首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】利用国产合成孔径雷达(SAR)系统(CASMSAR)获取的机载P-波段全极化SAR(PolSAR)数据,分析SAR对森林地上生物量(AGB)的响应与地形的关系,建立融合地形因子的高精度多项式模型,以提高森林AGB的估测精度。【方法】首先以基于机载激光雷达(Li DAR)数据得到的研究区坡度分布图与结合实测样地AGB数据得到的森林AGB分布图作为参考数据进行系统抽样,分析森林AGB与P-波段PolSAR后向散射强度的关系以及不同坡度下二者的相关性变化;然后利用Li DAR得到的高精度数字高程模型(DEM)结合机载P-波段的轨道数据计算当地入射角,进而建立以后向散射强度、当地入射角以及雷达视角为输入特征的多项式统计模型,同时将以上系统抽样得到的样本一部分作为模型训练样本,一部分作为精度检验样本。为避免样本尺度引起的偶然性,检验了20 m×20 m至100 m×100 m不同样地尺度下的估测精度。【结果】以90 m×90 m样本为例,当坡度为0°~5°时,引入当地入射角(第2组特征)的估测精度与未引入当地入射角(第1组特征)的估测精度分别为:决定系数(R~2)为0.634和0.634,均方根误差(RMSE)为12.07和12.08 t·hm~(-2),总精度(Acc.)为78.91%和78.89%;当坡度为5°~10°时,第2组特征与第1组特征的估测精度分别为:R2为0.524和0.523,RMSE为13.52和13.97 t·hm~(-2),Acc.为80.57%和80.52%;当坡度大于10°时,第2组特征与第1组特征的估测精度分别为:R~2为0.628和0.519,RMSE为13.16和15.70 t·hm~(-2),Acc.为81.05%和78.55%。随着样地尺度增大,2组特征的估测精度均增大,且第2组特征的估测精度大于第1组。【结论】当坡度小于10°时,地形对森林的后向散射强度几乎无影响;当坡度大于10°时,地形的影响显著,在不同尺度下,引入当地入射角的估测模型均可以有效提高估测精度,充分说明模型的有效性和稳定性。此外,随着尺度增大,无论采用的模型是否考虑了地形影响,其估测精度都逐渐提高并趋于稳定,揭示出对复杂地形下森林AGB估测模型效果的评价必须考虑尺度的影响,且参考样地要足够大,否则难以得到客观的结论。  相似文献   

2.
基于多源遥感的森林地上生物量KNN-FIFS估测   总被引:2,自引:0,他引:2  
【目的】针对多源遥感数据及其派生特征因子数据维度高、信息冗余、易造成估测模型过拟合等问题,从高维度遥感特征因子中高效优化特征组合,优化区域森林地上生物量(AGB)的k最近邻(k-NN)估测模型。【方法】提出基于快速迭代特征选择的k最近邻法(KNN-FIFS),以森林资源样地调查数据计算的森林AGB为参考,以留一法交叉验证(LOO)相应的k-NN模型反演的森林AGB均方根误差(RMSE)最小为原则,依次迭代选取遥感特征,优化区域森林AGB的k-NN估测模型。以大兴安岭根河森林保护区为研究区,结合Landsat-8 OLI各波段光谱信息、植被指数、纹理、地形因子、机载合成孔径雷达(SAR)P-波段HV极化后向散射强度信息(PHV)以及森林资源样地调查数据,利用KNN-FIFS方法估测研究区森林AGB,并与多元线性逐步回归法(SMLR)进行对比分析。【结果】利用KNN-FIFS方法,得到当k为3,特征组合为PHV、短波红外波段一均一性(H6)、短波红外波段一二阶矩(S6)、短波红外波段二二阶矩(S7)、海蓝波段相关性(Cr1)、近红外波段相关性(Cr5)、海蓝波段相异性(D1)、增强型植被指数(EVI)时,研究区森林AGB估测结果最优,其精度(R~2=0.77,RMSE=22.74 t·hm~(-2))显著优于SMLR估测精度(R~2=0.53,RMSE=32.37 t·hm~(-2))。【结论】KNN-FIFS方法相比SMLR更适用于森林AGB多源遥感估测;KNN-FIFS方法可以从高维度遥感特征因子中高效选取相关特征进行森林AGB估测。  相似文献   

