首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have previously been conducted regarding cell cycle synchronization in mammalian somatic cells. However, limited work has been performed on the control of cell cycle stages in the somatic cells of fish. The aim of this study was to determine the cell cycle arresting effects of several dimethyl sulfoxide (DMSO) concentrations for different times on different cell cycle stages of goldfish caudal fin‐derived fibroblasts. Results demonstrated that the cycling cells or control group (68.29%) yields significantly higher (p < 0.05) arrest in G0/G1 phase compared with the group treated for 24 h with different concentrations (0.5%, 1.0% or 1.5%) of DMSO (64.88%, 65.70%, 64.22% respectively). The cell cycle synchronization in the treatment of cells with 1.0% DMSO at 48 h (81.14%) was significantly higher than that in the groups treated for 24 h (76.82%) and the control group (77.90%). Observations showed that treatment of DMSO resulted in an increase in the proportion of cells at G0/G1 phase for 48 h of culture. However, high levels of apoptotic cells can be detected after 48 h of culture treated with 1% concentration of DMSO.  相似文献   

2.
Efficiency of the technique of somatic cell nuclear transfer critically depends on the cell cycle phase compatibility between the donor somatic cell nucleus and recipient cytoplasm. In this study, attempts were made to optimize conditions for cell cycle synchronization of bison ear fibroblasts at G0/G1 using different approaches such as using cells in confluency, after contact inhibition, serum starvation or treatment with dimethyl sulfoxide (DMSO) (0.5%, 1.0% and 2.0%), sodium butyrate (NaBu) (0.5, 1.0 and 2.0 mm), cytochalasin-B (CB) (7.5 μg/ml), cycloheximide (CHX) (7.5 μg/ml) and 6-dimethyl aminopurine (6-DMAP) (2.0 mm). A small piece of an ear of an adult female bison collected post-mortem 10 h after death was used for the preparation of fibroblast cells. The synchronization efficiency was determined by fluorescence-activated cell sorting. Higher proportion of G0/G1 phase was obtained when cells were subjected to serum starvation for 48 h (85.4%). Sodium butyrate had no effect on synchronization of cells at G0/G1 when the cells were treated for 24 and 48 h. Similarly, DMSO (0.5% and 1.0%) had also no effect on the proportion of cells at G0/G1 for 24 and 48 h. The synchronization ability of CB, CHX and 6-DMAP at G0/G1 phase was equally effective when cells were treated for 4 h (68.5%, 68.7% and 67.4%) and 24 h (67.8%, 66.1% and 67.5%). In conclusion, this study shows that cells subjected to serum starvation for 24-48 h or confluent monolayer, or cycling cells treated with 1.0% DMSO or 2.0 mm NaBu for 24 h showed best synchronization in G0/G1 phase of cell cycle.  相似文献   

3.
Cell cycle stage and synchronization of donor cells are important factors influencing the success of somatic cell nuclear transfer. This study examined whether serum starvation has any effect on specific cell death. We also studied the effects of serum starvation, culture to confluence, and full confluency (confluent + 72 h) on cell cycle characteristics and apoptosis of goat dermal fibroblast cells. The cells were obtained from the ear of a 1.5‐year‐old female goat. The following experimental groups were analysed for fibroblast cells: (i) normally growing, (ii) confluent, (iii) full confluency, (iv) cells starved for 48 h and (v) cells starved for 72 h. Analysis of cell cycle distribution by flow cytometry showed that 4.56 and 51.88% of normal cycling cells were at the G0 and G1 phases respectively. In the confluent group, 80% of the cells were arrested in the G0/G1 phase. Serum starvation for 48 and 72 h arrested 84.78% and 90.1% cells at the G0/G1 phase respectively which showed a significant difference when compared with the control group (p < 0.05). Double staining by PI and FITC distinguishes G0 phase from G1 phase. In the full confluency group, 91.53% of cells were at G0/G1 stage, but in contrast to the serum starved group, this high percentage of G0/G1 cells was mainly associated with G1 cells. Under normal culture conditions, 6.39% of cells underwent early apoptosis. In the confluent group 8.93% of cells showed early apoptosis. Serum starvation for 48 and 72 h caused early apoptosis in 8.91 and 39.83% of the cells respectively. Full confluency treatment did not increase the number of apoptotic cells significantly (8.67%). After 72 h, serum starvation significantly increased early apoptosis (p < 0.05). In conclusion, the use of full confluency is suitable for cell cycle synchronization because it arrests cells at the G0/G1 phase and also induces less apoptosis in comparison with the serum starvation group.  相似文献   

