首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为检测玉米株高、穗位高杂种优势QTL,以121株intermated B73×Mo17(IBM)个体为基础群体,按照三重测交交配设计构建了三重测交群体,通过完备区间作图法对株高、穗位高杂种优势的主效QTL及互作位点进行了分析。在第9染色体上的2个紧密连锁的区段分别定位到了一个株高、穗位高杂种优势加性QTL位点,单个QTL的表型贡献率为14.3%和18.6%。该QTL可能同时对株高、穗位高杂种优势起作用。在第1、第3染色体上检测到2个株高杂种优势超显性QTL,可解释表型变异的9.0%~11.4%;在第1、第6、第8染色体上检测到5个穗位高杂种优势超显性QTL,可解释表型变异的6.6%~16.8%。进一步分析发现,2对加加上位性互作区段及2对显显上位性互作区段对穗位高杂种优势存在上位性贡献,加加互作效应及显显互作效应可共同解释表型变异的40.7%和26.8%。由此可知,加性、显性及两位点互作上位性共同对株高、穗位高杂种优势存在贡献。本研究检测到的主效QTL位点有助于株高、穗位高在杂种优势育种中的进一步应用。  相似文献   

2.
为挖掘多环境下稳定存在的水稻赖氨酸和总黄酮含量相关QTL,以粳稻东农425和长白10号及其衍生的180个株系的F_(6:7)重组自交系(RIL)作为供试群体,采用完备区间作图法(ICIM)和基于混合线性模型的复合区间作图法(MCIM),对2014年和2015年水稻的赖氨酸含量和总黄酮含量进行加性QTL定位及环境互作分析。结果检测到10个影响赖氨酸含量的加性效应QTL和12个影响黄酮含量的加性效应QTL,分布在除第9、第10和第12染色体以外的9条染色体上,其中在第5染色体的RM538~RM1271标记区间内连续2年检测到总黄酮含量QTL。检测到6个存在环境互作效应的赖氨酸含量QTL、4个存在环境互作效应的总黄酮含量QTL,互作贡献率为0.15%~6.73%;一对影响总黄酮含量的上位互作效应的QTL,贡献率为0.99%。本研究结果为水稻赖氨酸和总黄酮含量QTL分子标记辅助育种提供了一定的理论依据。  相似文献   

3.
为探究干旱胁迫环境条件下水稻(Oryza sativa)碾米品质和外观品质相关性状的变化规律,挖掘干旱条件下稳定存在的控制稻米品质性状的QTL,同时分析QTL与环境的互作效应,本研究以陆稻小白粳子和水稻空育131杂交构建的207个重组自交系(recombinant inbred line,RIL)群体及2个亲本为实验材料,在干旱胁迫和正常灌溉2个环境条件下进行重复实验,对糙米率(brown rice rate,BRR)、精米率(milled rice rate,MRR)、整精米率(head rice rate,HMRR)及垩白粒率(chalky rice rate,CG)4个品质性状进行QTL定位.结果表明,在2个环境下BRR、MRR、HMRR三者之间均呈极显著正相关,MRR、HMRR与CG分别呈显著和极显著负相关.各性状在2个环境下均呈现出连续分布,表现为数量性状的遗传特点.4个性状两年共检测到24个加性QTL和9对上位性互作QTL,分布于除第10和第12染色体的其余10条染色体上.在所有检测结果当中,5个加性QTL(qBRR1a,qMRR11a,qHMRR6a,qCG6a和qCG6c)均在2年干旱胁迫环境下同时检测到,3个加性QTL和4对上位性互作QTL检测到显著的环境互作效应,但各性状均以加性遗传效应为主,受水分环境影响较小.对干旱胁迫具有特异性QTL的挖掘和发现,在一定程度上为干旱胁迫下稻米品质的遗传改良提供了基础资料.  相似文献   