3.
【目的】采用TanDEM-X单极化InSAR数据,研究基于相干系数的SINC模型森林高度估测方法,并分析5 m高分辨率的LiDAR DEM和30 m中等分辨率的SRTM DEM对模型估测精度和稳定性的影响。【方法】首先对观测的相干性进行非体散射失相干校正得到体散射失相干γVol,然后基于SINC模型将γVol的相干系数作为输入估测森林高度。以LiDAR提取的森林高度为验证数据,均匀选取150个检验样本,分别在15 m×15 m、30 m×30 m、50 m×50 m和100 m×100 m大小的样本尺度上进行精度评价,并与DSM-DEM差分法进行对比,分析2种方法的精度和适用性。【结果】5 m和30 m分辨率的参考DEM对SINC模型森林高度估测结果影响较小,随样本尺度增大其影响可逐渐忽略,当样本大小为100 m×100 m时,LiDAR DEM和SRTM DEM估测结果的R~2分别为0.54、0.51,RMSE分别为2.38、2.51 m,精度分别为77.19%、75.99%;相比SINC模型法,DSM-DEM差分法在各样本尺度上的表现更好,但森林高度估测结果存在明显低估现象,必须采用森林高度实测数据进行校正,当样本大小为100 m×100 m时,R2为0.79,校正前后的RMSE分别为2.57、1.63 m,精度分别为75.44%、84.41%。【结论】基于相干系数的SINC模型法估测森林高度,以30 m空间分辨率的SRTM DEM进行地形补偿和地理编码,可以取得较好结果;虽然该方法的精度相比DSM-DEM差分法略有下降,但既不需要实测森林高度数据进行标定,也不需要输入高分辨率的DEM,具有大范围森林高度制图的潜力和更大的实际应用价值。  相似文献   

4.
【目的】森林是陆地生态系统的重要组成部分,精确估测森林地上生物量对森林资源的经营管理具有指示作用,对研究全球碳循环具有重要意义。为了改善单一来源遥感数据估测森林地上生物量的不足,探讨了联合高分三号(Gaofen-3,GF-3)全极化(Polarimetric synthetic aperture radar,PolSAR)数据极化分解参数和Landsat-8 OLI数据估测森林地上生物量的可行性,并针对多源遥感数据的冗余问题优化特征组合。【方法】以广西南宁市高峰林场为研究区,结合森林样地调查数据,提取GF-3 PolSAR数据的后向散射系数、极化分解参数和Landsat-8 OLI数据的光谱信息、植被指数、纹理,使用基于序列前向特征选择的K最近邻法(K-nearest neighbor based on sequence forward feature selection,KNN-SFS)估测研究区的森林地上生物量,以留一法交叉验证得到的森林地上生物量预测值和实测值之间的均方根误差(Root mean square error,RMSE)最小为原则,对比验证使用多源遥感数据和单一来源遥感数据时的估测结果,寻求估测森林地上生物量的最优特征组合,基于最优特征组合绘制研究区的森林地上生物量空间分布图。【结果】结合GF-3 PolSAR数据和Landsat-8 OLI数据估测研究区森林地上生物量的精度为RMSE=21.05 t·hm~(-2),R~2=0.75,优于仅使用GF-3 PolSAR数据估测的精度(RMSE=28.38 t·hm~(-2),R~2=0.47)和仅使用Landsat-8 OLI数据估测的精度(RMSE=29.52 t·hm~(-2),R~2=0.42)。【结论】多源数据协同反演森林地上生物量可以提高估测的精度,基于KNN-SFS方法联合GF-3 PolSAR数据与Landsat-8 OLI数据可以较好地估测森林地上生物量。  相似文献   

5.
【目的】为了探究国产高分二号(GF-2)影像在林分蓄积量估测中的潜力,并找到最佳的蓄积量估测模型。【方法】本次实验以内蒙古旺业甸林场为研究区,以高分二号卫星影像为信息源,结合2017年10月份调查的75块样地以及同时期的GF-2影像数据,提取波段特征、植被指数和纹理特征等43个遥感因子作为候选变量,利用Pearson相关系数选择出与蓄积量显著相关的6个变量,采用多元线性回归模型(MLR)、BP-神经网络模型(BP-ANN)、随机森林模型(RF)、支持向量机模型(SVM)和K邻近模型(KNN)进行蓄积量的估测。以决定系数(R^2)、均方根误差(RMSE)、相对均方根误差(RRMSE%)作为5种模型的评价指标,选择出旺业甸林场的最佳蓄积量估测模型,并绘制了研究区的森林蓄积量分布图。【结果】4种机器学习模型的结果明显优于传统的线性模型,其中随机森林(RF)模型和K邻近模型(KNN)均得到了较高的精度,其中RF模型的R^2为0.66,均方根误差为55.2 m^3/hm^2,相对均方根误差为28.1%,KNN模型的R^2为0.64,均方根误差为57.6 m^3/hm^2相对均方根误差为29.3%。【结论】在利用高分二号数据进行旺业甸林场蓄积量估测时,RF和KNN模型在估测针叶林蓄积量时相比于其他模型可以取得更好的结果。  相似文献   