4.
Synchronization of the cell cycle stages in G0/G1 phase is one of the key factors determining the success of nuclear transplantation. Serum deprivation, contact inhibition and chemical inhibitors are widely used methods for this purpose. In this study, cell cycle stages of foetal fibroblasts and cumulus cells were determined using flow cytometry [fluorescence-activated cell scan (FACS)]. Foetal fibroblasts (in vitro cultured for 72-120 h) and fresh cumulus cells were analysed in Experiment 1. Fifty to 55% proliferating fibroblasts remained in G0/G1 phase compared with 78% in confluent culture (p <0.05). In contrast to foetal fibroblasts, fresh cumulus cells maintained 90% of the population in the G0/G1 stage. When serum was retrieved from the proliferating fibroblasts from day 1 to day 5 (Experiment 2), proportions of G0/G1 cells increased from the initial ratio of 53 to 87% at day 4 of starvation, which was significantly higher than the non-starved proliferating cells (p <0.05). In Experiment 3, fibroblasts were treated with aphidicolin (0.1 microg/ml, 6 h), demicolcine (0.5 microg/ml, 10 h), or a combination of these two chemicals to synchronize the cell cycle stages. Surprisingly, no differences or significantly lower in the proportions of G0/G1)phase cells were detected (25-50%) compared with the uncontrolled growing cells (53%). These results suggested that fresh cumulus cells rest their cell cycle in G0/G1 stage. Serum deprivation became effective in the first 24 h and reached the highest proportions during days 4-5 after deprivation. Chemical synchronization of the cell cycle stage of rabbit foetal fibroblasts to G0/G1 phase appeared less effective compared to serum deprivation.  相似文献   

5.
This study was examined whether the species of felid affects synchronization accuracy at the G0/G1 stage of the cell cycle and the occurrence of apoptosis by different protocols, such as serum starvation, confluent and roscovitine treatment. Skin fibroblast cells were obtained from the Asian golden cat, marbled cat, leopard and Siamese cat. The cells from each animal were treated with either serum starvation for 1–5 days, cell confluency‐contact inhibition for 5 days or roscovitine at various concentrations (7.5–30 μm ). Flow cytometric analysis revealed that serum starvation for 3 days provided the highest cell population arrested at the G0/G1 stage, irrespective of the felid species. In all species, 100% confluency gave a significantly higher percentage of cells arrested at the G0/G1 stage compared with the non‐treated control cells. The effects of roscovitine treatment and the appropriate concentration on the rates of G0/G1 cells differed among the felid species. Serum starvation for more than 4 days in the marbled cat and Siamese cat and roscovitine treatment with 30 μm in the Asian golden cat and leopard increased the rates of apoptosis. In conclusion, different felid species responded to different methods of cell cycle synchronization. Asian golden cat and Siamese cat fibroblast cells were successfully synchronized to G0/G1 stage using the serum starvation and roscovitine treatment, whereas only confluency‐contact inhibition treatment induced cell synchronization in the leopard. Moreover, these three methods did not successfully induce cell synchronization of the marbled cat. These findings may be valuable for preparing their donor cells for somatic cell nuclear transfer in the future.  相似文献   

6.
Arrest of cells in G0/G1 cell cycle phase is desired for nuclear transfer procedures. Serum starvation and cell cycle inhibitors are different ways to induce synchronization of the cell cycle. This study investigated the effects of serum starvation and cycloheximide (CHX) on the cell cycle of low (5th) and high (15th) passages fetal porcine fibroblasts. Cell cycle phases were determined using fluorescent activated cell sorting. Fifth passage fibroblast cultures had higher (p < 0.05) proportion of cells in G0/G1 only after 72 h of serum starvation (77.60 ± 0.65) when compared with non‐starved cells (71.44 ± 1.88). Serum starvation for all periods tested induced an increase (p < 0.05) on proportion of cells in G0/G1 on the 15th passage. No significant differences were observed on the 5th passage cultures exposed to CHX, although, on the 15th passage an increase on proportion of cells was observed after all periods of exposure (p < 0.05). These data indicates that high passage cells in vitro are more susceptible to serum starvation and CHX G0/G1 synchronization.  相似文献   