4.
以271份具有优质水稻(Oryza sativa L.)越富遗传背景及旱稻IRAT109导入片段的导入系群体为材料,在北京、海南两地水、旱田环境下调查精米粒长、粒宽、粒厚、长宽比和垩白率5个性状,研究旱田栽培对外观品质的影响,进行QTL定位及QTL与水分环境的互作分析.结果表明,粒长、粒宽、长宽比和垩白率易受土壤水分的影响,粒厚比较稳定.水分胁迫使稻米粒长、粒宽变小,长宽比增大,垩白率减少.利用QTLNetwork软件,5个性状共检测到30个加性QTL和4对上位性QTL.6个加性QTL(qGL7、qGT2、qGT4、qLWR2、qC2和qC8)和2对上位QTL(qGL3-qGL7和qGL7-qGL10)的贡献率大于10%.21个QTL与前人研究结果相一致.外观品质性状QTL在染色体上多呈成簇分布,第2染色体RM492~RM1211、第3染色体RM6832~RM3166和第6染色体RM587-RM1163区段是外观品质QTL相对集中分布区域.41%的QTL存在水分环境互作.根据不同性状对干旱胁迫的反应特点,选择水、旱田贡献率大且稳定的QTL,或具有旱田特异性的QTL,进行标记辅助聚合育种是培育抗旱、优质稻的一个有效途径.  相似文献   

5.
本文利用旱稻品种IRAT109和水稻品种越富的花培DH群体的116个株系为作图群体,采用混合线性模型QTL定位方法,在水、旱2个土壤水分环境下对粒长(GL)、粒宽(GB)、长宽比(LWR)和垩白率(C)4项外观品质性状和糙米率(BR)、精米率(MR)、整精米率(HR)3项碾磨品质性状进行QTL定位及QTL与环境互作分析。在水、旱2种条件下对DH群体差异显著性分析结果表明,糙米率、精米率和长宽比差异不显著,而整精米率、粒长、粒宽、垩白率差异极显著。外观品质性状在水、旱栽培条件下变化较大,即在旱种环境下稻米粒形变小(粒长、粒宽减小)、变细(长宽比增大)垩白率大幅度下降。碾磨品质性状在双亲间均有差异,其中整精米率差异较大;且在两种土壤水分环境条件下均有变化,即在旱栽条件下两亲本的糙米率和精米率均降低,IRAT109分别减少了5.8%和5.5%,越富分别减少了11.7%和11.5%。共检测到11个加性效应QTL与稻米外观和碾磨品质性状7项指标有关,分别位于第1、3、5、6、7、10、11染色体上,单个QTL对性状的贡献率在3.15~21.42%之间,位于第1、7 染色体上2个控制整精米率的QTL存在显著环境互作,单个QTL与环境互作效应的贡献率分别为9.59%和13.58%。在第1染色体RM295标记附近同时检测到5个QTL,Qgc1a 、Qgc1b 、Qlwr1、QMr1b和QHr1,分别控制粒长、长宽比、精米率和整精米率,且该QTLs簇在2个环境下能稳定地被检测到。同时,还检测到10对上位性QTLs,所有上位性QTL都发生在不同染色体之间,其中,控制整精米率的4对QTL与土壤水分环境显著互作,其环境互作贡献率分别为14.29%、12.28%、10.56%和13.47%。控制粒长、粒宽、长宽比的6个加性QTL(Qgc1a、Qgc1b、Qgc5、Qgw6、Qlwr1、Qlwr10)与环境之间互作较小,在品质育种中可利用分子标记对其进行辅助选择,提高育种效率;而对于基因型×环境互作效应大的整精米率、垩白率应在特定环境(如土壤缺水条件)下进行选择,在特定水分胁迫条件选择目标亲本,并将抗旱基因导入该亲本方可选到品质较优的抗旱品种。  相似文献   

6.
水稻吸氮能力与氮素利用率的QTLs及其基因效应分析   总被引:19,自引:4,他引:19  
利用F2(Palawan(IR42)群体的RFLP标记连锁图 ,对水稻根系NH4-N和NO3-N吸收能力及植株氮素生理利用率进行QTL区间作图分析 ,在第 2和 5染色体上分别测得控制水稻根系NH4 N吸收能力的QTL各 1个。前者表现为显著的加性及部分显性效应 ,后者有显著的加性和显性效应 ;在第 5和 6染色体上测得控制水稻幼苗根系NO3-N的吸收能力的QTL各 1个 ,两者的基因效应主要表现为显性效应 ;在第 12染色体上检出控制稻苗氮素生理利用率的QTL 1个 ,具有显著的加性和显性效应。此外 ,通过表型值在各标记的两纯合基因型间的差异显著性检验 ,发现第4染色体上的标记RG91对水稻幼苗根系NH4-N吸收能力也具有显著加性效应  相似文献   