6.
【目的】将ICESat-GLAS波形数据与HJ-1A/HSI高光谱数据联合,借助HSI高光谱数据提供的连续高分辨率光谱信息,实现区域森林冠层高度的估测,降低由于GLAS光斑呈离散条带状分布无法覆盖整个研究区造成的估测误差。【方法】首先,从平滑后的ICESat-GLAS波形数据中提取波形参数(波形长度W和地形坡度参数TS),基于W和TS建立GLAS森林冠层高度估测模型,并利用此模型计算研究区所有GLAS光斑内的森林冠层高度;然后,采用最小噪声分离法(MNF)对HJ-1A/HSI高光谱数据进行降维,提取前3个MNF分量(MNF1,MNF2,MNF3);最后,基于支持向量回归机(SVR)算法,利用GLAS估测的森林冠层高度和3个MNF分量建立区域森林冠层高度SVR估测模型,并估测研究区内无GLAS光斑覆盖区域的森林冠层高度,生成森林冠层高度分布图。【结果】从ICESat-GLAS波形数据中提取的地形坡度参数TS与野外实测地形坡度具有显著线性关系(R2=0.78);基于W和TS建立的GLAS森林冠层高度估测模型的R~2=0.78,RMSE=2.51 m,模型验证的R~2=0.85,RMSE=1.67 m;基于支持向量回归机算法建立的SVR模型建模的R2=0.70,RMSE=3.62 m,模型验证的R2=0.67,RMSE=4.42 m。采用野外数据对最终得到的森林冠层高度分布图的估测误差进行分析,结果估测误差最大值为7.10 m,最小值为0.07 m,平均值为1.78 m,估测误差的标准差为1.49 m,Q1为0.75 m,Q3为2.31 m。【结论】从ICESat-GLAS波形数据中提取的地形坡度参数TS能够很好地反映地形坡度的变化,本研究建立的线性关系模型可克服对数关系模型在平坦地区解释困难的问题。基于支持向量回归机算法,将ICESat-GLAS波形数据与HJ-1A/HSI高光谱数据联合,可克服ICESat-GLAS由于光斑呈离散条带状分布无法实现区域森林冠层高度估测的不足,实现对区域森林冠层高度的高精度估测。  相似文献   

7.
【目的】森林蓄积量是衡量森林质量和生长状况的重要指标。利用遥感技术进行森林蓄积量反演相比传统的森林调查能显著提高森林资源调查效率,对快速获取区域范围森林生长状况,进行高效的资源利用和森林经营管理具有重要意义。【方法】以陕西韩城市为研究区,利用森林资源二类调查数据库提取森林蓄积量实测数据,结合Sentinel-2遥感影像进行森林蓄积量反演。通过线性逐步回归法和重要性评价法分别进行变量筛选,构建多元线性回归模型、支持向量机模型、随机森林模型和基于欧式距离、曼哈顿距离和马氏距离构建的kNN模型进行森林蓄积量估测,通过精度评价比较最终选择估测精度最高的模型进行研究区森林蓄积量反演。【结果】1)马氏距离是最适合构建kNN模型的距离度量。基于马氏距离构建的kNN模型在所有模型中实现了最高的估测精度,决定系数R2为0.66,均方根误差RMSE为10.02 m3/hm2,均方根误差相比随机森林模型、支持向量机模型和多元线性回归分别下降了3.9%、7.8%和29.9%;2)非参数模型在森林蓄积量估测中的精度显著优于参数模型。基于马氏距离构建的kNN模型、随机森林模型、支持向量机模型均方根误差相比多元线性...  相似文献   