7.
The present study was designed to examine the effects of cell-cycle synchronization protocols, such as confluent, roscovitine treatment and serum starvation, in bovine foetal fibroblasts on synchronization accuracy at G0/G1, viability, apoptosis, necrosis and ploidy for use as a nuclei donor. The cells in 5-10 passages were randomly allocated into three treated groups. Cells were cultured either in Dulbecco's modified Eagle's medium (DMEM) + 10% foetal bovine serum (FBS) until 90% confluent (group 1, confluent), in DMEM + 10% FBS + 30 microM roscovitine for 12 h (group 2, roscovitine), or in DMEM + 0.5% FBS for 5 days (group 3, serum starvation). Most of the cells (>80%) in all groups were arrested at the G0/G1 stage. Although the rates did not differ, cells in group 1 showed an increased cell population arrested at the G0/G1 phase. Significantly (p < 0.05) higher rates of apoptosis occurred in group 3 than in group 1 and 2 (10% vs 6% and 6%, respectively). No differences in chromosomal abnormality were observed among groups. However, by increasing the number of cell culture passages up to 15, significantly (p < 0.05) higher chromosomal abnormality was observed than in 5 and 10 passages (39% vs 28% and 23%, respectively) in group 1. The results clearly indicated that bovine foetal fibroblasts could be effectively synchronized at G0/G1 stages by all the three different treatments, confluent, roscovitine and serum starvation. However, cells in confluent showed reduced apoptosis and necrosis when they underwent 5-10 passages, exhibiting increased percentage of cells with stable chromosome diversity. Hence, cells in confluent merit further studies before they could be used as nuclear donors.  相似文献   

8.
OBJECTIVE: To evaluate the biological activity of dihydroartemisinin on canine osteosarcoma cell lines in vitro. SAMPLE POPULATION: 4 canine osteosarcoma cell lines. PROCEDURES: Cell viability assays were performed on canine osteosarcoma cell lines OSCA2, OSCA16, OSCA50, and D17 after 24, 48, and 72 hours of treatment with dihydroartemisinin at concentrations of 0.1 to 100 microM. Apoptosis was assessed by use of an ELISA for free nuclosomal DNA fragmentation and by western blot analysis for cleavage of caspase 3. Cell cycle analysis was performed by use of staining with propidium iodide and flow cytometry. Detection of reactive oxygen species (ROS) was conducted in the D17 cell line by use of 6-carboxy-2',7'-dihydrofluorescein diacetate and flow cytometry. RESULTS: The concentration of dihydroartemisinin required for 50% inhibition of cell viability (IC50) was achieved in all 4 canine osteosarcoma cell lines and ranged from 8.7 to 43.6 microM. Induction of apoptosis was evident as an increase in nucleosomal DNA fragmentation, cleavage of caspase 3, and an increase in the population in the sub G0/G1 phase of the cell cycle detected by flow cytometry. Exposure to dihydroartemisinin also resulted in a decrease in the G0/G1 population. Iron-dependent generation of ROS was detected in dihydroartemisinin-treated D17 cells; ROS generation increased in a dose-dependent manner. CONCLUSIONS AND CLINICAL RELEVANCE: Incubation with dihydroartemisinin resulted in biological activity against canine osteosarcoma cell lines, which included induction of apoptosis and arrest of the cell cycle. Clinical trials of dihydroartemisinin in dogs with osteosarcoma should be conducted.  相似文献   

9.
试验旨在探索使较高比例的淋巴细胞富集在有丝分裂G2/M期的最佳条件。运用植物血凝素(PHA)和刀豆蛋白A(ConA)对淋巴细胞进行刺激使其增殖,培养一定时间后加秋水仙素对淋巴细胞进行同步化处理,用流式细胞仪检测G2/M期的细胞数量进行比对,观察试剂的最佳作用浓度和加秋水仙素的最佳时间。结果表明,采用PHA和ConA刺激淋巴细胞增殖的最佳作用浓度是60和5 μg/mL,且淋巴细胞经ConA刺激培养45 h再加秋水仙素处理5 h G2期的比例最高为58.38%。结果提示,就绒山羊的淋巴细胞来说,ConA刺激绒山羊淋巴细胞增殖的效果比PHA好,且摸索出细胞G2/M期的时间点至关重要。  相似文献   