7.
以"Lemont"和"Dular"杂交建立的包含123个家系的水稻重组自交系(RILs)群体为材料,选用水稻根系硅吸收能力和叶片硅利用率为指标,进行水稻硅营养遗传性状QTL定位,并分析其与UV-B辐射增强的互作效应。结果表明,控制水稻叶片硅利用率的4个加性QTL分别在第2、3、10染色体上,而控制根系硅吸收能力的1个加性QTL位于第11染色体上。QTL与UV-B辐射互作分析发现2对控制根系硅吸收能力和3对控制叶片硅利用率的基因×环境上位性QTL,其中只有1对控制根系硅吸收能力的QTL效应值较大。说明水稻这两种硅营养性状中,根系硅吸收能力较叶片硅利用率受UV-B辐射影响大,在抗UV-B辐射育种中以叶片硅利用率为水稻硅营养遗传选择的指标具有较高效率。  相似文献   

8.
盐胁迫下水稻苗高和分蘖数的发育动态QTL分析   总被引:1,自引:0,他引:1  
为了检测盐胁迫下水稻苗高和分蘖数的发育动态QTL,以粳稻品种东农425和长白10为亲本衍生的F2:3群体为试验材料,构建了包含123个SSR标记,全长为1 616.53 c M,平均图距为13.14 c M的遗传连锁图谱。以浓度为6 ds·m-1的Na Cl水溶液进行大田生育期灌溉,正常水灌溉为对照,对盐胁迫下水稻的苗高和分蘖数进行发育动态QTL分析。分别利用完备区间作图法和混合线性模型的QTL定位方法,联合盐胁迫与正常条件下6个发育时期苗高和分蘖数的表型数据,共检测到6个控制盐胁迫下水稻苗高和3个控制分蘖数的加性QTL、4个控制正常条件下苗高和5个控制分蘖数的加性QTL、盐胁迫和正常条件联合下的6个控制苗高和4个控制分蘖数的加性QTL,以及3对控制苗高和1对控制分蘖数的上位性QTL。加性QTL q SH1在t3、t4和t2/t1时期分别用非条件和条件方法检测到,加性QTL q TN8-2在t2、t3、t4和t5时期被连续用非条件方法检测到,在t3/t2时期用条件方法被检测到。分别检测到4个控制苗高和2个控制分蘖数的加性QTL与盐胁迫环境存在互作效应,控制苗高的3对上位性QTL和控制分蘖数的1对上位性QTL均与盐胁迫环境发生互作。本研究旨在检测不同发育时期控制盐胁迫下水稻苗高和分蘖数的QTL,并分析与盐环境的互作效应,为解析苗高和分蘖数在盐胁迫下的发育遗传特点和水稻耐盐QTL分子标记辅助育种提供理论依据。  相似文献   

9.
为确定玉米耐深播性状的杂种优势表现及遗传规律,本研究以耐深播性不同的22份亲本及组配的22份F1杂交种为试材,在3、15和20 cm播深下,采用加性-显性-母体遗传模型(ADM)分析了13个耐深播性状的杂种优势、遗传效应及配合力大小。结果表明,随播深增加玉米亲本和F1的出苗率、苗长、根长、中胚轴粗及根重降低,而中胚轴长、胚芽鞘长、中胚轴与胚芽鞘和、中胚轴与胚芽鞘比、胚芽鞘粗、苗重、中胚轴重及胚芽鞘重升高;Pearson和主成分分析(PCA)表明,这13个性状间的协同或拮抗作用形成了玉米耐深播响应机制。13个耐深播性状的杂交优势表现明显,F1杂种优势指数介于90.97%~175.64%;除中胚轴与胚芽鞘比、胚芽鞘重外,其余性状均表现为正向中亲和超亲优势。因此培育耐深播玉米品种时不仅需要注重对高亲、中亲及母本等主要基础材料的选择,还需兼顾杂种优势的影响,以提高育种选择效率。中胚轴长、胚芽鞘长、中胚轴与胚芽鞘和、中胚轴与胚芽鞘比及根长的加性遗传效应占主导地位,育种上可用简单回交法或单交重组法在早代对这些性状进行遗传改良;其余性状同时受加性与显性遗传主效应及其与环境互作效应的调控,这些性状最好在特定播深环境下进行遗传改良,以充分发挥其在特定环境下的杂种优势。13个耐深播性状的双亲一般配合力(GCA)及F1特殊配合力(SCA)间均差异显著,筛选出1份综合加性效应值良好的父本8802A,推测利用优良H21×8802A后代能改良创制一些优良耐深播玉米材料。本研究为玉米耐深播新品种培育奠定了理论基础。  相似文献   