8.
【目的】探究Landsat8 OLI数据和KNN算法在森林蓄积量估测中的潜力。【方法】以湖南省湘潭县为研究区,采用Landsat8 OLI数据和同时期的二类调查数据,通过距离相关系数筛选特征,分别采用线性回归模型(MLR)、K-近邻模型(KNN)、距离加权KNN模型(DW-KNN)和优化欧式KNN模型(FW-KNN)对森林蓄积量进行估测。使用十折交叉方法进行精度检验,对检验结果进行对比分析。【结果】3种KNN模型的估测结果均高于传统的线性模型,并且在3种KNN模型中,FW-KNN算法效果最好,决定系数达到0.69,为3种模型中最高;3种KNN模型中,本研究优化欧氏距离KNN模型的估测精度最高,其均方根误差为30.3%,相比于传统KNN模型的均方根误差降低了5.1%,相比于DW-KNN模型降低了3.3%。【结论】采用DW-KNN蓄积量估测结果明显优于其他两种模型,说明通过特征与蓄积量的相关性优化样本间的距离是一种可行的KNN优化方法。  相似文献   

9.
甘肃黑河流域上游森林地上生物量的多光谱遥感估测   总被引:4,自引:0,他引:4  
[目的]以黑河流域上游祁连山森林保护区为研究区,利用133个森林样地调查数据、Landsat-5 TM影像和ASTER GDEM产品为数据源,探讨地形对该流域森林地上生物量(above-ground biomass,AGB)估测的影响,以及选择合适的遥感估测方法反演该流域的森林AGB.[方法]首先利用青海云杉特殊的生境范围和绿色植被对比值植被指数(ratio vegetation index,RVI)的灵敏程度,及不同地物对纹理特征的不同响应,制定相应的决策树分类器,将研究区的土地覆盖类型分为两大类:森林(青海云杉)-非森林,并利用133个森林样地调查数据和Google Earth 高分辨率影像的12 722个采样点对分类结果进行验证(总体分类精度达到90.39%,Kappa系数为0.81);然后运用多元线性逐步回归估测法,以及结合随机森林算法(random forest,RF)优化后的k最近邻分类法(k-nearest neighbors,k-NN)进行森林AGB的遥感估测,对比SCS+C地形校正前后青海云杉森林AGB的估测结果,同时比较2种不同估测方法的反演效果;最后利用得到的最优估测方法反演整个研究区的森林AGB,生成黑河流域上游祁连山森林保护区的森林AGB的等级分布图.[结果]SCS+C地形校正前多元线性逐步回归的估测精度为R2=0.31,RMSE =34.41 t·hm-2,地形校正后多元线性逐步回归的估测精度为R2 =0.46,RMSE =30.51 t·hm-2;而基于SCS+C地形校正后的k-NN的交叉验证精度不仅明显高于地形校正前的精度,且显著优于多元线性逐步回归的估测结果,达到R2=0.54,RMSE=26.62 t·hm-2;另外基于最优的k-NN估测模型(窗口为7×7,采用马氏距离,k=3)反演的该流域青海云杉在2009年总的森林地上生物量为8.4×107t,平均森林地上生物量为96.20 t·hm-2.[结论]在地形复杂地区,运用SCS+C模型对地形进行适当校正,能够有效地消除太阳入射角变化引起的地表反射亮度的差异,使影像能够更准确地反映地表信息,提高森林AGB的遥感估测精度;在样本有限的情况下,相对于以大数定律作为理论基础的多元线性逐步回归估测法,k-NN能够避免发生过学习现象和样本不平衡问题,更适于该研究区青海云杉的森林AGB的估测.  相似文献   

10.
【目的】探索高分2号遥感数据与中亚热带天然林木本植物物种Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀性指数之间的关系,为森林经营管理和保护策略提供参考。【方法】提取高分2号多光谱数据的原始波段、植被指数、纹理特征和全色波段纹理特征,使用随机森林算法筛选变量并对3种多样性指数进行建模,设置不同纹理提取窗口来寻找最优窗口。【结果】基于随机森林算法的RFE冗余变量去除方法可从众多遥感变量中快速选择对模型精度具有显著贡献的少量变量。多光谱数据3×3窗口纹理特征、全色数据7×7窗口纹理特征和植被指数结合的特征集对3种多样性指数具有较好估测结果,其决定系数(R~2)和均方根误差(RMSE)分别为0.47和0.300(Shannon-Wiener多样性指数)、0.53和0.042 (Simpson多样性指数)、0.61和0.051 (Pielou均匀性指数)。植被指数中类胡萝卜素反射率指数与3种多样性指数具有显著相关关系。【结论】高分2号遥感数据中的植被指数和纹理特征可有效估测研究区森林木本植物物种多样性。类胡萝卜素反射率指数可体现森林中类胡萝卜素相对于叶绿素的含量,在秋冬季节作为反映常绿树种和落叶树种分布的指数,对森林木本植物物种多样性估测具有最大贡献。使用星载遥感数据预测的多样性和均匀性指数分布可有效监测森林木本植物物种多样性变化。  相似文献   