10.
为探讨鸡p15基因的生物学功能,试验构建了鸡p15基因的真核表达载体pcDNA3.1( )-p15,并转染到鸡MDV转化的淋巴细胞系MDCC-MSB1,应用G418筛选掉未转染的细胞,对存活细胞p15蛋白的表达、细胞增殖力、群体倍增时间、细胞周期和端粒酶的活性进行了检测。结果表明,与转染空质粒pcDNA3.1( )细胞相比,转染了p15基因的细胞稳定表达了p15蛋白;细胞的增殖受到了抑制,抑制率达45%~74%;群体倍增时间从27h延长至416h;流式细胞仪分析细胞周期发现,p15蛋白引起了细胞多停滞于G0/G1期,S和G2/M期细胞比例下降;端粒酶活性受到抑制。  相似文献   

11.
The aim of the present study was to optimize the conditions for in vitro development and postvitrification survival of somatic cell cloned feline embryos. To determine the effects of cell cycle synchronization of the nuclear donor cells, we cultured preadipocytes under serum starvation or conventional conditions. After two days in serum starvation culture, the proportion of synchronized donor cells at the G0/G1 phase was 91.6%. This was significantly higher than the proportion of non-synchronized cells in the proliferative phase (72.6%, P<0.05). The in vitro development of somatic cell nuclear transfer (SCNT) embryos reconstructed using donor cells treated under serum starvation conditions (normal cleavage rate of 65.7%, 46/70, and blastocyst formation rate of 20.0%, 14/70) was comparable to that of the serum supplemented group (52.5%, 31/59, and 20.3%, 12/59). Use of in vitro or in vivo matured oocytes as recipient cytoplasts equally supported development of the SCNT embryos to the blastocyst stage (11.9%, 5/42, vs. 9.5%, 2/21). SCNT-derived blastocysts were vitrified using the original minimum volume cooling (MVC) or the modified (stepwise) MVC method. Although none (n=10) of the SCNT blastocysts survived following vitrification by the original MVC method, the stepwise MVC method resulted in 100% survival after rewarming (n=11). In conclusion, we demonstrated that feline somatic cell cloned embryos with a high developmental ability can be produced irrespective of cell cycle synchronization of donor cells using either in vivo or in vitro matured oocytes. Furthermore, by utilizing a stepwise vitrification method, we showed that it is possible to cryopreserve cloned feline blastocysts.  相似文献   

12.
Cell cycle analysis of bovine cultured somatic cells by flow cytometry   总被引:1,自引:0,他引:1  
This study was undertaken to examine the cell cycle characteristics of bovine fetal and adult somatic cells (fetal fibroblasts, adult skin and muscle cells, and cumulus cells) after culture under a variety of conditions; 1) growth to 60-70% confluency (cycling), 2) serum starvation, 3) culture to confluency. Cell -cycle phases were determined by flow cytometry with propidium iodide staining enabling the calculation of percentages of cells in G0 /G1, S and G2 /M. The majority was in G0/G1 regardless of cell type and treatment. Serum-starved or confluent cultures contained higher percentages of cells in G0/G1 (89.5-95.4%; P < 0.05). Percentages of cells in G0/G1 increased as cell size decreased regardless of the cell type and treatment. In the serum-starved and confluent cultures, about 98% of small cells were in G0/G1 . Serum-starved cultures contained higher percentages of small cells (38.5-66.9%) than cycling and confluent cultures regardless of cell type (P < 0.05) . After trypsinization of fetal fibroblasts and adult skin cells that were serum-starved and cultured to confluency, the percentages of cells in G0/G1 increased (P < 0.05) on incubation for 1.5 (95.7-99.5%) or 3 hr (95.9-98.6%). These results verify that serum starvation and culture to confluency are efficient means of synchronizing bovine somatic cells in G0/G1, and indicate that a more efficient synchronization of the cells in G0/G1 can be established by incubation for a limited time period after trypsinization of serum-starved or confluent cells.  相似文献   