10.
水稻抗UV—B的QTL定位和环境互作分析   总被引:1,自引:0,他引:1  
以“Lemont”(美国)和“Dular”(印度)杂交建立的包含123个家系的水稻重组自交系(RIL)群体,构建了含有97对SSR分子标记的水稻遗传连锁图谱。以该遗传群体及其亲本为材料,分别在2005年晚季和2006年早季进行UV—B辐射增强处理,考察了株高性状,并转换成抑制率进行混合线性模型的复合区间作图定位,共检测到2个抗UV—B辐射增强的加性QTLs,分别位于第4和第6染色体上,解释了4.72%和2.69%的遗传变异,分析还发现控制该性状QTL存在环境互作效应,分别解释了8.36%和5.42%的遗传变异,大于加性QTLs。同时检测到7对上位性互作基因,解释了0.00~6.88%的遗传变异,也存在-9环境的互作效应,解释了1.94%~23.31%的遗传变异,暗示着基因上位性的重要作用。  相似文献   

11.
为了探讨玉米苗期性状及其杂种优势形成的遗传学基础,以强优势玉米(Zea maysL.)杂交种组合豫玉22及其重组近交系为基础材料,采用三重测交(triple testcross,TTC)遗传交配设计,组配了包含312个测交后代的TTC群体,通过复合区间作图法检测到了30个控制发芽后第4天的最长根长、苗高、初生根数、根干重及叶干重的QTLs,并且在第2、3和7染色体上存在4个同时控制不同苗期性状的QTL区域。分析发现,在利用Z1和Z2数据定位出的22个QTLs中,以超显性位点最多(11个),加性(5个)和部分显性较少(5个),而显性最少(1个)。另外,还检测到8个QTLs与遗传背景之间的互作和16对不同标记间的互作。据此,我们提出超显性和上位性是玉米苗期性状及其杂种优势形成的主要遗传学基础。关键词玉米,苗期性状,三重测交,杂种优势,QTL定位  相似文献   

12.
水稻籼粳交DH群体耐热性的QTLs定位   总被引:15,自引:1,他引:15  
耐热性是水稻(Oryza sativaL.)抗逆研究中最重要的性状之一.应用典型的籼(Oryza sativa L.spop.indica)、粳(Oryzasativa L.spp.japonica)交组合IR64×Azucena花药培养的DH群体及其已构建的分子连锁图谱,在田间及温室高温条件下对该DH群体的结实率性状进行考查.采用QTL mapper1.0软件检测控制结实率的加性和上位性效应的数量性状位点(QTL),在第1、3、4、8和11等5条染色体上,共检测到6个具有加性效应的QTLs.其中位于第1、3染色体的2个加性效应QTLs来自父本Azucena的等位基因,是耐热的QTL,能提高结实率9.50%和6.46%,其贡献率为19.15%和2.86%.位于其余3条染色体的4个加性效应的QTLs来自母本IR64的等位基因,能提高结实率4.33%~10.37%.在第1、2、3、4、5、7、8、11等8条染色体之间还检测到8对加性×加性上位性效应,其贡献率为2.27%~8.13%.讨论了应用分子标记辅助育种选育耐热性水稻的可能性.  相似文献   

13.
水稻分蘖最大角度的QTL分析   总被引:8,自引:0,他引:8  
利用籼稻(Oryza sativa sp indica)协青早B/密阳46所构建的重组自交系(RIL)群体(XM-RIL)及其相应分子遗传图谱,在海南和杭州两地试验,测量分蘖最大角度,应用检测QTL加性效应、上位性效应和G×E互作效应遗传分析方法,对该性状2个环境下数据进行联合分析.共检测到2个加性效应显著的QTLs,其中,qTA8-2的LOD值为21.7,贡献率为23.2%;qTA9-2的LOD值为22.0,贡献率为19.5%;增加分蘖最大角度的基因前者来自母本、后者则来自父本;这2个QTLs均不存在显著的G×E互作.试验还检测到3对显著的加性×加性双基因互作效应,它们与环境间的G×E互作也均未达显著水平,对该性状表型变异的总贡献率仅为7.69%,显得较为次要.  相似文献   