11.
《林业科学》2021,57(9)
【目的】探索一种适用于已具备林下地形,可协同利用少量实测样地数据、抽样式采集的机载激光雷达(LiDAR)条带数据和区域全覆盖的资源三(ZY3)立体像对数据有效估测区域森林平均高的方法,为提高森林资源调查效率和精度提供技术支撑。【方法】以广西高峰林场2个分场为研究区,2018年获取覆盖整个研究区的机载LiDAR、ZY3立体像对和少量实测样地数据。将LiDAR数据提取的DEM作为历史已存在的林下地形,从全覆盖的LiDAR数据中抽取12条飞行条带的LiDAR数据"模拟"抽样式采集的LiDAR数据,形成"林下地形+LiDAR抽样+ZY3立体像对+样地"数据集;以样地和LiDAR数据提取出LiDAR抽样数据对应的森林平均高为模型建立的参考数据(因变量Y),以ZY3立体像对提取的数字表面模型(DSM)减去数字高程模型(DEM)得到的CHM_(ZY3)为自变量(X),采用普通最小二乘(OLS)模型、k-邻近(KNN)模型和回归克里格(RK)模型估测森林平均高,并对其估测效果进行比较评价。【结果】OLS和KNN模型的均方根误差(RMSE)分别为1.88和1.96 m,估测精变(EA)分别为87.18%和86.64%;RK模型估测精度相对较高,RK_(OLS)模型的RMSE=1.84 m,EA=87.42%;RK_(KNN)模型的RMSE=1.86 m,EA=87.32%。【结论】本研究中2类4种模型均可有效估测森林平均高,回归克里格模型(RK_(OLS)、RK_(KNN))优于非空间模型(OLS、KNN),RK_(OLS)模型估测精度最高;在林下地形已知时,协同利用少量实测样地数据、抽样式采集的机载LiDAR条带数据和区域全覆盖的ZY3立体像对数据能够实现区域森林平均高的高效、高精度估测。  相似文献   

12.
【目的】研究机载LiDAR航带旁向重叠对针叶林林分平均高和森林叶面积指数(LAI)估测的影响,为机载LiDAR点云数据区域森林结构参数估测提供参考。【方法】野外分别测定30块樟子松、33块长白落叶松样地的林分平均高和LAI,对原始LiDAR点云数据进行去噪、点云分类、高程归一化和重叠点移除等处理,从重叠点移除前、重叠点和重叠点移除后的点云数据中分别提取一系列样方点云高度分位数(HP1、HP5、HP10、…、HP99、Hmax和Hmean)和激光穿透指数(LPI),借助留一交叉验证建立并评价樟子松和长白落叶松林分平均高和LAI估测模型的精度,通过对比分析估测模型的决定系数(R2)和均方根误差(RMSE)揭示机载LiDAR航带旁向重叠对针叶林林分平均高和LAI估测的影响。【结果】对樟子松林分平均高估测而言,重叠点移除前林分平均高的最高估测精度(R2=0.873,RMSE=0.940)出现在HP90处,重叠点林分平均高的最高估测精度(R2=0.892,RMSE=0.866)出现在HP80处,而重叠点移除后林分平均高的最高估测精度(R2=0.892,RMSE=0.868)出现在HP55处;对长白落叶松林分平均高估测而言,重叠点移除前、重叠点和重叠点移除后林分平均高的最高估测精度均出现在HP99处,R2分别为0.725、0.719和0.741,RMSE分别为1.196、1.209和1.161。对樟子松LAI估测而言,重叠点移除前估测结果 R2为0.666,RMSE为0.220,重叠点估测结果 R2为0.551,RMSE为0.255,重叠点移除后R2提高到0.794,RMSE降低为0.172;对长白落叶松LAI估测而言,重叠点移除前估测结果 R2为0.654,RMSE为0.110,重叠点估测结果 R2为0.640,RMSE为0.112,与樟子松估测结果一致,重叠点移除后长白落叶松LAI估测精度大幅度提高,R2变为0.762,RMSE变为0.091。【结论】无论是林分平均高还是森林LAI,相邻航带旁向重叠点移除后的估测精度均高于重叠点移除前和重叠点,且樟子松的估测精度高于长白落叶松。对林分平均高而言,樟子松和长白落叶松达到最高估测精度时所对应的点云高度分位数不同。机载LiDAR点云数据相邻航带旁向重叠点的移除可有效提高森林结构参数的估测精度,在未来机载LiDAR点云数据预处理时应加入重叠点移除操作。  相似文献   