13.
以正常人肝细胞(L-02细胞)为研究对象,根据细胞增殖率、活性氧(reactive oxygen species,ROS)含量、丙二醛(malondialdehyde,MDA)含量等指标的变化研究黄曲霉毒素B1(aflatoxin B1,AFB1)的毒性作用及氧化应激损伤,选用VC作为AFB1损伤肝细胞的保护剂,通过比色法测定细胞的相对存活率,从细胞周期的变化和细胞凋亡率研究AFB1引起L-02细胞凋亡的程度及机制。结果表明:根据AFB1的半数细胞抑制率(inhibition of cell,IC)(IC  相似文献   

14.
本试验旨在探索更加优化的条件,使绒山羊成纤维细胞经处理后更多的处于有丝分裂G2/M期。本研究分别采用秋水仙素和nocodazole试剂对绒山羊成纤维细胞进行周期同步化处理,用流式细胞仪检测G2/M期的细胞数量并进行比对,观测最佳作用浓度。结果表明,秋水仙素的使用浓度不宜过大,且添加秋水仙素时间的不同也会对试验结果产生明显的影响。另外在相同条件下,经nocodazole处理的绒山羊成纤维细胞周期同步化效果比秋水仙素好,最优的处理条件是300 ng/mL nocodazole处理成纤维细胞24 h,所得G2/M期的细胞所占比例为15.10%。结果提示,对于绒山羊的成纤维细胞来说,细胞周期同步化处理时选择nocodazole更好一些。  相似文献   

15.
Canine osteosarcoma is an aggressive cancer, comprising 85% of canine bone neoplasms. Current treatment practices of surgery and chemotherapy increase 1-year survival by only 45%. The curcumin analogue RL71, has demonstrated potent in vitro and in vivo efficacy in several models of human breast cancer through increased apoptosis and cell cycle arrest. Thus, the present study aimed to investigate efficacy of curcumin analogues in two canine osteosarcoma cell lines. Osteosarcoma cell viability was assessed using the sulforhodamine B assay and mechanisms of action were determined by analysing the levels of cell cycle and apoptotic regulatory proteins via Western blotting. Further evidence was obtained using flow cytometry to detect cell cycle distribution and the number of apoptotic cells. RL71 was the most potent curcumin analogue with EC50 values of 0.64 ± 0.04 and 0.38 ± 0.009 μM (n = 3) in D-17 (commercial) and Gracie canine osteosarcoma cells, respectively. RL71 significantly increased the ratio of cleaved-caspase 3 to pro-caspase 3 and the level of apoptotic cells at the 2× and 5× EC50 concentration (p < 0.001, n = 3). Furthermore, at the same concentration, RL71 significantly increased the number of cells in the G2/M phase. In conclusion, RL71 has potent cytotoxic activity in canine osteosarcoma cells triggering G2/M arrest and apoptosis at concentrations achievable in vivo. Future research should further investigate molecular mechanisms for these changes in other canine osteosarcoma cell lines prior to in vivo investigation.  相似文献   

16.
旨在探索发生可变剪切事件的MEI1基因对蒙古马精子生成的调控作用,实现利用分子调控技术提高马的精子数量和精液品质,有效提高繁殖效率,降低生产成本,加快遗传进展,促进种群繁衍.本研究以两岁蒙古马的睾丸支持细胞(SC)作为研究对象,构建未发生外显子跳跃(exon skip,ES)事件的MEI1-1-pIRES2-EGFP重...  相似文献   