14.
小麦磷素利用效率的基因位点及其交互作用   总被引:12,自引:0,他引:12  
利用小麦W7984和Opata85作亲本 ,通过一粒传而获得F7重组近交系 (RIL)群体。对该群体的 114个株系分别在正常供磷和低磷胁迫下探讨小麦地上部磷素利用效率 (SPUE)和全株磷素利用效率 (WPUE) ;并根据该群体而构建的遗传图谱包括覆盖整个染色体组的 918个RFLP标记 ,研究 2种供磷情况下小麦磷素利用效率的基因位点及基因间互作。结果表明 ,正常供磷 ,有 2个与SPUE有关的QTL ,分别位于染色体 1B和 5A上 ,变异解释率分别为 6.55 %和 1 1.61 % ;与WPUE有关的QTL有位于染色体 2B、5A和 7A上的 3个 ;SPUE和WPUE还分别受一对互作位点的影响。在磷胁迫下 ,有 3个QTL与SPUE有关 ,分别位于染色体 2D、3B和6D上 ,变异解释率分别为 14.2 %、7.73%和 6.58% ;与WPUE相关的 2个QTL分别位于染色体 2D、7A上 ,变异解释率分别为 18.01 %和 10.73 % ;SPUE受上位效应的影响。 7A染色体对于小麦的磷素利用效率有着重要的作用 ,位于该染色体上的片段Xfba354 Xfba69在 2种供磷情况下都显著影响WPUE ,同时此片段在正常供磷下还与其它基因互作而影响WPUE。此外 ,5A染色体在正常供磷、2D染色体在低磷胁迫下分别对磷素利用效率 (PUE)有较强的作用。  相似文献   

15.
用珍汕97B/密阳46构建RIL群体及其遗传图谱,对其种子采用沙培法育苗和培养,试验设置2个高浓度(100.mg/L和200.mg/L)Cu2+胁迫处理,以处理20.d后的幼苗相对根长(%)和相对苗高(%)作为苗期耐Cu2+胁迫指标,并用于QTL定位分析。结果表明,试验共检测到苗期耐Cu2+胁迫的主效应QTL.4个,以相对根长为指标,检测到qRCC(r)6(100.mg/L)和qRCC(r)9(200.mg/L),以相对苗高为指标,也检测到qRCC(s)1-2(100.mg/L和200mg/L)和qRCC(r)6-1(200.mg/L),有效基因分散于双亲中。试验还检测到苗期耐Cu2+胁迫的上位性互作8对,以相对根长为指标时,检测到2对互作;以相对苗高为指标时,检测到6对上位性互作。表明水稻苗期耐高浓度Cu2+胁迫,其上位性互作也起到较为重要作用。  相似文献   

16.
不同环境条件下水稻结实率的QTL定位分析   总被引:5,自引:0,他引:5  
摘要:为了揭示水稻结实率的遗传机理并为优良基因的利用以及分子标记辅助选择提供理论依据,本研究以环境敏感的籼稻品种T219和不敏感的籼稻品种T226为亲本构建的202个株系的重组自交系(RILs)为作图群体,利用8种不同环境条件的试验结果,对RIL的结实率进行了基因型与环境互作分析和QTL的定位分析。结果表明:水稻结实率受环境的影响很大,存在着显著的基因型与环境互作效应;同时,8种环境共检测到分布在9条染色体上的17个QTL,贡献率变幅为4.6~35.7%。其中大部分QTL均只在一个或两个特定的环境中发现,表现为QTL与环境的互作、贡献率较小,且它们的增效等位基因大都来自T226。而位于第3染色体MRG5959-MRG2180区间的qSS3-1,共在6个环境中一致检测到,贡献率分别在各环境中均为最大(15.6~35.7%)、其增效的等位基因来源于亲本T226。另外位于第5染色体上的RM592-RM169区间的qSS5-3,也在同一年份的5个不同的试验条件下同时发现,贡献率为6.9~17.9%,其增效的等位基因来源于亲本T219。  相似文献   

17.
以小麦(Triticum aestivum L.)光温敏不育系BS20×Fu3 DH群体的289个系为材料,于2005-2006年度种植于北京海淀和安徽阜阳,进行了育性(结实率和结实小穗率)的调查.利用SSR标记和分离群体分组分析法(BSA)分析该群体中与育性相关的分子标记,用128对SSR引物,初步构建BS20×Fu3群体的分子标记遗传连锁框架图.BSA的结果表明,与育性连锁的3个标记是Xgwm294、Xgwm374和Xgwm44,分别位于染色体2AL、2BS和7DS;采用混合线性复合区间作图法对小麦育性进行QTL分析,检测到6个QTL,分布在1AS、2BS、2DL、6AL、6BL和7DS染色体,贡献率为1.1%~12.5%,其中7DS上的QTL与2BS、6AL和6BL上的QTL存在显著的互作效应.综合BSA和QTL分析结果,确定染色体7DS和2BS上的QTL重复性较好、贡献率和互作效应较大,为小麦光温敏核雄性不育性状的重要QTL,标记区间分别为Xgum44-Xcfd14和Xgwm148-Xgwm374,贡献率分别为7.2%~12.5%和2.1%~2.5%.  相似文献   