13.
基于机载激光雷达点云和随机森林算法的森林蓄积量估测   总被引:1,自引:0,他引:1  
《林业科学》2021,57(8)
【目的】基于机载激光雷达点云数据提取的森林高度参数和郁闭度,结合分层地面样地调查数据,采用随机森林算法构建森林蓄积量估测模型,分析机载激光雷达点云数据在森林蓄积量反演方面的潜力,为森林蓄积量高效准确估测提供方法依据。【方法】以直径30 m的地面样圆离散点云数据为数据源,经数据校准等预处理后,利用Li DAR360软件提取森林高度参数(最大高、平均高等)和郁闭度,并将数据随机分成训练数据(70%)和验证数据(30%)。采用随机森林算法构建森林蓄积量估测模型,对仅用高度参数建模以及联合高度参数和郁闭度建模结果进行比较;同时运用R软件VSURF工具包筛选建模变量,对筛选后变量的建模结果进行分析。【结果】仅用高度参数建模的估测精度为R~2=0.75、RMSE=40.07 m~3·hm~(-2)、MAE=29.21 m~3·hm~(-2)、MRE=49.40%,联合高度参数和郁闭度建模的估测精度为R~2=0.79、RMSE=36.23 m~3·hm~(-2)、MAE=26.16 m~3·hm~(-2)、MRE=38.35%。通过变量筛选,建模参数从24个减少至7个,可极大提高运算效率,同时R~2未变化,RMSE从36.23 m~3·hm~(-2)升至36.50 m~3·hm~(-2),rRMSE从31.92%升至32.97%,MAE从26.16 m~3·hm~(-2)降至26.08 m~3·hm~(-2),MRE从38.35%降至38.05%。【结论】机载激光雷达点云数据可以提取森林的垂直结构信息(高度参数)和水平结构信息(郁闭度),具备三维结构参数提取能力。采用随机森林算法,增加林分郁闭度信息可显著提高森林蓄积量估测精度。通过变量筛选,虽然能够降低参数数量,但对模型精度具有一定影响,在建模精度要求较高的情况下,建议使用全变量进行蓄积量估测;而在数据量较大的情况下,建议使用筛选变量进行蓄积量估测。基于机载激光雷达点云数据估测森林蓄积量显著优于光学遥感数据,可为森林蓄积量高效准确估测提供方法依据,能够满足大范围森林蓄积量快速反演需求。  相似文献   

14.
基于机载大光斑激光雷达的森林冠层高度估测   总被引:1,自引:1,他引:0  
利用国家林业和草原局卫星林业应用中心设计研发的机载林业探测大光斑激光雷达回波数据,基于Matlab2014a软件对光斑数据进行数据读取、背景噪声估计、信号起始位置判断、地面回波位置确定,从而估测光斑位置下森林冠层高度。通过选取样地位置附近连续10组大光斑回波波形对森林冠层高度进行估测,并与样地实测森林冠层高度进行精度验证。结果表明:机载林业探测大光斑回波波形对7种森林冠层高度均有不同程度的估测能力,其中以胸高断面积加权平均高、优势树种平均木平均高估测效果最好,相对误差分别为4.36%和8.29%,RMSE(均方根误差)为1.40 m和1.55 m;对优势木平均高H、优势木平均高D估测能力最差,相对误差为19.81%和22.00%,RMSE为2.99m和3.34m。  相似文献   

