Loaf weights of breads containing hulls or insoluble fibers were generally higher than that of control bread at 149.4–166.5 g. However, the loaf volume of breads fortified with legume hulls and fibers (685–1,010 mL) was lower than that of the control bread (1,021 mL). Breads containing soluble fibers were more attractive in terms of crumb uniformity and color than breads containing either hulls or insoluble fibers. Breads fortified with legume hulls and fibers were higher in moisture content than control bread regardless of the type, source, or fortification rate. Bread fortified with up to 7% hulls or insoluble cotyledon fibers or up to 3% soluble cotyledon fibers, with the exception of 7% insoluble pea fiber, exhibited similar firmness after seven days of storage compared with the control bread, despite their smaller loaf volume. Breads containing hull fibers exhibited the lowest starch transition enthalpies as determined by DSC after seven days of storage, while the starch transition enthalpies of breads containing added soluble or insoluble fiber were not significantly different from the control bread.  相似文献   

16.
The in vitro bile acid binding by rice, oat, wheat, and corn brans was determined using a mixture of bile acids normally secreted in human bile at a physiological pH of 6.3. The objective of the study was to relate bile acid binding of cereal brans to health promoting properties. Three experiments were conducted testing substrates on an equal weight (dry matter) basis, an equal total dietary fiber (TDF) basis, and an equal TDF and equal fat basis. Each experiment was repeated to validate the results (for a total of six experiments). The relative in vitro bile acid binding of the cereal brans on an equal TDF basis considering cholestyramine as 100% bound was rice bran 51%, wheat bran 31%, oat bran 26%, and corn bran 5%. The data suggest that cholesterol lowering by rice bran appears to be related to bile acid binding. The primary mechanism of cholesterol lowering by oat bran may not be due to bile acid binding by soluble fiber. Bile acid binding did not appear to be proportional to the soluble fiber content of the cereal brans tested. Bile acid binding by wheat bran may contribute to cancer prevention and other healthful properties.  相似文献   

17.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

18.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

19.
Field experiments were conducted at 15 site-years with barley and 10 site-years with oat over five years to determine the relative nitrogen (N) fertilizer requirements of forage versus grain for barley and oat on Black Chernozem (Typic Agricryoll – 6 site-years on barley and 3 site-years on oat) and Gray Luvisol (Typic Haplocryalf – 9 site-years on barley and 7 site-years on oat) soils in central and north-central Alberta, Canada. Barley harvested for forage responded to higher level of applied N than when it was harvested for grain at most site-years. On average for barley, the amount of N fertilizer required to achieve maximum yield of forage was 58 kg N ha?1 greater than that of grain, and also was somewhat greater on Black Chernozem soils than on Gray Luvisol soils. The results for oat were inconclusive, with almost equal numbers of site-years showed higher N requirements for grain as for forage.  相似文献   

20.
Two‐dimensional isoelectric focusing (IEF) × PAGE gels were used to compare the endoproteolytic (gelatinase) activities of germinated barley with those of bread and durum wheat, rye, triticale, oat, rice, buckwheat, and sorghum. Barley was used as the standard of comparison because its endoproteinase complement has been studied previously in the greatest detail. The characteristics of the grain proteases were appraised from their migration patterns and by how they were affected by pH levels. All of the germinated grains contained multiple enzyme activities and their separation patterns and pH levels were at least similar to those of barley. The proteinases of the bread and durum wheats, rye, oat, and sorghum were most similar to those of barley, whereas the other grains provided more varied patterns. The rice and buckwheat proteinases developed much more slowly than those of the other grains. The activity patterns of the triticale resembled those of the parents, wheat and rye, but the triticale contained many more activities and higher overall proteolytic activities than any of the other species. These results should be applied to scientific or commercial procedures with caution because grains contain potent endogenous proteinase inhibitors that could inactivate some of these enzymes in various tissues or germination stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号