18.
小麦株高发育动态QTL定位及其与水分环境互作遗传分析   总被引:2,自引:0,他引:2  
株高是影响小麦产量的重要农艺性状,对生境水分极为敏感。为探讨小麦不同发育时期株高数量性状遗传与水分环境互作,本研究利用抗旱性强的冬小麦(Triticum aestivum L.)品种陇鉴19与水地高产品种Q9086杂交,重组近交系(RIL)群体120个株系为供试材料,测定两试验环境(甘肃镇远和兰州)雨养(干旱胁迫,DS)和灌溉条件下不同发育时期株高,采用条件复合区间作图法进行株高发育动态数量遗传位点(quantitative trait loci,QTL)分析。共检测到26个条件加性QTL(A-QTL)和56对上位性QTL(AA-QTL)。在A-QTL中,Qph.acs-1A-1、Qph.acs-4B-2、Qph.acs-5A-1、Qph.acs-5D-1、Qph.acs-6B-2和Qph.acs-7D-1在开花期前能重复表达,且有相对较高的贡献率(H2(A))(7.39%~31.04%)。AA-QTL主要由非显著加性效应的位点间互作形成,贡献率(H2(AA))在1.38~24.27%之间,这些AA-QTL效应对后期株高有显著影响。有61.54%的A-QTL和58.93%的AA-QTL分别参与了水分环境互作,在雨养条件下普遍具有降低株高的效应。条件A-QTL的加性效应在拔节期最大,随后逐渐降低,更多的体现出上位性效应。说明控制小麦株高发育的数量性状基因易与水分环境发生互作,且在小麦不同发育阶段有不同的时空表达模式。本研究结果可为小麦抗旱遗传研究与分子改良提供基础资料。  相似文献   

19.
试验研究钐-甘氨酸-维生素B_6(Sm-Gly-VB_6)对模拟酸雨伤害大豆幼苗的防护作用结果表明,在pH2.5酸雨胁迫下大豆幼苗叶绿素含量减少,叶绿素a/b值下降,细胞质膜透性增加,过氧化氢酶(CAT)活性下降。而同一强度酸雨胁迫下经50mg/kg Sm-Gly-VB_6预处理的大豆幼苗叶片叶绿素含量、细胞质膜透性与过氧化氢酶活性损伤较轻,对酸雨伤害大豆幼苗有一定缓解效应。  相似文献   

20.
合理的氮磷钾用量配比能明显改善花生生长发育、提高产量和增加经济效益。为了明确潮土区高产夏花生施肥中氮磷钾最佳配比用量,通过大田试验,设置氮磷钾肥各4个梯度,研究不同肥料配比对夏花生产量、干物质累积量、氮磷钾养分吸收量以及经济效益的影响。结果表明:在氮磷钾肥4种梯度下,用量分别为N 120kg/hm~2、P_2O_5 90 kg/hm~2和K_2O 120 kg/hm~2时产量与经济效益最高,在试验基础上通过方程拟合得到最佳氮、磷、钾肥用量分别为126.2、95.8和137.6 kg/hm~2。花生干物质累积量在膨果期前增长加快,差异达到最大,膨果期后增长速率放缓。幼苗期至开花下针期为养分累积量的关键时期,此时对氮磷钾的需求量为氮钾磷。由养分累积量与干物质之间的关系得出花生对N、P_2O_5和K_2O 3种养分吸收比例为5.5∶1∶2.7;不同的氮磷钾肥配比下,花生的百千克籽粒养分吸收量是有差异的,合理的氮磷钾搭配下花生每形成100 kg荚果需要吸收氮、磷、钾养分量为4.82、0.79和2.57 kg。综上,潮土区高产夏播花生氮、磷、钾肥配比为126.2、95.8和137.6 kg/hm~2能够显著提高产量、养分吸收利用效率及经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号