15.
基于机器学习和多源数据的湘西北森林地上生物量估测   总被引:1,自引:0,他引:1  
《林业科学》2021,57(10)
【目的】针对传统森林资源清查方法成本高、时效性低和结果统一性差等问题,基于多源遥感数据,采用机器学习算法选择特征变量并建立估测模型,制作森林地上生物量(AGB)面分布产品,为森林资源信息化调查提供技术手段。【方法】以湖南省西北部为研究区,利用生物量异速生长方程将森林资源样地调查数据转换为AGB,筛选到393个样地AGB参考值。以Landsat-8数据为光学遥感数据源,提取各波段光谱信息、植被指数、纹理特征以及缨帽变换各分量;以ALOS PALSAR-2、Sentinel-1数据为雷达遥感数据源,提取各极化方式后向散射强度和归一化极化差分指数。结合高程、坡度、坡向地形因子,获得122个备选特征变量。采用逐步回归方法和随机森林(RF)算法筛选建模变量,分别建立多元线性回归(MLR)、RF和支持向量回归(SVR)模型。以均方根误差(RMSE)、相对均方根误差(rRMSE)和决定系数(R~2)为模型评价指标,运用十折交叉验证法评价模型效果,选择最佳模型完成生物量制图,并选取5种中国或全球尺度生物量制图产品进行比较分析。【结果】在训练集上,RF模型表现最好(RMSE=12.8 mg·hm~(-2),rRMSE=21.1%,R~2=0.93),其次为SVR模型(RMSE=26.1 mg·hm~(-2),rRMSE=43.3%,R~2=0.55),MLR模型表现最差(RMSE=30.9 mg·hm~(-2),rRMSE=50.5%,R~2=0.39);在测试集上,采用RF算法建立的模型表现(RMSE=30.1 mg·hm~(-2),rRMSE=51.3%,R~2=0.42)同样优于MLR(RMSE=32.6 mg·hm~(-2),rRMSE=54.1%,R~2=0.30)和SVR(RMSE=32.8 mg·hm~(-2),rRMSE=55.3%,R~2=0.25)。3种模型均显示出一定程度的低值高估和高值低估现象。RF模型选择出13个建模变量,包括PALSAR-2后向散射信息、高程以及Landsat-8光谱信息、植被指数、缨帽变换湿度与绿度分量差值。应用RF模型完成区域生物量制图,与其他产品对比,能够基本反映研究区内生物量分布情况,并显示出丰富的生物量分布细节信息,生物量范围为0~119 mg·hm~(-2),平均生物量为37.5 mg·hm~(-2),标准差为35.9 mg·hm~(-2)。【结论】结合多源遥感数据与机器学习算法,能够准确、快速地测算大范围生物量,具有较大应用潜力。相比SVR和MLR模型,RF模型在AGB估测上的表现更优,RF算法能够从多源变量中有效筛选出适用于AGB机器学习建模的变量。  相似文献   

16.
基于RBF组合模型的山地红壤有机质含量光谱估测   总被引:4,自引:0,他引:4  
【目的】探讨组合模型在山地红壤有机质含量高光谱估算中应用的可行性,以期为土壤有机质含量估测提供基础数据和科学依据。【方法】基于山地红壤光谱的全波段(400~2 450 nm)研究范围,选择偏最小二乘回归(PLSR)、BP神经网络(BP)和支持向量机回归分析(SVMR)3种单一高光谱估测模型,分别获得预测结果,并重构预测结果数据,以绝对误差和最小为目标,计算固定权重与不固定权重两种组合模型的权重值,并基于径向基函数(RBF)神经网络法建立组合模型,探讨不同赋权方法与是否重构数据条件下的最优组合模型。通过均方根误差(RMSE)、预测偏差比(RPD)和决定系数(R2)评价山地红壤有机质含量的预测精度。【结果】单一预测模型中的SVMR估测精度最高,验证决定系数(R2)为0.64,均方根误差为9.76 g·kg-1,测定值标准差与标准预测误差的比值为1.67;在组合模型数据不重构的条件下,不定权组合模型要优于定权组合模型;在组合模型数据重构的条件下,定权组合模型要略优于不定权组合模型,估测精度相差不大;最优模型是数据重构定权组合模型,模型验证决定系数(R2)为0.87,均方根误差为7.91 g·kg-1,测定值标准差与标准预测误差的比值为2.06;组合模型验证精度优于单一模型,说明利用RBF组合模型估算山地红壤有机质含量是可行的。【结论】对山地红壤有机质含量的快速估测而言,单一模型具有操作简单、运算速度快等特点,因而具有较大应用价值,但组合模型能较大限度地利用各种预测样本信息,从而能有效减少应用单一模型时所受随机因素的影响,从而提高山地红壤有机质含量的估测精度。  相似文献   