17.
The effects of two antioxidants, superoxide dismutase (SOD) and the flavonoid 3,4-dihydroxyflavone (DHF), on bovine embryo development in vitro were examined. Blastocyst development, total cell and inner cell mass (ICM) numbers, intracellular levels of reactive oxygen species (ROS), apoptotic indices and gene expression levels were examined before and after treatment of day 2 bovine embryos (≥2-4 cells) with various concentrations of 3,4-DHF or SOD for 6 days. Statistical analysis was performed using analysis of variance, with significance defined at the P<0.05 level. SOD had no significant effect on bovine embryo development at any tested concentration (control, 32.8%; 300 U/ml, 33.9%; 600 U/ml, 24.2%). In contrast, 10 μM 3,4-DHF promoted higher blastocyst development (39.3%) than any other concentration (control, 26.7%; 1 μM, 30.3%; 50 μM, 29.5%; 100 μM, 20.5%). Compared with 300 U/ml SOD, 10 μM 3,4-DHF resulted in significantly higher blastocyst development (44.2%) (control, 31.5%; SOD 300 U/ml, 33.6%). Treatment with 3,4-DHF increased the ICM cell number and reduced intracellular ROS production and apoptotic cell numbers. When O(2) tension was decreased from 20% (high tension) to 5% (low tension), embryo development rates were doubled regardless of 3,4-DHF treatment. Under high O(2) tension, 10 μM 3,4-DHF treatment may render bovine embryo development similar to a low O(2) tension environment. The best blastocyst development was obtained under low O(2) tension plus 10 μM 3,4-DHF treatment. The relative expression levels of antioxidant (MnSOD), antiapoptotic (Survivin, Bax inhibitor) and growth-related genes (IFN-τ, Glut-5) were significantly increased after 3,4-DHF treatment, while the expression levels of oxidant (Sox) and apoptotic genes (Caspase-3 and Bax) were reduced. These results suggest that 3,4-DHF may promote the in vitro development of bovine embryos through its antioxidant and antiapoptotic effects.  相似文献   

18.
In the present study, to investigate the apoptosis of the polymorphonuclear neutrophil (PMN) from healthy dogs, we carried out TUNEL assay and DNA analysis by electrophoresis on dog PMNs. The TUNEL assay indicated that apoptotic PMNs in dogs were 0.15+/-5% before incubation, 0.3+/-5% at 4h incubation, 1+/-6% at 8h, 9+/-4% at 12h and 28+/-5% at 24h, respectively. The ladder formation was much more clearly observed in DNA from PMNs after 24h incubation at 37 degrees C than that before incubation. The results in this study indicated that healthy dog PMNs undergo apoptosis spontaneously within hours to days, and that the apoptosis of PMNs might be related to the high turnover of these circulating cells in dogs.  相似文献   

19.
The relationship between donor cell cycle and the developmental ability of somatic cell nuclear transfer (SCNT) embryos has not fully been elucidated. Donor cells that are usually prepared by serum starvation or confluent-cell culture for SCNT represent a heterogeneous population that includes mainly G0 phase cells, other cells in different phases of the cell cycle and apoptotic cells. In this study, we compared the developmental ability of porcine SCNT embryos reconstructed from G0 phase cells (G0-SCNT embryos) and strictly synchronized-G1 phase cells (G1-SCNT embryos), and examined the developmental rates and timing of first DNA synthesis. The G0 phase cells were synchronized by confluent culture, and the G1 phase cells were prepared from actively dividing M phase cells. The G1-SCNT embryos showed a significantly higher (P<0.05) developmental rate to the blastocyst stage per cleaved embryo (59%) than the G0-SCNT embryos (43%). Moreover, initiation of first DNA synthesis and cleavage occurred significantly earlier in the G1-SCNT embryos than in the G0-SCNT embryos. Delay of initiation of first DNA synthesis in the SCNT embryos by aphidicolin resulted in decreased developmental rates to the blastocyst stage without any effect on cleavage rates. Our data demonstrates that synchronized-G1 phase cells can be used as donor cells for SCNT embryos and that earlier initiation of first DNA synthesis may be important for subsequent development of SCNT embryos. The SCNT system using G1-synchronized cells, in terms of their highly uniform and viable cell states, can be useful for studying the reprogramming processes and embryonic development of SCNT embryos.  相似文献   

20.
The effect of X-irradiation on the progression of the cell cycle in cell lines from LEC and WKAH rats was investigated by a flow cytometer. When the cells were exposed to 5 Gy of X-rays at S phase, the proportion of S-phase cells in both cell populations decreased with incubation time and that of G2/M-phase cells was approximately 80% at 6 hr post-irradiation. At 12 hr post-irradiation, approximately 45% of the WKAH rat cells appeared in the G1 phase. However, 80-90% of LEC rat cells remained in the G2/M phase and less than 5% in the G1 phase during 6-12 hr post-irradiation. Thus, the LEC rat cells irradiated at S phase remained in the G2/M phase for at least 6 hr longer than did the WKAH rat cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号