17.
【目的】采用 KNN方法进行碳储量估测,并对估测后的数据进行各种校正处理,绘制森林地上碳储量的空间分布图,为我国森林碳储量和固碳潜力的研究提供基础数据和科学依据。【方法】以黑龙江省大兴安岭为研究区(50°05'—53°33'N,121°11'—127°01'E),基于2010年森林资源连续清查固定样地和同年 Landsat5 TM 影像数据,利用 k-邻近法( KNN)在像素级水平上对森林地上碳储量进行估算。采用多准则方法分东、南、北和中4个区域对样地坐标和其对应的影像光谱值进行坐标重配准,并根据实测样地数据对坐标重配置前后不同林分类型地上碳储量估测精度进行评价;针对 KNN方法像素级估测结果存在明显的高值区域低估和低值区域高估现象,应用直方图匹配方法对估测结果进行变动范围调整;并根据样地实测碳储量和 KNN 估测值间的回归关系对调整后的结果分区域进行进一步匹配校正后处理,绘制森林碳储量的空间分布图。【结果】总体来说,本研究区域像元尺度KNN估测的欧式距离优于马氏距离,均方根误差随着最邻近值 k的增大而降低,当 k大于6时变化缓慢,并逐渐趋于稳定;坐标误差校正后,各林分类型森林地上碳储量的估测精度均显著提高,平均均方根误差由17.23降低到14.3 t·hm -2;直方图匹配后,各区域样地点高值区域低估和低值区域高估现象均有很大程度改善,实测值和估测值间的相关关系明显增强,然而高值地区(碳储量大于20 t·hm -2)出现过高估计现象;经匹配校正后处理的均值、标准差、直方图和累积频率分布图更接近样地实测值,均方根误差也明显降低,高值地区过高估计现象得到很好校正。【结论】森林资源清查数据、遥感数据及 KNN方法相结合逐渐成为区域尺度森林参数空间连续估测的重要手段。同利用光谱值和森林参数建立的回归模型相比,KNN方法能够更多地考虑到森林参数同光谱值之间的非线性依赖关系;但 KNN估测方法除了受距离度量标准、最邻近值 k的大小以及影像波段的选取等因素影响外,还存在如样地坐标和对应的影像光谱值匹配误差、像素级估测结果多呈明显集中分布趋势等问题,使得该方法的应用受到一定限制。本文的研究表明,对这些因素进行合理的校正,将更有利于区域尺度森林参数的精确估计和反演。  相似文献   

18.
森林地上生物量是森林获取能量的重要体现,准确掌握其动态变化对了解森林生长过程、实现生态系统的有效修复具有重要意义。合成孔径雷达技术(SAR)具有全天时、全天候的特点,在森林地上生物量(AGB)反演中极具潜力。星载SAR技术的发展,使得SAR数据源日益丰富,利用极化SAR技术、干涉SAR技术、极化干涉SAR技术、层析SAR技术、多频SAR技术可以实现对森林不同维度的观测,从而提供森林不同维度的信息,进而提高采用SAR技术进行森林AGB反演的能力。文中介绍星载SAR传感器及可获取SAR数据的现状,在此基础上重点阐述基于后向散射信息、极化信息、干涉信息、极化干涉信息、层析信息、多频SAR信息在森林AGB反演中的现状及存在问题,展望了SAR技术在森林AGB反演中的发展趋势。  相似文献   

19.
【目的】点云密度是影响机载激光雷达数据获取和预处理成本的关键因素,探明点云密度对森林参数估测精度的影响,为机载激光雷达大区域森林调查监测应用技术方案的优化提供参考依据。【方法】基于我国广西一个亚热带山地丘陵区域获取的机载激光雷达和样地数据,通过系统稀疏方法,将全密度点云(4.35点·m-2)分别稀疏至4.0、3.5、3.0、2.5、2.0、1.5、1.0、0.5、0.2和0.1点m-2,得到11个样地尺度的点云数据集,包括1个全密度和10个稀疏密度点云数据集;应用配对样本t检验方法,分析4种森林类型(杉木林、松树林、桉树林和阔叶林)中稀疏密度点云和全密度点云之间12个激光雷达变量的差异;通过变量和结构固定的多元乘幂模型式,分别采用不同密度点云数据集对林分蓄积量(VOL)和断面积(BA)进行估测,比较模型优度统计指标决定系数(R2)、相对均方根误差(rRMSE)和平均预估误差(MPE)的差异,并应用t检验方法分析稀疏密度点云VOL和BA估测值均值和全密度点云相应估测值均值的差异。【结果】1)点云密度较低时,稀疏密度点云分位...  相似文献   

20.
多基线干涉层析SAR提取森林树高方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
应用瑞典Raminstorp研究区Bio SAR 2007 P-波段多基线In SAR数据,研究了基于多基线干涉SAR数据的层析方法,成功提取了可代表森林垂直结构信息的雷达后向散射功率垂直分布信息,并基于该信息提取了树高。应用地面实测样地对树高提取精度进行了检验,结果表明:HH极化树高提取精度最高(R2为0.65,RMSE为2.35 m,相关系数为0.80),HV其次,VV最差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号